1 /* 2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. 3 * Copyright (C) 2008 Juergen Beisert 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License 7 * as published by the Free Software Foundation; either version 2 8 * of the License, or (at your option) any later version. 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the 16 * Free Software Foundation 17 * 51 Franklin Street, Fifth Floor 18 * Boston, MA 02110-1301, USA. 19 */ 20 21 #include <linux/clk.h> 22 #include <linux/completion.h> 23 #include <linux/delay.h> 24 #include <linux/dmaengine.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/err.h> 27 #include <linux/gpio.h> 28 #include <linux/interrupt.h> 29 #include <linux/io.h> 30 #include <linux/irq.h> 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/platform_device.h> 34 #include <linux/slab.h> 35 #include <linux/spi/spi.h> 36 #include <linux/spi/spi_bitbang.h> 37 #include <linux/types.h> 38 #include <linux/of.h> 39 #include <linux/of_device.h> 40 #include <linux/of_gpio.h> 41 42 #include <linux/platform_data/dma-imx.h> 43 #include <linux/platform_data/spi-imx.h> 44 45 #define DRIVER_NAME "spi_imx" 46 47 #define MXC_CSPIRXDATA 0x00 48 #define MXC_CSPITXDATA 0x04 49 #define MXC_CSPICTRL 0x08 50 #define MXC_CSPIINT 0x0c 51 #define MXC_RESET 0x1c 52 53 /* generic defines to abstract from the different register layouts */ 54 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */ 55 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */ 56 57 /* The maximum bytes that a sdma BD can transfer.*/ 58 #define MAX_SDMA_BD_BYTES (1 << 15) 59 struct spi_imx_config { 60 unsigned int speed_hz; 61 unsigned int bpw; 62 }; 63 64 enum spi_imx_devtype { 65 IMX1_CSPI, 66 IMX21_CSPI, 67 IMX27_CSPI, 68 IMX31_CSPI, 69 IMX35_CSPI, /* CSPI on all i.mx except above */ 70 IMX51_ECSPI, /* ECSPI on i.mx51 and later */ 71 }; 72 73 struct spi_imx_data; 74 75 struct spi_imx_devtype_data { 76 void (*intctrl)(struct spi_imx_data *, int); 77 int (*config)(struct spi_device *, struct spi_imx_config *); 78 void (*trigger)(struct spi_imx_data *); 79 int (*rx_available)(struct spi_imx_data *); 80 void (*reset)(struct spi_imx_data *); 81 enum spi_imx_devtype devtype; 82 }; 83 84 struct spi_imx_data { 85 struct spi_bitbang bitbang; 86 struct device *dev; 87 88 struct completion xfer_done; 89 void __iomem *base; 90 unsigned long base_phys; 91 92 struct clk *clk_per; 93 struct clk *clk_ipg; 94 unsigned long spi_clk; 95 unsigned int spi_bus_clk; 96 97 unsigned int bytes_per_word; 98 unsigned int spi_drctl; 99 100 unsigned int count; 101 void (*tx)(struct spi_imx_data *); 102 void (*rx)(struct spi_imx_data *); 103 void *rx_buf; 104 const void *tx_buf; 105 unsigned int txfifo; /* number of words pushed in tx FIFO */ 106 107 /* DMA */ 108 bool usedma; 109 u32 wml; 110 struct completion dma_rx_completion; 111 struct completion dma_tx_completion; 112 113 const struct spi_imx_devtype_data *devtype_data; 114 }; 115 116 static inline int is_imx27_cspi(struct spi_imx_data *d) 117 { 118 return d->devtype_data->devtype == IMX27_CSPI; 119 } 120 121 static inline int is_imx35_cspi(struct spi_imx_data *d) 122 { 123 return d->devtype_data->devtype == IMX35_CSPI; 124 } 125 126 static inline int is_imx51_ecspi(struct spi_imx_data *d) 127 { 128 return d->devtype_data->devtype == IMX51_ECSPI; 129 } 130 131 static inline unsigned spi_imx_get_fifosize(struct spi_imx_data *d) 132 { 133 return is_imx51_ecspi(d) ? 64 : 8; 134 } 135 136 #define MXC_SPI_BUF_RX(type) \ 137 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \ 138 { \ 139 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \ 140 \ 141 if (spi_imx->rx_buf) { \ 142 *(type *)spi_imx->rx_buf = val; \ 143 spi_imx->rx_buf += sizeof(type); \ 144 } \ 145 } 146 147 #define MXC_SPI_BUF_TX(type) \ 148 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \ 149 { \ 150 type val = 0; \ 151 \ 152 if (spi_imx->tx_buf) { \ 153 val = *(type *)spi_imx->tx_buf; \ 154 spi_imx->tx_buf += sizeof(type); \ 155 } \ 156 \ 157 spi_imx->count -= sizeof(type); \ 158 \ 159 writel(val, spi_imx->base + MXC_CSPITXDATA); \ 160 } 161 162 MXC_SPI_BUF_RX(u8) 163 MXC_SPI_BUF_TX(u8) 164 MXC_SPI_BUF_RX(u16) 165 MXC_SPI_BUF_TX(u16) 166 MXC_SPI_BUF_RX(u32) 167 MXC_SPI_BUF_TX(u32) 168 169 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set 170 * (which is currently not the case in this driver) 171 */ 172 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 173 256, 384, 512, 768, 1024}; 174 175 /* MX21, MX27 */ 176 static unsigned int spi_imx_clkdiv_1(unsigned int fin, 177 unsigned int fspi, unsigned int max, unsigned int *fres) 178 { 179 int i; 180 181 for (i = 2; i < max; i++) 182 if (fspi * mxc_clkdivs[i] >= fin) 183 break; 184 185 *fres = fin / mxc_clkdivs[i]; 186 return i; 187 } 188 189 /* MX1, MX31, MX35, MX51 CSPI */ 190 static unsigned int spi_imx_clkdiv_2(unsigned int fin, 191 unsigned int fspi, unsigned int *fres) 192 { 193 int