1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SPI bus driver for the Ingenic SoCs
4 * Copyright (c) 2017-2021 Artur Rojek <contact@artur-rojek.eu>
5 * Copyright (c) 2017-2021 Paul Cercueil <paul@crapouillou.net>
6 * Copyright (c) 2022 周琰杰 (Zhou Yanjie) <zhouyanjie@wanyeetech.com>
7 */
8
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/regmap.h>
18 #include <linux/spi/spi.h>
19
20 #define REG_SSIDR 0x0
21 #define REG_SSICR0 0x4
22 #define REG_SSICR1 0x8
23 #define REG_SSISR 0xc
24 #define REG_SSIGR 0x18
25
26 #define REG_SSICR0_TENDIAN_LSB BIT(19)
27 #define REG_SSICR0_RENDIAN_LSB BIT(17)
28 #define REG_SSICR0_SSIE BIT(15)
29 #define REG_SSICR0_LOOP BIT(10)
30 #define REG_SSICR0_EACLRUN BIT(7)
31 #define REG_SSICR0_FSEL BIT(6)
32 #define REG_SSICR0_TFLUSH BIT(2)
33 #define REG_SSICR0_RFLUSH BIT(1)
34
35 #define REG_SSICR1_FRMHL_MASK (BIT(31) | BIT(30))
36 #define REG_SSICR1_FRMHL BIT(30)
37 #define REG_SSICR1_LFST BIT(25)
38 #define REG_SSICR1_UNFIN BIT(23)
39 #define REG_SSICR1_PHA BIT(1)
40 #define REG_SSICR1_POL BIT(0)
41
42 #define REG_SSISR_END BIT(7)
43 #define REG_SSISR_BUSY BIT(6)
44 #define REG_SSISR_TFF BIT(5)
45 #define REG_SSISR_RFE BIT(4)
46 #define REG_SSISR_RFHF BIT(2)
47 #define REG_SSISR_UNDR BIT(1)
48 #define REG_SSISR_OVER BIT(0)
49
50 #define SPI_INGENIC_FIFO_SIZE 128u
51
52 struct jz_soc_info {
53 u32 bits_per_word_mask;
54 struct reg_field flen_field;
55 bool has_trendian;
56
57 unsigned int max_speed_hz;
58 unsigned int max_native_cs;
59 };
60
61 struct ingenic_spi {
62 const struct jz_soc_info *soc_info;
63 struct clk *clk;
64 struct resource *mem_res;
65
66 struct regmap *map;
67 struct regmap_field *flen_field;
68 };
69
spi_ingenic_wait(struct ingenic_spi * priv,unsigned long mask,bool condition)70 static int spi_ingenic_wait(struct ingenic_spi *priv,
71 unsigned long mask,
72 bool condition)
73 {
74 unsigned int val;
75
76 return regmap_read_poll_timeout(priv->map, REG_SSISR, val,
77 !!(val & mask) == condition,
78 100, 10000);
79 }
80
spi_ingenic_set_cs(struct spi_device * spi,bool disable)81 static void spi_ingenic_set_cs(struct spi_device *spi, bool disable)
82 {
83 struct ingenic_spi *priv = spi_controller_get_devdata(spi->controller);
84
85 if (disable) {
86 regmap_clear_bits(priv->map, REG_SSICR1, REG_SSICR1_UNFIN);
87 regmap_clear_bits(priv->map, REG_SSISR,
88 REG_SSISR_UNDR | REG_SSISR_OVER);
89
90 spi_ingenic_wait(priv, REG_SSISR_END, true);
91 } else {
92 regmap_set_bits(priv->map, REG_SSICR1, REG_SSICR1_UNFIN);
93 }
94
95 regmap_set_bits(priv->map, REG_SSICR0,
96 REG_SSICR0_RFLUSH | REG_SSICR0_TFLUSH);
97 }
98
spi_ingenic_prepare_transfer(struct ingenic_spi * priv,struct spi_device * spi,struct spi_transfer * xfer)99 static void spi_ingenic_prepare_transfer(struct ingenic_spi *priv,
100 struct spi_device *spi,
101 struct spi_transfer *xfer)
102 {
103 unsigned long clk_hz = clk_get_rate(priv->clk);
104 u32 cdiv, speed_hz = xfer->speed_hz ?: spi->max_speed_hz,
105 bits_per_word = xfer->bits_per_word ?: spi->bits_per_word;
106
107 cdiv = clk_hz / (speed_hz * 2);
108 cdiv = clamp(cdiv, 1u, 0x100u) - 1;
109
110 regmap_write(priv->map, REG_SSIGR, cdiv);
111
112 regmap_field_write(priv->flen_field, bits_per_word - 2);
