xref: /openbmc/linux/drivers/spi/spi-imx.c (revision ecfb9f40)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4 
5 #include <linux/clk.h>
6 #include <linux/completion.h>
7 #include <linux/delay.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irq.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/types.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/property.h>
25 
26 #include <linux/dma/imx-dma.h>
27 
28 #define DRIVER_NAME "spi_imx"
29 
30 static bool use_dma = true;
31 module_param(use_dma, bool, 0644);
32 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
33 
34 /* define polling limits */
35 static unsigned int polling_limit_us = 30;
36 module_param(polling_limit_us, uint, 0664);
37 MODULE_PARM_DESC(polling_limit_us,
38 		 "time in us to run a transfer in polling mode\n");
39 
40 #define MXC_RPM_TIMEOUT		2000 /* 2000ms */
41 
42 #define MXC_CSPIRXDATA		0x00
43 #define MXC_CSPITXDATA		0x04
44 #define MXC_CSPICTRL		0x08
45 #define MXC_CSPIINT		0x0c
46 #define MXC_RESET		0x1c
47 
48 /* generic defines to abstract from the different register layouts */
49 #define MXC_INT_RR	(1 << 0) /* Receive data ready interrupt */
50 #define MXC_INT_TE	(1 << 1) /* Transmit FIFO empty interrupt */
51 #define MXC_INT_RDR	BIT(4) /* Receive date threshold interrupt */
52 
53 /* The maximum bytes that a sdma BD can transfer. */
54 #define MAX_SDMA_BD_BYTES (1 << 15)
55 #define MX51_ECSPI_CTRL_MAX_BURST	512
56 /* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/
57 #define MX53_MAX_TRANSFER_BYTES		512
58 
59 enum spi_imx_devtype {
60 	IMX1_CSPI,
61 	IMX21_CSPI,
62 	IMX27_CSPI,
63 	IMX31_CSPI,
64 	IMX35_CSPI,	/* CSPI on all i.mx except above */
65 	IMX51_ECSPI,	/* ECSPI on i.mx51 */
66 	IMX53_ECSPI,	/* ECSPI on i.mx53 and later */
67 };
68 
69 struct spi_imx_data;
70 
71 struct spi_imx_devtype_data {
72 	void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
73 	int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
74 	int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi);
75 	void (*trigger)(struct spi_imx_data *spi_imx);
76 	int (*rx_available)(struct spi_imx_data *spi_imx);
77 	void (*reset)(struct spi_imx_data *spi_imx);
78 	void (*setup_wml)(struct spi_imx_data *spi_imx);
79 	void (*disable)(struct spi_imx_data *spi_imx);
80 	bool has_dmamode;
81 	bool has_slavemode;
82 	unsigned int fifo_size;
83 	bool dynamic_burst;
84 	/*
85 	 * ERR009165 fixed or not:
86 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
87 	 */
88 	bool tx_glitch_fixed;
89 	enum spi_imx_devtype devtype;
90 };
91 
92 struct spi_imx_data {
93 	struct spi_controller *controller;
94 	struct device *dev;
95 
96 	struct completion xfer_done;
97 	void __iomem *base;
98 	unsigned long base_phys;
99 
100 	struct clk *clk_per;
101 	struct clk *clk_ipg;
102 	unsigned long spi_clk;
103 	unsigned int spi_bus_clk;
104 
105 	unsigned int bits_per_word;
106 	unsigned int spi_drctl;
107 
108 	unsigned int count, remainder;
109 	void (*tx)(struct spi_imx_data *spi_imx);
110 	void (*rx)(struct spi_imx_data *spi_imx);
111 	void *rx_buf;
112 	const void *tx_buf;
113 	unsigned int txfifo; /* number of words pushed in tx FIFO */
114 	unsigned int dynamic_burst;
115 	bool rx_only;
116 
117 	/* Slave mode */
118 	bool slave_mode;
119 	bool slave_aborted;
120 	unsigned int slave_burst;
121 
122 	/* DMA */
123 	bool usedma;
124 	u32 wml;
125 	struct completion dma_rx_completion;
126 	struct completion dma_tx_completion;
127 
128 	const struct spi_imx_devtype_data *devtype_data;
129 };
130 
131 static inline int is_imx27_cspi(struct spi_imx_data *d)
132 {
133 	return d->devtype_data->devtype == IMX27_CSPI;
134 }
135 
136 static inline int is_imx35_cspi(struct spi_imx_data *d)
137 {
138 	return d->devtype_data->devtype == IMX35_CSPI;
139 }
140 
141 static inline int is_imx51_ecspi(struct spi_imx_data *d)
142 {
143 	return d->devtype_data->devtype == IMX51_ECSPI;