i, div = 4; 194 195 for (i = 0; i < 7; i++) { 196 if (fspi * div >= fin) 197 goto out; 198 div <<= 1; 199 } 200 201 out: 202 *fres = fin / div; 203 return i; 204 } 205 206 static int spi_imx_bytes_per_word(const int bpw) 207 { 208 return DIV_ROUND_UP(bpw, BITS_PER_BYTE); 209 } 210 211 static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi, 212 struct spi_transfer *transfer) 213 { 214 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 215 unsigned int bpw, i; 216 217 if (!master->dma_rx) 218 return false; 219 220 if (!transfer) 221 return false; 222 223 bpw = transfer->bits_per_word; 224 if (!bpw) 225 bpw = spi->bits_per_word; 226 227 bpw = spi_imx_bytes_per_word(bpw); 228 229 if (bpw != 1 && bpw != 2 && bpw != 4) 230 return false; 231 232 for (i = spi_imx_get_fifosize(spi_imx) / 2; i > 0; i--) { 233 if (!(transfer->len % (i * bpw))) 234 break; 235 } 236 237 if (i == 0) 238 return false; 239 240 spi_imx->wml = i; 241 242 return true; 243 } 244 245 #define MX51_ECSPI_CTRL 0x08 246 #define MX51_ECSPI_CTRL_ENABLE (1 << 0) 247 #define MX51_ECSPI_CTRL_XCH (1 << 2) 248 #define MX51_ECSPI_CTRL_SMC (1 << 3) 249 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4) 250 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16) 251 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8 252 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12 253 #define MX51_ECSPI_CTRL_CS(cs) ((cs) << 18) 254 #define MX51_ECSPI_CTRL_BL_OFFSET 20 255 256 #define MX51_ECSPI_CONFIG 0x0c 257 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs) + 0)) 258 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs) + 4)) 259 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs) + 8)) 260 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs) + 12)) 261 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs) + 20)) 262 263 #define MX51_ECSPI_INT 0x10 264 #define MX51_ECSPI_INT_TEEN (1 << 0) 265 #define MX51_ECSPI_INT_RREN (1 << 3) 266 267 #define MX51_ECSPI_DMA 0x14 268 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f) 269 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16) 270 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24) 271 272 #define MX51_ECSPI_DMA_TEDEN (1 << 7) 273 #define MX51_ECSPI_DMA_RXDEN (1 << 23) 274 #define MX51_ECSPI_DMA_RXTDEN (1 << 31) 275 276 #define MX51_ECSPI_STAT 0x18 277 #define MX51_ECSPI_STAT_RR (1 << 3) 278 279 #define MX51_ECSPI_TESTREG 0x20 280 #define MX51_ECSPI_TESTREG_LBC BIT(31) 281 282 /* MX51 eCSPI */ 283 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx, 284 unsigned int fspi, unsigned int *fres) 285 { 286 /* 287 * there are two 4-bit dividers, the pre-divider divides by 288 * $pre, the post-divider by 2^$post 289 */ 290 unsigned int pre, post; 291 unsigned int fin = spi_imx->spi_clk; 292 293 if (unlikely(fspi > fin)) 294 return 0; 295 296 post = fls(fin) - fls(fspi); 297 if (fin > fspi << post) 298 post++; 299 300 /* now we have: (fin <= fspi << post) with post being minimal */ 301 302 post = max(4U, post) - 4; 303 if (unlikely(post > 0xf)) { 304 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n", 305 fspi, fin); 306 return 0xff; 307 } 308 309 pre = DIV_ROUND_UP(fin, fspi << post) - 1; 310 311 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n", 312 __func__, fin, fspi, post, pre); 313 314 /* Resulting frequency for the SCLK line. */ 315 *fres = (fin / (pre + 1)) >> post; 316 317 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) | 318 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET); 319 } 320 321 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable) 322 { 323 unsigned val = 0; 324 325 if (enable & MXC_INT_TE) 326 val |= MX51_ECSPI_INT_TEEN; 327 328 if (enable & MXC_INT_RR) 329 val |= MX51_ECSPI_INT_RREN; 330 331 writel(val, spi_imx->base + MX51_ECSPI_INT); 332 } 333 334 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx) 335 { 336 u32 reg; 337 338 reg = readl(spi_imx->base + MX51_ECSPI_CTRL); 339 reg |= MX51_ECSPI_CTRL_XCH; 340 writel(reg, spi_imx->base + MX51_ECSPI_CTRL); 341 } 342 343 static int mx51_ecspi_config(struct spi_device *spi, 344 struct spi_imx_config *config) 345 { 346 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 347 u32 ctrl = MX51_ECSPI_CTRL_ENABLE; 348 u32 clk = config->speed_hz, delay, reg; 349 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 350 351 /* 352 * The hardware seems to have a race condition when changing modes. The 353 * current assumption is that the selection of the channel arrives 354 * earlier in the hardware than the mode bits when they are written at 355 * the same time. 356 * So set master mode for all channels as we do not support slave mode. 357 */ 358 ctrl |= MX51_ECSPI_CTRL_MODE_MASK; 359 360 /* 361 * Enable SPI_RDY handling (falling edge/level triggered). 