113 }
114
spi_ingenic_finalize_transfer(void * controller)115 static void spi_ingenic_finalize_transfer(void *controller)
116 {
117 spi_finalize_current_transfer(controller);
118 }
119
120 static struct dma_async_tx_descriptor *
spi_ingenic_prepare_dma(struct spi_controller * ctlr,struct dma_chan * chan,struct sg_table * sg,enum dma_transfer_direction dir,unsigned int bits)121 spi_ingenic_prepare_dma(struct spi_controller *ctlr, struct dma_chan *chan,
122 struct sg_table *sg, enum dma_transfer_direction dir,
123 unsigned int bits)
124 {
125 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
126 struct dma_slave_config cfg = {
127 .direction = dir,
128 .src_addr = priv->mem_res->start + REG_SSIDR,
129 .dst_addr = priv->mem_res->start + REG_SSIDR,
130 };
131 struct dma_async_tx_descriptor *desc;
132 dma_cookie_t cookie;
133 int ret;
134
135 if (bits > 16) {
136 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
137 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
138 cfg.src_maxburst = cfg.dst_maxburst = 4;
139 } else if (bits > 8) {
140 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
141 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
142 cfg.src_maxburst = cfg.dst_maxburst = 2;
143 } else {
144 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
145 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
146 cfg.src_maxburst = cfg.dst_maxburst = 1;
147 }
148
149 ret = dmaengine_slave_config(chan, &cfg);
150 if (ret)
151 return ERR_PTR(ret);
152
153 desc = dmaengine_prep_slave_sg(chan, sg->sgl, sg->nents, dir,
154 DMA_PREP_INTERRUPT);
155 if (!desc)
156 return ERR_PTR(-ENOMEM);
157
158 if (dir == DMA_DEV_TO_MEM) {
159 desc->callback = spi_ingenic_finalize_transfer;
160 desc->callback_param = ctlr;
161 }
162
163 cookie = dmaengine_submit(desc);
164
165 ret = dma_submit_error(cookie);
166 if (ret) {
167 dmaengine_desc_free(desc);
168 return ERR_PTR(ret);
169 }
170
171 return desc;
172 }
173
spi_ingenic_dma_tx(struct spi_controller * ctlr,struct spi_transfer * xfer,unsigned int bits)174 static int spi_ingenic_dma_tx(struct spi_controller *ctlr,
175 struct spi_transfer *xfer, unsigned int bits)
176 {
177 struct dma_async_tx_descriptor *rx_desc, *tx_desc;
178
179 rx_desc = spi_ingenic_prepare_dma(ctlr, ctlr->dma_rx,
180 &xfer->rx_sg, DMA_DEV_TO_MEM, bits);
181 if (IS_ERR(rx_desc))
182 return PTR_ERR(rx_desc);
183
184 tx_desc = spi_ingenic_prepare_dma(ctlr, ctlr->dma_tx,
185 &xfer->tx_sg, DMA_MEM_TO_DEV, bits);
186 if (IS_ERR(tx_desc)) {
187 dmaengine_terminate_async(ctlr->dma_rx);
188 dmaengine_desc_free(rx_desc);
189 return PTR_ERR(tx_desc);
190 }
191
192 dma_async_issue_pending(ctlr->dma_rx);
193 dma_async_issue_pending(ctlr->dma_tx);
194
195 return 1;
196 }
197
198 #define SPI_INGENIC_TX(x) \
199 static int spi_ingenic_tx##x(struct ingenic_spi *priv, \
200 struct spi_transfer *xfer) \
201 { \
202 unsigned int count = xfer->len / (x / 8); \
203 unsigned int prefill = min(count, SPI_INGENIC_FIFO_SIZE); \
204 const u##x *tx_buf = xfer->tx_buf; \
205 u##x *rx_buf = xfer->rx_buf; \
206 unsigned int i, val; \
207 int err; \
208 \
209 /* Fill up the TX fifo */ \
210 for (i = 0; i < prefill; i++) { \