144 }
145 
146 static inline int is_imx53_ecspi(struct spi_imx_data *d)
147 {
148 	return d->devtype_data->devtype == IMX53_ECSPI;
149 }
150 
151 #define MXC_SPI_BUF_RX(type)						\
152 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx)		\
153 {									\
154 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);	\
155 									\
156 	if (spi_imx->rx_buf) {						\
157 		*(type *)spi_imx->rx_buf = val;				\
158 		spi_imx->rx_buf += sizeof(type);			\
159 	}								\
160 									\
161 	spi_imx->remainder -= sizeof(type);				\
162 }
163 
164 #define MXC_SPI_BUF_TX(type)						\
165 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx)		\
166 {									\
167 	type val = 0;							\
168 									\
169 	if (spi_imx->tx_buf) {						\
170 		val = *(type *)spi_imx->tx_buf;				\
171 		spi_imx->tx_buf += sizeof(type);			\
172 	}								\
173 									\
174 	spi_imx->count -= sizeof(type);					\
175 									\
176 	writel(val, spi_imx->base + MXC_CSPITXDATA);			\
177 }
178 
179 MXC_SPI_BUF_RX(u8)
180 MXC_SPI_BUF_TX(u8)
181 MXC_SPI_BUF_RX(u16)
182 MXC_SPI_BUF_TX(u16)
183 MXC_SPI_BUF_RX(u32)
184 MXC_SPI_BUF_TX(u32)
185 
186 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
187  * (which is currently not the case in this driver)
188  */
189 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
190 	256, 384, 512, 768, 1024};
191 
192 /* MX21, MX27 */
193 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
194 		unsigned int fspi, unsigned int max, unsigned int *fres)
195 {
196 	int i;
197 
198 	for (i = 2; i < max; i++)
199 		if (fspi * mxc_clkdivs[i] >= fin)
200 			break;
201 
202 	*fres = fin / mxc_clkdivs[i];
203 	return i;
204 }
205 
206 /* MX1, MX31, MX35, MX51 CSPI */
207 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
208 		unsigned int fspi, unsigned int *fres)
209 {
210 	int i, div = 4;
211 
212 	for (i = 0; i < 7; i++) {
213 		if (fspi * div >= fin)
214 			goto out;
215 		div <<= 1;
216 	}
217 
218 out:
219 	*fres = fin / div;
220 	return i;
221 }
222 
223 static int spi_imx_bytes_per_word(const int bits_per_word)
224 {
225 	if (bits_per_word <= 8)
226 		return 1;
227 	else if (bits_per_word <= 16)
228 		return 2;
229 	else
230 		return 4;
231 }
232 
233 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
234 			 struct spi_transfer *transfer)
235 {
236 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
237 
238 	if (!use_dma || controller->fallback)
239 		return false;
240 
241 	if (!controller->dma_rx)
242 		return false;
243 
244 	if (spi_imx->slave_mode)
245 		return false;
246 
247 	if (transfer->len < spi_imx->devtype_data->fifo_size)
248 		return false;
249 
250 	spi_imx->dynamic_burst = 0;
251 
252 	return true;
253 }
254 
255 #define MX51_ECSPI_CTRL		0x08
256 #define MX51_ECSPI_CTRL_ENABLE		(1 <<  0)
257 #define MX51_ECSPI_CTRL_XCH		(1 <<  2)
258 #define MX51_ECSPI_CTRL_SMC		(1 << 3)
259 #define MX51_ECSPI_CTRL_MODE_MASK	(0xf << 4)
260 #define MX51_ECSPI_CTRL_DRCTL(drctl)	((drctl) << 16)
261 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET	8
262 #define MX51_ECSPI_CTRL_PREDIV_OFFSET	12
263 #define MX51_ECSPI_CTRL_CS(cs)		((cs) << 18)
264 #define MX51_ECSPI_CTRL_BL_OFFSET	20
265 #define MX51_ECSPI_CTRL_BL_MASK		(0xfff << 20)
266 
267 #define MX51_ECSPI_CONFIG	0x0c
268 #define MX51_ECSPI_CONFIG_SCLKPHA(cs)	(1 << ((cs) +  0))
269 #define MX51_ECSPI_CONFIG_SCLKPOL(cs)	(1 << ((cs) +  4))
270 #define MX51_ECSPI_CONFIG_SBBCTRL(cs)	(1 << ((cs) +  8))
271 #define MX51_ECSPI_CONFIG_SSBPOL(cs)	(1 << ((cs) + 12))
272 #define MX51_ECSPI_CONFIG_SCLKCTL(cs)	(1 << ((cs) + 20))
273 
274 #define MX51_ECSPI_INT		0x10
275 #define MX51_ECSPI_INT_TEEN		(1 <<  0)
276 #define MX51_ECSPI_INT_RREN		(1 <<  3)
277 #define MX51_ECSPI_INT_RDREN		(1 <<  4)
278 
279 #define MX51_ECSPI_DMA		0x14
280 #define MX51_ECSPI_DMA_TX_WML(wml)	((wml) & 0x3f)
281 #define MX51_ECSPI_DMA_RX_WML(wml)	(((wml) & 0x3f) << 16)