362 */ 363 if (spi->mode & SPI_READY) 364 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl); 365 366 /* set clock speed */ 367 ctrl |= mx51_ecspi_clkdiv(spi_imx, config->speed_hz, &clk); 368 spi_imx->spi_bus_clk = clk; 369 370 /* set chip select to use */ 371 ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select); 372 373 ctrl |= (config->bpw - 1) << MX51_ECSPI_CTRL_BL_OFFSET; 374 375 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select); 376 377 if (spi->mode & SPI_CPHA) 378 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select); 379 else 380 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select); 381 382 if (spi->mode & SPI_CPOL) { 383 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select); 384 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select); 385 } else { 386 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select); 387 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select); 388 } 389 if (spi->mode & SPI_CS_HIGH) 390 cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select); 391 else 392 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select); 393 394 if (spi_imx->usedma) 395 ctrl |= MX51_ECSPI_CTRL_SMC; 396 397 /* CTRL register always go first to bring out controller from reset */ 398 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 399 400 reg = readl(spi_imx->base + MX51_ECSPI_TESTREG); 401 if (spi->mode & SPI_LOOP) 402 reg |= MX51_ECSPI_TESTREG_LBC; 403 else 404 reg &= ~MX51_ECSPI_TESTREG_LBC; 405 writel(reg, spi_imx->base + MX51_ECSPI_TESTREG); 406 407 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 408 409 /* 410 * Wait until the changes in the configuration register CONFIGREG 411 * propagate into the hardware. It takes exactly one tick of the 412 * SCLK clock, but we will wait two SCLK clock just to be sure. The 413 * effect of the delay it takes for the hardware to apply changes 414 * is noticable if the SCLK clock run very slow. In such a case, if 415 * the polarity of SCLK should be inverted, the GPIO ChipSelect might 416 * be asserted before the SCLK polarity changes, which would disrupt 417 * the SPI communication as the device on the other end would consider 418 * the change of SCLK polarity as a clock tick already. 419 */ 420 delay = (2 * 1000000) / clk; 421 if (likely(delay < 10)) /* SCLK is faster than 100 kHz */ 422 udelay(delay); 423 else /* SCLK is _very_ slow */ 424 usleep_range(delay, delay + 10); 425 426 /* 427 * Configure the DMA register: setup the watermark 428 * and enable DMA request. 429 */ 430 431 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml) | 432 MX51_ECSPI_DMA_TX_WML(spi_imx->wml) | 433 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) | 434 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN | 435 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA); 436 437 return 0; 438 } 439 440 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx) 441 { 442 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR; 443 } 444 445 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx) 446 { 447 /* drain receive buffer */ 448 while (mx51_ecspi_rx_available(spi_imx)) 449 readl(spi_imx->base + MXC_CSPIRXDATA); 450 } 451 452 #define MX31_INTREG_TEEN (1 << 0) 453 #define MX31_INTREG_RREN (1 << 3) 454 455 #define MX31_CSPICTRL_ENABLE (1 << 0) 456 #define MX31_CSPICTRL_MASTER (1 << 1) 457 #define MX31_CSPICTRL_XCH (1 << 2) 458 #define MX31_CSPICTRL_SMC (1 << 3) 459 #define MX31_CSPICTRL_POL (1 << 4) 460 #define MX31_CSPICTRL_PHA (1 << 5) 461 #define MX31_CSPICTRL_SSCTL (1 << 6) 462 #define MX31_CSPICTRL_SSPOL (1 << 7) 463 #define MX31_CSPICTRL_BC_SHIFT 8 464 #define MX35_CSPICTRL_BL_SHIFT 20 465 #define MX31_CSPICTRL_CS_SHIFT 24 466 #define MX35_CSPICTRL_CS_SHIFT 12 467 #define MX31_CSPICTRL_DR_SHIFT 16 468 469 #define MX31_CSPI_DMAREG 0x10 470 #define MX31_DMAREG_RH_DEN (1<<4) 471 #define MX31_DMAREG_TH_DEN (1<<1) 472 473 #define MX31_CSPISTATUS 0x14 474 #define MX31_STATUS_RR (1 << 3) 475 476 #define MX31_CSPI_TESTREG 0x1C 477 #define MX31_TEST_LBC (1 << 14) 478 479 /* These functions also work for the i.MX35, but be aware that 480 * the i.MX35 has a slightly different register layout for bits 481 * we do not use here. 482 */ 483 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable) 484 { 485 unsigned int val = 0; 486 487 if (enable & MXC_INT_TE) 488 val |= MX31_INTREG_TEEN; 489 if (enable & MXC_INT_RR) 490 val |= MX31_INTREG_RREN; 491 492 writel(val, spi_imx->base + MXC_CSPIINT); 493 } 494 495 static void mx31_trigger(struct spi_imx_data *spi_imx) 496 { 497 unsigned int reg; 498 499 reg = readl(spi_imx->base + MXC_CSPICTRL); 500 reg |= MX31_CSPICTRL_XCH; 501 writel(reg, spi_imx->base + MXC_CSPICTRL); 502 } 503 504 static int mx31_config(struct spi_device *spi, struct spi_imx_config *config) 505 { 506 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 507 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER; 508 unsigned int clk; 509 510 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, config->speed_hz, &clk) << 511 MX31_CSPICTRL_DR_SHIFT; 512 