211 val = tx_buf ? tx_buf[i] : 0; \
212 \
213 regmap_write(priv->map, REG_SSIDR, val); \
214 } \
215 \
216 for (i = 0; i < count; i++) { \
217 err = spi_ingenic_wait(priv, REG_SSISR_RFE, false); \
218 if (err) \
219 return err; \
220 \
221 regmap_read(priv->map, REG_SSIDR, &val); \
222 if (rx_buf) \
223 rx_buf[i] = val; \
224 \
225 if (i < count - prefill) { \
226 val = tx_buf ? tx_buf[i + prefill] : 0; \
227 \
228 regmap_write(priv->map, REG_SSIDR, val); \
229 } \
230 } \
231 \
232 return 0; \
233 }
234 SPI_INGENIC_TX(8)
235 SPI_INGENIC_TX(16)
236 SPI_INGENIC_TX(32)
237 #undef SPI_INGENIC_TX
238
spi_ingenic_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)239 static int spi_ingenic_transfer_one(struct spi_controller *ctlr,
240 struct spi_device *spi,
241 struct spi_transfer *xfer)
242 {
243 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
244 unsigned int bits = xfer->bits_per_word ?: spi->bits_per_word;
245 bool can_dma = ctlr->can_dma && ctlr->can_dma(ctlr, spi, xfer);
246
247 spi_ingenic_prepare_transfer(priv, spi, xfer);
248
249 if (ctlr->cur_msg_mapped && can_dma)
250 return spi_ingenic_dma_tx(ctlr, xfer, bits);
251
252 if (bits > 16)
253 return spi_ingenic_tx32(priv, xfer);
254
255 if (bits > 8)
256 return spi_ingenic_tx16(priv, xfer);
257
258 return spi_ingenic_tx8(priv, xfer);
259 }
260
spi_ingenic_prepare_message(struct spi_controller * ctlr,struct spi_message * message)261 static int spi_ingenic_prepare_message(struct spi_controller *ctlr,
262 struct spi_message *message)
263 {
264 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
265 struct spi_device *spi = message->spi;
266 unsigned int cs = REG_SSICR1_FRMHL << spi_get_chipselect(spi, 0);
267 unsigned int ssicr0_mask = REG_SSICR0_LOOP | REG_SSICR0_FSEL;
268 unsigned int ssicr1_mask = REG_SSICR1_PHA | REG_SSICR1_POL | cs;
269 unsigned int ssicr0 = 0, ssicr1 = 0;
270
271 if (priv->soc_info->has_trendian) {
272 ssicr0_mask |= REG_SSICR0_RENDIAN_LSB | REG_SSICR0_TENDIAN_LSB;
273
274 if (spi->mode & SPI_LSB_FIRST)
275 ssicr0 |= REG_SSICR0_RENDIAN_LSB | REG_SSICR0_TENDIAN_LSB;
276 } else {
277 ssicr1_mask |= REG_SSICR1_LFST;
278
279 if (spi->mode & SPI_LSB_FIRST)
280 ssicr1 |= REG_SSICR1_LFST;
281 }
282
283 if (spi->mode & SPI_LOOP)
284 ssicr0 |= REG_SSICR0_LOOP;
285 if (spi_get_chipselect(spi, 0))
286 ssicr0 |= REG_SSICR0_FSEL;
287
288 if (spi->mode & SPI_CPHA)
289 ssicr1 |= REG_SSICR1_PHA;
290 if (spi->mode & SPI_CPOL)
291 ssicr1 |= REG_SSICR1_POL;
292 if (spi->mode & SPI_CS_HIGH)
293 ssicr1 |= cs;
294
295 regmap_update_bits(priv->map, REG_SSICR0, ssicr0_mask, ssicr0);
296 regmap_update_bits(priv->map, REG_SSICR1, ssicr1_mask, ssicr1);
297
298 return 0;
299 }
300
spi_ingenic_prepare_hardware(struct spi_controller * ctlr)301 static int spi_ingenic_prepare_hardware(struct spi_controller *ctlr)
302 {
303 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
304 int ret;
305
306 ret = clk_prepare_enable(priv->clk);
307 if (ret)
308 return ret;
309
310 regmap_write(priv->map, REG_SSICR0, REG_SSICR0_EACLRUN);
311 regmap_write(priv->map, REG_SSICR1, 0);
312 regmap_write(priv->map, REG_SSISR, 0);
313 regmap_set_bits(priv->map, REG_SSICR0, REG_SSICR0_SSIE);
314