282 #define MX51_ECSPI_DMA_RXT_WML(wml)	(((wml) & 0x3f) << 24)
283 
284 #define MX51_ECSPI_DMA_TEDEN		(1 << 7)
285 #define MX51_ECSPI_DMA_RXDEN		(1 << 23)
286 #define MX51_ECSPI_DMA_RXTDEN		(1 << 31)
287 
288 #define MX51_ECSPI_STAT		0x18
289 #define MX51_ECSPI_STAT_RR		(1 <<  3)
290 
291 #define MX51_ECSPI_TESTREG	0x20
292 #define MX51_ECSPI_TESTREG_LBC	BIT(31)
293 
294 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
295 {
296 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
297 
298 	if (spi_imx->rx_buf) {
299 #ifdef __LITTLE_ENDIAN
300 		unsigned int bytes_per_word;
301 
302 		bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
303 		if (bytes_per_word == 1)
304 			swab32s(&val);
305 		else if (bytes_per_word == 2)
306 			swahw32s(&val);
307 #endif
308 		*(u32 *)spi_imx->rx_buf = val;
309 		spi_imx->rx_buf += sizeof(u32);
310 	}
311 
312 	spi_imx->remainder -= sizeof(u32);
313 }
314 
315 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
316 {
317 	int unaligned;
318 	u32 val;
319 
320 	unaligned = spi_imx->remainder % 4;
321 
322 	if (!unaligned) {
323 		spi_imx_buf_rx_swap_u32(spi_imx);
324 		return;
325 	}
326 
327 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
328 		spi_imx_buf_rx_u16(spi_imx);
329 		return;
330 	}
331 
332 	val = readl(spi_imx->base + MXC_CSPIRXDATA);
333 
334 	while (unaligned--) {
335 		if (spi_imx->rx_buf) {
336 			*(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
337 			spi_imx->rx_buf++;
338 		}
339 		spi_imx->remainder--;
340 	}
341 }
342 
343 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
344 {
345 	u32 val = 0;
346 #ifdef __LITTLE_ENDIAN
347 	unsigned int bytes_per_word;
348 #endif
349 
350 	if (spi_imx->tx_buf) {
351 		val = *(u32 *)spi_imx->tx_buf;
352 		spi_imx->tx_buf += sizeof(u32);
353 	}
354 
355 	spi_imx->count -= sizeof(u32);
356 #ifdef __LITTLE_ENDIAN
357 	bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
358 
359 	if (bytes_per_word == 1)
360 		swab32s(&val);
361 	else if (bytes_per_word == 2)
362 		swahw32s(&val);
363 #endif
364 	writel(val, spi_imx->base + MXC_CSPITXDATA);
365 }
366 
367 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
368 {
369 	int unaligned;
370 	u32 val = 0;
371 
372 	unaligned = spi_imx->count % 4;
373 
374 	if (!unaligned) {
375 		spi_imx_buf_tx_swap_u32(spi_imx);
376 		return;
377 	}
378 
379 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
380 		spi_imx_buf_tx_u16(spi_imx);
381 		return;
382 	}
383 
384 	while (unaligned--) {
385 		if (spi_imx->tx_buf) {
386 			val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
387 			spi_imx->tx_buf++;
388 		}
389 		spi_imx->count--;
390 	}
391 
392 	writel(val, spi_imx->base + MXC_CSPITXDATA);
393 }
394 
395 static void mx53_ecspi_rx_slave(struct spi_imx_data *spi_imx)
396 {
397 	u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
398 
399 	if (spi_imx->rx_buf) {
400 		int n_bytes = spi_imx->slave_burst % sizeof(val);
401 
402 		if (!n_bytes)
403 			n_bytes = sizeof(val);
404 
405 		memcpy(spi_imx->rx_buf,
406 		       ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
407 
408 		spi_imx->rx_buf += n_bytes;
409 		spi_imx->slave_burst -= n_bytes;
410 	}
411 
412 	spi_imx->remainder -= sizeof(u32);
413 }
414 
415 static void mx53_ecspi_tx_slave(struct spi_imx_data *spi_imx)
416 {
417 	u32 val = 0;
418 	int n_bytes = spi_imx->count % sizeof(val);
419 
420 	if (!n_bytes)
421 		n_bytes = sizeof(val);
422 
423 	if (spi_imx->tx_buf) {
424 		memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
425 		       spi_imx->tx_buf, n_bytes);
426 		val = cpu_to_be32(val);
427 		spi_imx->tx_buf += n_bytes;
428 	}
429 
430 	spi_imx->count -= n_bytes;
431 
432 	writel(val, spi_imx->base + MXC_CSPITXDATA);
433 }
434 
435 /* MX51 eCSPI */
436 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
437 				      unsigned int fspi, unsigned int *fres)