spi_imx->spi_bus_clk = clk; 513 514 if (is_imx35_cspi(spi_imx)) { 515 reg |= (config->bpw - 1) << MX35_CSPICTRL_BL_SHIFT; 516 reg |= MX31_CSPICTRL_SSCTL; 517 } else { 518 reg |= (config->bpw - 1) << MX31_CSPICTRL_BC_SHIFT; 519 } 520 521 if (spi->mode & SPI_CPHA) 522 reg |= MX31_CSPICTRL_PHA; 523 if (spi->mode & SPI_CPOL) 524 reg |= MX31_CSPICTRL_POL; 525 if (spi->mode & SPI_CS_HIGH) 526 reg |= MX31_CSPICTRL_SSPOL; 527 if (spi->cs_gpio < 0) 528 reg |= (spi->cs_gpio + 32) << 529 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT : 530 MX31_CSPICTRL_CS_SHIFT); 531 532 if (spi_imx->usedma) 533 reg |= MX31_CSPICTRL_SMC; 534 535 writel(reg, spi_imx->base + MXC_CSPICTRL); 536 537 reg = readl(spi_imx->base + MX31_CSPI_TESTREG); 538 if (spi->mode & SPI_LOOP) 539 reg |= MX31_TEST_LBC; 540 else 541 reg &= ~MX31_TEST_LBC; 542 writel(reg, spi_imx->base + MX31_CSPI_TESTREG); 543 544 if (spi_imx->usedma) { 545 /* configure DMA requests when RXFIFO is half full and 546 when TXFIFO is half empty */ 547 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN, 548 spi_imx->base + MX31_CSPI_DMAREG); 549 } 550 551 return 0; 552 } 553 554 static int mx31_rx_available(struct spi_imx_data *spi_imx) 555 { 556 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR; 557 } 558 559 static void mx31_reset(struct spi_imx_data *spi_imx) 560 { 561 /* drain receive buffer */ 562 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR) 563 readl(spi_imx->base + MXC_CSPIRXDATA); 564 } 565 566 #define MX21_INTREG_RR (1 << 4) 567 #define MX21_INTREG_TEEN (1 << 9) 568 #define MX21_INTREG_RREN (1 << 13) 569 570 #define MX21_CSPICTRL_POL (1 << 5) 571 #define MX21_CSPICTRL_PHA (1 << 6) 572 #define MX21_CSPICTRL_SSPOL (1 << 8) 573 #define MX21_CSPICTRL_XCH (1 << 9) 574 #define MX21_CSPICTRL_ENABLE (1 << 10) 575 #define MX21_CSPICTRL_MASTER (1 << 11) 576 #define MX21_CSPICTRL_DR_SHIFT 14 577 #define MX21_CSPICTRL_CS_SHIFT 19 578 579 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable) 580 { 581 unsigned int val = 0; 582 583 if (enable & MXC_INT_TE) 584 val |= MX21_INTREG_TEEN; 585 if (enable & MXC_INT_RR) 586 val |= MX21_INTREG_RREN; 587 588 writel(val, spi_imx->base + MXC_CSPIINT); 589 } 590 591 static void mx21_trigger(struct spi_imx_data *spi_imx) 592 { 593 unsigned int reg; 594 595 reg = readl(spi_imx->base + MXC_CSPICTRL); 596 reg |= MX21_CSPICTRL_XCH; 597 writel(reg, spi_imx->base + MXC_CSPICTRL); 598 } 599 600 static int mx21_config(struct spi_device *spi, struct spi_imx_config *config) 601 { 602 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 603 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER; 604 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18; 605 unsigned int clk; 606 607 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, config->speed_hz, max, &clk) 608 << MX21_CSPICTRL_DR_SHIFT; 609 spi_imx->spi_bus_clk = clk; 610 611 reg |= config->bpw - 1; 612 613 if (spi->mode & SPI_CPHA) 614 reg |= MX21_CSPICTRL_PHA; 615 if (spi->mode & SPI_CPOL) 616 reg |= MX21_CSPICTRL_POL; 617 if (spi->mode & SPI_CS_HIGH) 618 reg |= MX21_CSPICTRL_SSPOL; 619 if (spi->cs_gpio < 0) 620 reg |= (spi->cs_gpio + 32) << MX21_CSPICTRL_CS_SHIFT; 621 622 writel(reg, spi_imx->base + MXC_CSPICTRL); 623 624 return 0; 625 } 626 627 static int mx21_rx_available(struct spi_imx_data *spi_imx) 628 { 629 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR; 630 } 631 632 static void mx21_reset(struct spi_imx_data *spi_imx) 633 { 634 writel(1, spi_imx->base + MXC_RESET); 635 } 636 637 #define MX1_INTREG_RR (1 << 3) 638 #define MX1_INTREG_TEEN (1 << 8) 639 #define MX1_INTREG_RREN (1 << 11) 640 641 #define MX1_CSPICTRL_POL (1 << 4) 642 #define MX1_CSPICTRL_PHA (1 << 5) 643 #define MX1_CSPICTRL_XCH (1 << 8) 644 #define MX1_CSPICTRL_ENABLE (1 << 9) 645 #define MX1_CSPICTRL_MASTER (1 << 10) 646 #define MX1_CSPICTRL_DR_SHIFT 13 647 648 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable) 649 { 650 unsigned int val = 0; 651 652 if (enable & MXC_INT_TE) 653 val |= MX1_INTREG_TEEN; 654 if (enable & MXC_INT_RR) 655 val |= MX1_INTREG_RREN; 656 657 writel(val, spi_imx->base + MXC_CSPIINT); 658 } 659 660 static void mx1_trigger(struct spi_imx_data *spi_imx) 661 { 662 unsigned int reg; 663 664 reg = readl(spi_imx->base + MXC_CSPICTRL); 665 reg |= MX1_CSPICTRL_XCH; 666 writel(reg, spi_imx->base + MXC_CSPICTRL); 667 } 668 669 static int mx1_config(struct spi_device *spi, struct spi_imx_config *config) 670 { 671 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 672 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER; 673 unsigned int clk; 674 675 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, config->speed_hz, &clk) << 676 MX1_CSPICTRL_DR_SHIFT; 677 spi_imx->spi_bus_clk = clk; 678 679 reg |= config->bpw - 1; 680 681 if (spi->mode & SPI_CPHA) 682 reg |= MX1_CSPICTRL_PHA; 683 if (spi->mode & SPI_CPOL) 684 reg |= MX1_CSPICTRL_POL; 685 686 writel(reg, spi_imx->base + MXC_CSPICTRL); 