315 return 0;
316 }
317
spi_ingenic_unprepare_hardware(struct spi_controller * ctlr)318 static int spi_ingenic_unprepare_hardware(struct spi_controller *ctlr)
319 {
320 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
321
322 regmap_clear_bits(priv->map, REG_SSICR0, REG_SSICR0_SSIE);
323
324 clk_disable_unprepare(priv->clk);
325
326 return 0;
327 }
328
spi_ingenic_can_dma(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)329 static bool spi_ingenic_can_dma(struct spi_controller *ctlr,
330 struct spi_device *spi,
331 struct spi_transfer *xfer)
332 {
333 struct dma_slave_caps caps;
334 int ret;
335
336 ret = dma_get_slave_caps(ctlr->dma_tx, &caps);
337 if (ret) {
338 dev_err(&spi->dev, "Unable to get slave caps: %d\n", ret);
339 return false;
340 }
341
342 return !caps.max_sg_burst ||
343 xfer->len <= caps.max_sg_burst * SPI_INGENIC_FIFO_SIZE;
344 }
345
spi_ingenic_request_dma(struct spi_controller * ctlr,struct device * dev)346 static int spi_ingenic_request_dma(struct spi_controller *ctlr,
347 struct device *dev)
348 {
349 ctlr->dma_tx = dma_request_slave_channel(dev, "tx");
350 if (!ctlr->dma_tx)
351 return -ENODEV;
352
353 ctlr->dma_rx = dma_request_slave_channel(dev, "rx");
354
355 if (!ctlr->dma_rx)
356 return -ENODEV;
357
358 ctlr->can_dma = spi_ingenic_can_dma;
359
360 return 0;
361 }
362
spi_ingenic_release_dma(void * data)363 static void spi_ingenic_release_dma(void *data)
364 {
365 struct spi_controller *ctlr = data;
366
367 if (ctlr->dma_tx)
368 dma_release_channel(ctlr->dma_tx);
369 if (ctlr->dma_rx)
370 dma_release_channel(ctlr->dma_rx);
371 }
372
373 static const struct regmap_config spi_ingenic_regmap_config = {
374 .reg_bits = 32,
375 .val_bits = 32,
376 .reg_stride = 4,
377 .max_register = REG_SSIGR,
378 };
379
spi_ingenic_probe(struct platform_device * pdev)380 static int spi_ingenic_probe(struct platform_device *pdev)
381 {
382 const struct jz_soc_info *pdata;
383 struct device *dev = &pdev->dev;
384 struct spi_controller *ctlr;
385 struct ingenic_spi *priv;
386 void __iomem *base;
387 int num_cs, ret;
388
389 pdata = of_device_get_match_data(dev);
390 if (!pdata) {
391 dev_err(dev, "Missing platform data.\n");
392 return -EINVAL;
393 }
394
395 ctlr = devm_spi_alloc_host(dev, sizeof(*priv));
396 if (!ctlr) {
397 dev_err(dev, "Unable to allocate SPI controller.\n");
398 return -ENOMEM;
399 }
400
401 priv = spi_controller_get_devdata(ctlr);
402 priv->soc_info = pdata;
403
404 priv->clk = devm_clk_get(dev, NULL);
405 if (IS_ERR(priv->clk)) {
406 return dev_err_probe(dev, PTR_ERR(priv->clk),
407 "Unable to get clock.\n");
408 }
409
410 base = devm_platform_get_and_ioremap_resource(pdev, 0, &priv->mem_res);
411 if (IS_ERR(base))
412 return PTR_ERR(base);
413
414 priv->map = devm_regmap_init_mmio(dev, base, &spi_ingenic_regmap_config);
415 if (IS_ERR(priv->map))
416 return PTR_ERR(priv->map);
417
418 priv->flen_field = devm_regmap_field_alloc(dev, priv->map,
419 pdata->flen_field);
420 if (IS_ERR(priv->flen_field))
421 return PTR_ERR(priv->flen_field);
422
423 if (device_property_read_u32(dev, "num-cs", &num_cs))
424 num_cs = pdata->max_native_cs;
425
426 platform_set_drvdata(pdev, ctlr);
427