687 688 return 0; 689 } 690 691 static int mx1_rx_available(struct spi_imx_data *spi_imx) 692 { 693 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR; 694 } 695 696 static void mx1_reset(struct spi_imx_data *spi_imx) 697 { 698 writel(1, spi_imx->base + MXC_RESET); 699 } 700 701 static struct spi_imx_devtype_data imx1_cspi_devtype_data = { 702 .intctrl = mx1_intctrl, 703 .config = mx1_config, 704 .trigger = mx1_trigger, 705 .rx_available = mx1_rx_available, 706 .reset = mx1_reset, 707 .devtype = IMX1_CSPI, 708 }; 709 710 static struct spi_imx_devtype_data imx21_cspi_devtype_data = { 711 .intctrl = mx21_intctrl, 712 .config = mx21_config, 713 .trigger = mx21_trigger, 714 .rx_available = mx21_rx_available, 715 .reset = mx21_reset, 716 .devtype = IMX21_CSPI, 717 }; 718 719 static struct spi_imx_devtype_data imx27_cspi_devtype_data = { 720 /* i.mx27 cspi shares the functions with i.mx21 one */ 721 .intctrl = mx21_intctrl, 722 .config = mx21_config, 723 .trigger = mx21_trigger, 724 .rx_available = mx21_rx_available, 725 .reset = mx21_reset, 726 .devtype = IMX27_CSPI, 727 }; 728 729 static struct spi_imx_devtype_data imx31_cspi_devtype_data = { 730 .intctrl = mx31_intctrl, 731 .config = mx31_config, 732 .trigger = mx31_trigger, 733 .rx_available = mx31_rx_available, 734 .reset = mx31_reset, 735 .devtype = IMX31_CSPI, 736 }; 737 738 static struct spi_imx_devtype_data imx35_cspi_devtype_data = { 739 /* i.mx35 and later cspi shares the functions with i.mx31 one */ 740 .intctrl = mx31_intctrl, 741 .config = mx31_config, 742 .trigger = mx31_trigger, 743 .rx_available = mx31_rx_available, 744 .reset = mx31_reset, 745 .devtype = IMX35_CSPI, 746 }; 747 748 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = { 749 .intctrl = mx51_ecspi_intctrl, 750 .config = mx51_ecspi_config, 751 .trigger = mx51_ecspi_trigger, 752 .rx_available = mx51_ecspi_rx_available, 753 .reset = mx51_ecspi_reset, 754 .devtype = IMX51_ECSPI, 755 }; 756 757 static const struct platform_device_id spi_imx_devtype[] = { 758 { 759 .name = "imx1-cspi", 760 .driver_data = (kernel_ulong_t) &imx1_cspi_devtype_data, 761 }, { 762 .name = "imx21-cspi", 763 .driver_data = (kernel_ulong_t) &imx21_cspi_devtype_data, 764 }, { 765 .name = "imx27-cspi", 766 .driver_data = (kernel_ulong_t) &imx27_cspi_devtype_data, 767 }, { 768 .name = "imx31-cspi", 769 .driver_data = (kernel_ulong_t) &imx31_cspi_devtype_data, 770 }, { 771 .name = "imx35-cspi", 772 .driver_data = (kernel_ulong_t) &imx35_cspi_devtype_data, 773 }, { 774 .name = "imx51-ecspi", 775 .driver_data = (kernel_ulong_t) &imx51_ecspi_devtype_data, 776 }, { 777 /* sentinel */ 778 } 779 }; 780 781 static const struct of_device_id spi_imx_dt_ids[] = { 782 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, }, 783 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, }, 784 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, }, 785 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, }, 786 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, }, 787 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, }, 788 { /* sentinel */ } 789 }; 790 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids); 791 792 static void spi_imx_chipselect(struct spi_device *spi, int is_active) 793 { 794 int active = is_active != BITBANG_CS_INACTIVE; 795 int dev_is_lowactive = !(spi->mode & SPI_CS_HIGH); 796 797 if (!gpio_is_valid(spi->cs_gpio)) 798 return; 799 800 gpio_set_value(spi->cs_gpio, dev_is_lowactive ^ active); 801 } 802 803 static void spi_imx_push(struct spi_imx_data *spi_imx) 804 { 805 while (spi_imx->txfifo < spi_imx_get_fifosize(spi_imx)) { 806 if (!spi_imx->count) 807 break; 808 spi_imx->tx(spi_imx); 809 spi_imx->txfifo++; 810 } 811 812 spi_imx->devtype_data->trigger(spi_imx); 813 } 814 815 static irqreturn_t spi_imx_isr(int irq, void *dev_id) 816 { 817 struct spi_imx_data *spi_imx = dev_id; 818 819 while (spi_imx->devtype_data->rx_available(spi_imx)) { 820 spi_imx->rx(spi_imx); 821 spi_imx->txfifo--; 822 } 823 824 if (spi_imx->count) { 825 spi_imx_push(spi_imx); 826 return IRQ_HANDLED; 827 } 828 829 if (spi_imx->txfifo) { 830 /* No data left to push, but still waiting for rx data, 831 * enable receive data available interrupt. 832 */ 833 spi_imx->devtype_data->intctrl( 834 spi_imx, MXC_INT_RR); 835 return IRQ_HANDLED; 836 } 837 838 spi_imx->devtype_data->intctrl(spi_imx, 0); 839 complete(&spi_imx->xfer_done); 840 841 return IRQ_HANDLED; 842 } 843 844 static int spi_imx_dma_configure(struct spi_master *master, 845 int bytes_per_word) 846 { 847 int ret; 848 enum dma_slave_buswidth buswidth; 849 struct dma_slave_config rx = {}, tx = {}; 850 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 851 852 switch (bytes_per_word) { 853 case 4: 854 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 855 break; 856 case 2: 857 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 858 break; 859 case 1: 860 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 861 break; 862 default: 863 return -EINVAL; 864 } 865 866 tx.direction = DMA_MEM_TO_DEV; 867 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA; 868 tx.dst_addr_width = buswidth; 869 tx.dst_maxburst = spi_imx->wml; 870 ret = dmaengine_slave_config(master->dma_tx, &tx); 871 if (ret) { 872 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret); 873 return ret; 874 } 875 876 rx.direction = DMA_DEV_TO_MEM; 877 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA; 878 rx.src_addr_width = buswidth; 879 rx.src_maxburst = spi_imx->wml; 880 ret = dmaengine_slave_config(master->dma_rx, &rx); 881 if (ret) { 882 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret); 883 return ret; 884 } 885 886 spi_imx->bytes_per_word = bytes_per_word; 887 888 return 0; 889 } 890 891 static int spi_imx_setupxfer(struct spi_device *spi, 892 struct spi_transfer *t) 893 { 894 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 895 struct spi_imx_config config; 896 int ret; 897 898 config.bpw = t ? t->bits_per_word : spi->bits_per_word; 899 config.speed_hz = t ? t->speed_hz : spi->max_speed_hz; 900 901 if (!config.speed_hz) 902 config.speed_hz = spi->max_speed_hz; 903 if (!config.bpw) 904 config.bpw = spi->bits_per_word; 905 906 /* Initialize the functions for transfer */ 907 if (config.bpw <= 8) { 908 spi_imx->rx = spi_imx_buf_rx_u8; 909 spi_imx->tx = spi_imx_buf_tx_u8; 910 } else if (config.bpw <= 16) { 911 spi_imx->rx = spi_imx_buf_rx_u16; 912 spi_imx->tx = spi_imx_buf_tx_u16; 913 } else { 914 spi_imx->rx = spi_imx_buf_rx_u32; 915 spi_imx->tx = spi_imx_buf_tx_u32; 916 } 917 918 if (spi_imx_can_dma(spi_imx->bitbang.master, spi, t)) 919 spi_imx->usedma = 1; 920 else 921 spi_imx->usedma = 0; 922 923 if (spi_imx->usedma) { 924 ret = spi_imx_dma_configure(spi->master, 925 spi_imx_bytes_per_word(config.bpw)); 926 if (ret) 927 return ret; 928 } 929 930 spi_imx->devtype_data->config(spi, &config); 931 932 return 0; 933 } 934 935 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx) 936 { 937 struct spi_master *master = spi_imx->bitbang.master; 938 939 if (master->dma_rx) { 940 dma_release_channel(master->dma_rx); 941 master->dma_rx = NULL; 942 } 943 944 if (master->dma_tx) { 945 dma_release_channel(master->dma_tx); 946 master->dma_tx = NULL; 947 } 948 } 949 950 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx, 951 struct spi_master *master) 952 { 953 int ret; 954 955 /* use pio mode for i.mx6dl chip TKT238285 */ 956 if (of_machine_is_compatible("fsl,imx6dl")) 957 return 0; 958 959 spi_imx->wml = spi_imx_get_fifosize(spi_imx) / 2; 960 961 /* Prepare for TX DMA: */ 962 master->dma_tx = dma_request_slave_channel_reason(dev, "tx"); 963 if (IS_ERR(master->dma_tx)) { 964 ret = PTR_ERR(master->dma_tx); 965 dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret); 966 master->dma_tx = NULL; 967 goto err; 968 } 969 970 /* Prepare for RX : */ 971 master->dma_rx = dma_request_slave_channel_reason(dev, "rx"); 972 if (IS_ERR(master->dma_rx)) { 973 ret = PTR_ERR(master->dma_rx); 974 dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret); 975 master->dma_rx = NULL; 976 goto err; 977 } 978 979 spi_imx_dma_configure(master, 1); 980 981 init_completion(&spi_imx->dma_rx_completion); 982 init_completion(&spi_imx->dma_tx_completion); 983 master->can_dma = spi_imx_can_dma; 984 master->max_dma_len = MAX_SDMA_BD_BYTES; 985 spi_imx->bitbang.master->flags = SPI_MASTER_MUST_RX | 986 SPI_MASTER_MUST_TX; 987 988 return 0; 989 err: 990 spi_imx_sdma_exit(spi_imx); 991 return ret; 992 } 993 994 static void spi_imx_dma_rx_callback(void *cookie) 995 { 996 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 997 998 complete(&spi_imx->dma_rx_completion); 999 } 1000 1001 static void spi_imx_dma_tx_callback(void *cookie) 1002 { 1003 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1004 1005 complete(&spi_imx->dma_tx_completion); 1006 } 1007 1008 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size) 1009 { 1010 unsigned long timeout = 0; 1011 1012 /* Time with actual data transfer and CS change delay related to HW */ 1013 timeout = (8 + 4) * size / spi_imx->spi_bus_clk; 1014 1015 /* Add extra second for scheduler related activities */ 1016 timeout += 1; 1017 1018 /* Double calculated timeout */ 1019 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC); 1020 } 1021 1022 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx, 1023 struct spi_transfer *transfer) 1024 { 1025 struct dma_async_tx_descriptor *desc_tx, *desc_rx; 1026 unsigned long transfer_timeout; 1027 unsigned long timeout; 1028 struct spi_master *master = spi_imx->bitbang.master; 1029 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg; 1030 1031 /* 1032 * The TX DMA setup starts the transfer, so make sure RX is configured 1033 * before TX. 1034 */ 1035 desc_rx = dmaengine_prep_slave_sg(master->dma_rx, 1036 rx->sgl, rx->nents, DMA_DEV_TO_MEM, 1037 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1038 