428 ctlr->prepare_transfer_hardware = spi_ingenic_prepare_hardware;
429 ctlr->unprepare_transfer_hardware = spi_ingenic_unprepare_hardware;
430 ctlr->prepare_message = spi_ingenic_prepare_message;
431 ctlr->set_cs = spi_ingenic_set_cs;
432 ctlr->transfer_one = spi_ingenic_transfer_one;
433 ctlr->mode_bits = SPI_MODE_3 | SPI_LSB_FIRST | SPI_LOOP | SPI_CS_HIGH;
434 ctlr->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
435 ctlr->max_dma_len = SPI_INGENIC_FIFO_SIZE;
436 ctlr->bits_per_word_mask = pdata->bits_per_word_mask;
437 ctlr->min_speed_hz = 7200;
438 ctlr->max_speed_hz = pdata->max_speed_hz;
439 ctlr->use_gpio_descriptors = true;
440 ctlr->max_native_cs = pdata->max_native_cs;
441 ctlr->num_chipselect = num_cs;
442 ctlr->dev.of_node = pdev->dev.of_node;
443
444 if (spi_ingenic_request_dma(ctlr, dev))
445 dev_warn(dev, "DMA not available.\n");
446
447 ret = devm_add_action_or_reset(dev, spi_ingenic_release_dma, ctlr);
448 if (ret) {
449 dev_err(dev, "Unable to add action.\n");
450 return ret;
451 }
452
453 ret = devm_spi_register_controller(dev, ctlr);
454 if (ret)
455 dev_err(dev, "Unable to register SPI controller.\n");
456
457 return ret;
458 }
459
460 static const struct jz_soc_info jz4750_soc_info = {
461 .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 17),
462 .flen_field = REG_FIELD(REG_SSICR1, 4, 7),
463 .has_trendian = false,
464
465 .max_speed_hz = 54000000,
466 .max_native_cs = 2,
467 };
468
469 static const struct jz_soc_info jz4780_soc_info = {
470 .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32),
471 .flen_field = REG_FIELD(REG_SSICR1, 3, 7),
472 .has_trendian = true,
473
474 .max_speed_hz = 54000000,
475 .max_native_cs = 2,
476 };
477
478 static const struct jz_soc_info x1000_soc_info = {
479 .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32),
480 .flen_field = REG_FIELD(REG_SSICR1, 3, 7),
481 .has_trendian = true,
482
483 .max_speed_hz = 50000000,
484 .max_native_cs = 2,
485 };
486
487 static const struct jz_soc_info x2000_soc_info = {
488 .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32),
489 .flen_field = REG_FIELD(REG_SSICR1, 3, 7),
490 .has_trendian = true,
491
492 .max_speed_hz = 50000000,
493 .max_native_cs = 1,
494 };
495
496 static const struct of_device_id spi_ingenic_of_match[] = {
497 { .compatible = "ingenic,jz4750-spi", .data = &jz4750_soc_info },
498 { .compatible = "ingenic,jz4775-spi", .data = &jz4780_soc_info },
499 { .compatible = "ingenic,jz4780-spi", .data = &jz4780_soc_info },
500 { .compatible = "ingenic,x1000-spi", .data = &x1000_soc_info },
501 { .compatible = "ingenic,x2000-spi", .data = &x2000_soc_info },
502 {}
503 };
504 MODULE_DEVICE_TABLE(of, spi_ingenic_of_match);
505
506 static struct platform_driver spi_ingenic_driver = {
507 .driver = {
508 .name = "spi-ingenic",
509 .of_match_table = spi_ingenic_of_match,
510 },
511 .probe = spi_ingenic_probe,
512 };
513
514 module_platform_driver(spi_ingenic_driver);
515 MODULE_DESCRIPTION("SPI bus driver for the Ingenic SoCs");
516 MODULE_AUTHOR("Artur Rojek <contact@artur-rojek.eu>");
517 MODULE_AUTHOR("Paul Cercueil <paul@crapouillou.net>");
518 MODULE_AUTHOR("周琰杰 (Zhou Yanjie) <zhouyanjie@wanyeetech.com>");
519 MODULE_LICENSE("GPL");
520