if (!desc_rx) 1039 return -EINVAL; 1040 1041 desc_rx->callback = spi_imx_dma_rx_callback; 1042 desc_rx->callback_param = (void *)spi_imx; 1043 dmaengine_submit(desc_rx); 1044 reinit_completion(&spi_imx->dma_rx_completion); 1045 dma_async_issue_pending(master->dma_rx); 1046 1047 desc_tx = dmaengine_prep_slave_sg(master->dma_tx, 1048 tx->sgl, tx->nents, DMA_MEM_TO_DEV, 1049 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1050 if (!desc_tx) { 1051 dmaengine_terminate_all(master->dma_tx); 1052 return -EINVAL; 1053 } 1054 1055 desc_tx->callback = spi_imx_dma_tx_callback; 1056 desc_tx->callback_param = (void *)spi_imx; 1057 dmaengine_submit(desc_tx); 1058 reinit_completion(&spi_imx->dma_tx_completion); 1059 dma_async_issue_pending(master->dma_tx); 1060 1061 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1062 1063 /* Wait SDMA to finish the data transfer.*/ 1064 timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion, 1065 transfer_timeout); 1066 if (!timeout) { 1067 dev_err(spi_imx->dev, "I/O Error in DMA TX\n"); 1068 dmaengine_terminate_all(master->dma_tx); 1069 dmaengine_terminate_all(master->dma_rx); 1070 return -ETIMEDOUT; 1071 } 1072 1073 timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion, 1074 transfer_timeout); 1075 if (!timeout) { 1076 dev_err(&master->dev, "I/O Error in DMA RX\n"); 1077 spi_imx->devtype_data->reset(spi_imx); 1078 dmaengine_terminate_all(master->dma_rx); 1079 return -ETIMEDOUT; 1080 } 1081 1082 return transfer->len; 1083 } 1084 1085 static int spi_imx_pio_transfer(struct spi_device *spi, 1086 struct spi_transfer *transfer) 1087 { 1088 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 1089 unsigned long transfer_timeout; 1090 unsigned long timeout; 1091 1092 spi_imx->tx_buf = transfer->tx_buf; 1093 spi_imx->rx_buf = transfer->rx_buf; 1094 spi_imx->count = transfer->len; 1095 spi_imx->txfifo = 0; 1096 1097 reinit_completion(&spi_imx->xfer_done); 1098 1099 spi_imx_push(spi_imx); 1100 1101 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE); 1102 1103 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1104 1105 timeout = wait_for_completion_timeout(&spi_imx->xfer_done, 1106 transfer_timeout); 1107 if (!timeout) { 1108 dev_err(&spi->dev, "I/O Error in PIO\n"); 1109 spi_imx->devtype_data->reset(spi_imx); 1110 return -ETIMEDOUT; 1111 } 1112 1113 return transfer->len; 1114 } 1115 1116 static int spi_imx_transfer(struct spi_device *spi, 1117 struct spi_transfer *transfer) 1118 { 1119 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 1120 1121 if (spi_imx->usedma) 1122 return spi_imx_dma_transfer(spi_imx, transfer); 1123 else 1124 return spi_imx_pio_transfer(spi, transfer); 1125 } 1126 1127 static int spi_imx_setup(struct spi_device *spi) 1128 { 1129 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__, 1130 spi->mode, spi->bits_per_word, spi->max_speed_hz); 1131 1132 if (gpio_is_valid(spi->cs_gpio)) 1133 gpio_direction_output(spi->cs_gpio, 1134 spi->mode & SPI_CS_HIGH ? 0 : 1); 1135 1136 spi_imx_chipselect(spi, BITBANG_CS_INACTIVE); 1137 1138 return 0; 1139 } 1140 1141 static void spi_imx_cleanup(struct spi_device *spi) 1142 { 1143 } 1144 1145 static int 1146 spi_imx_prepare_message(struct spi_master *master, struct spi_message *msg) 1147 { 1148 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 1149 int ret; 1150 1151 ret = clk_enable(spi_imx->clk_per); 1152 if (ret) 1153 return ret; 1154 1155 ret = clk_enable(spi_imx->clk_ipg); 1156 if (ret) { 1157 clk_disable(spi_imx->clk_per); 1158 return ret; 1159 } 1160 1161 return 0; 1162 } 1163 1164 static int 1165 spi_imx_unprepare_message(struct spi_master *master, struct spi_message *msg) 1166 { 1167 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 1168 1169 clk_disable(spi_imx->clk_ipg); 1170 clk_disable(spi_imx->clk_per); 1171 return 0; 1172 } 1173 1174 static int spi_imx_probe(struct platform_device *pdev) 1175 { 1176 struct device_node *np = pdev->dev.of_node; 1177 const struct of_device_id *of_id = 1178 of_match_device(spi_imx_dt_ids, &pdev->dev); 1179 struct spi_imx_master *mxc_platform_info = 1180 dev_get_platdata(&pdev->dev); 1181 struct spi_master *master; 1182 struct spi_imx_data *spi_imx; 1183 struct resource *res; 1184 int i, ret, irq, spi_drctl; 1185 1186 if (!np && !mxc_platform_info) { 1187 dev_err(&pdev->dev, "can't get the platform data\n"); 1188 return -EINVAL; 1189 } 1190 1191 master = spi_alloc_master(&pdev->dev, sizeof(struct spi_imx_data)); 1192 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl); 1193 if ((ret < 0) || (spi_drctl >= 0x3)) { 1194 /* '11' is reserved */ 1195 spi_drctl = 0; 1196 } 1197 1198 if (!master) 1199 return -ENOMEM; 1200 1201 platform_set_drvdata(pdev, master); 1202 1203 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32); 1204 master->bus_num = np ? -1 : pdev->id; 1205 1206 spi_imx = spi_master_get_devdata(master); 1207 spi_imx->bitbang.master = master; 1208 spi_imx->dev = &pdev->dev; 1209 1210 spi_imx->devtype_data = of_id ? of_id->data : 1211 (struct spi_imx_devtype_data *)pdev->id_entry->driver_data; 1212 1213 if (mxc_platform_info) { 1214 master->num_chipselect = mxc_platform_info->num_chipselect; 1215 master->cs_gpios = devm_kzalloc(&master->dev, 1216 sizeof(int) * master->num_chipselect, GFP_KERNEL); 1217 if (!master->cs_gpios) 1218 return -ENOMEM; 1219 1220 for (i = 0; i < master->num_chipselect; i++) 1221 master->cs_gpios[i] = mxc_platform_info->chipselect[i]; 1222 } 1223 1224 spi_imx->bitbang.chipselect = spi_imx_chipselect; 1225 spi_imx->bitbang.setup_transfer = spi_imx_setupxfer; 1226 spi_imx->bitbang.txrx_bufs = spi_imx_transfer; 1227 spi_imx->bitbang.master->setup = spi_imx_setup; 1228 spi_imx->bitbang.master->cleanup = spi_imx_cleanup; 1229 spi_imx->bitbang.master->prepare_message = spi_imx_prepare_message; 1230 spi_imx->bitbang.master->unprepare_message = spi_imx_unprepare_message; 1231 spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1232 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx)) 1233 spi_imx->bitbang.master->mode_bits |= SPI_LOOP | SPI_READY; 1234 1235 spi_imx->spi_drctl = spi_drctl; 1236 1237 init_completion(&spi_imx->xfer_done); 1238 1239 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1240 spi_imx->base = devm_ioremap_resource(&pdev->dev, res); 1241 if (IS_ERR(spi_imx->base)) { 1242 ret = PTR_ERR(spi_imx->base); 1243 goto out_master_put; 1244 } 1245 spi_imx->base_phys = res->start; 1246 1247 irq = platform_get_irq(pdev, 0); 1248 if (irq < 0) { 1249 ret = irq; 1250 goto out_master_put; 1251 } 1252 1253 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0, 1254 dev_name(&pdev->dev), spi_imx); 1255 if (ret) { 1256 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret); 1257 goto out_master_put; 1258 } 1259 1260 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 1261 if (IS_ERR(spi_imx->clk_ipg)) { 1262 ret = PTR_ERR(spi_imx->clk_ipg); 1263 goto out_master_put; 1264 } 1265 1266 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per"); 1267 if (IS_ERR(spi_imx->clk_per)) { 1268 ret = PTR_ERR(spi_imx->clk_per); 1269 goto out_master_put; 1270 } 1271 1272 ret = clk_prepare_enable(spi_imx->clk_per); 1273 if (ret) 1274 goto out_master_put; 1275 1276 ret = clk_prepare_enable(spi_imx->clk_ipg); 1277 if (ret) 1278 goto out_put_per; 1279 1280 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per); 1281 /* 1282 * Only validated on i.mx35 and i.mx6 now, can remove the constraint 1283 * if validated on other chips. 1284 */ 1285 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx)) { 1286 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, master); 1287 if (ret == -EPROBE_DEFER) 1288 goto out_clk_put; 1289 1290 if (ret < 0) 1291 dev_err(&pdev->dev, "dma setup error %d, use pio\n", 1292 ret); 1293 } 1294 1295 spi_imx->devtype_data->reset(spi_imx); 1296 1297 spi_imx->devtype_data->intctrl(spi_imx, 0); 1298 1299 master->dev.of_node = pdev->dev.of_node; 1300 ret = spi_bitbang_start(&spi_imx->bitbang); 1301 if (ret) { 1302 dev_err(&pdev->dev, "bitbang start failed with %d\n", ret); 1303 goto out_clk_put; 1304 } 1305 1306 if (!master->cs_gpios) { 1307 dev_err(&pdev->dev, "No CS GPIOs available\n"); 1308 ret = -EINVAL; 1309 goto out_clk_put; 1310 } 1311 1312 for (i = 0; i < master->num_chipselect; i++) { 1313 if (!gpio_is_valid(master->cs_gpios[i])) 1314 continue; 1315 1316 ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i], 1317 DRIVER_NAME); 1318 if (ret) { 1319 dev_err(&pdev->dev, "Can't get CS GPIO %i\n", 1320 master->cs_gpios[i]); 1321 goto out_clk_put; 1322 } 1323 } 1324 1325 dev_info(&pdev->dev, "probed\n"); 1326 1327 clk_disable(spi_imx->clk_ipg); 1328 clk_disable(spi_imx->clk_per); 1329 return ret; 1330 1331 out_clk_put: 1332 clk_disable_unprepare(spi_imx->clk_ipg); 1333 out_put_per: 1334 clk_disable_unprepare(spi_imx->clk_per); 1335 out_master_put: 1336 spi_master_put(master); 1337 1338 return ret; 1339 } 1340 1341 static int spi_imx_remove(struct platform_device *pdev) 1342 { 1343 struct spi_master *master = platform_get_drvdata(pdev); 1344 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 1345 1346 spi_bitbang_stop(&spi_imx->bitbang); 1347 1348 writel(0, spi_imx->base + MXC_CSPICTRL); 1349 clk_unprepare(spi_imx->clk_ipg); 1350 clk_unprepare(spi_imx->clk_per); 1351 spi_imx_sdma_exit(spi_imx); 1352 spi_master_put(master); 1353 1354 return 0; 1355 } 1356 1357 static struct platform_driver spi_imx_driver = { 1358 .driver = { 1359 .name = DRIVER_NAME, 1360 .of_match_table = spi_imx_dt_ids, 1361 }, 1362 .id_table = spi_imx_devtype, 1363 .probe = spi_imx_probe, 1364 .remove = spi_imx_remove, 1365 }; 1366 module_platform_driver(spi_imx_driver); 1367 1368 MODULE_DESCRIPTION("SPI Master Controller driver"); 1369 MODULE_AUTHOR("Sascha Hauer, Pengutronix"); 1370 MODULE_LICENSE("GPL"); 1371 MODULE_ALIAS("platform:" DRIVER_NAME); 1372