438 {
439 	/*
440 	 * there are two 4-bit dividers, the pre-divider divides by
441 	 * $pre, the post-divider by 2^$post
442 	 */
443 	unsigned int pre, post;
444 	unsigned int fin = spi_imx->spi_clk;
445 
446 	fspi = min(fspi, fin);
447 
448 	post = fls(fin) - fls(fspi);
449 	if (fin > fspi << post)
450 		post++;
451 
452 	/* now we have: (fin <= fspi << post) with post being minimal */
453 
454 	post = max(4U, post) - 4;
455 	if (unlikely(post > 0xf)) {
456 		dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
457 				fspi, fin);
458 		return 0xff;
459 	}
460 
461 	pre = DIV_ROUND_UP(fin, fspi << post) - 1;
462 
463 	dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
464 			__func__, fin, fspi, post, pre);
465 
466 	/* Resulting frequency for the SCLK line. */
467 	*fres = (fin / (pre + 1)) >> post;
468 
469 	return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
470 		(post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
471 }
472 
473 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
474 {
475 	unsigned int val = 0;
476 
477 	if (enable & MXC_INT_TE)
478 		val |= MX51_ECSPI_INT_TEEN;
479 
480 	if (enable & MXC_INT_RR)
481 		val |= MX51_ECSPI_INT_RREN;
482 
483 	if (enable & MXC_INT_RDR)
484 		val |= MX51_ECSPI_INT_RDREN;
485 
486 	writel(val, spi_imx->base + MX51_ECSPI_INT);
487 }
488 
489 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
490 {
491 	u32 reg;
492 
493 	reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
494 	reg |= MX51_ECSPI_CTRL_XCH;
495 	writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
496 }
497 
498 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
499 {
500 	u32 ctrl;
501 
502 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
503 	ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
504 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
505 }
506 
507 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
508 				      struct spi_message *msg)
509 {
510 	struct spi_device *spi = msg->spi;
511 	struct spi_transfer *xfer;
512 	u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
513 	u32 min_speed_hz = ~0U;
514 	u32 testreg, delay;
515 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
516 	u32 current_cfg = cfg;
517 
518 	/* set Master or Slave mode */
519 	if (spi_imx->slave_mode)
520 		ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
521 	else
522 		ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
523 
524 	/*
525 	 * Enable SPI_RDY handling (falling edge/level triggered).
526 	 */
527 	if (spi->mode & SPI_READY)
528 		ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
529 
530 	/* set chip select to use */
531 	ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select);
532 
533 	/*
534 	 * The ctrl register must be written first, with the EN bit set other
535 	 * registers must not be written to.
536 	 */
537 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
538 
539 	testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
540 	if (spi->mode & SPI_LOOP)
541 		testreg |= MX51_ECSPI_TESTREG_LBC;
542 	else
543 		testreg &= ~MX51_ECSPI_TESTREG_LBC;
544 	writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
545 
546 	/*
547 	 * eCSPI burst completion by Chip Select signal in Slave mode
548 	 * is not functional for imx53 Soc, config SPI burst completed when
549 	 * BURST_LENGTH + 1 bits are received
550 	 */
551 	if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
552 		cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
553 	else
554 		cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
555 
556 	if (spi->mode & SPI_CPOL) {
557 		cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
558 		cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
559 	} else {
560 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
561 		cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
562 	}
563 
564 	if (spi->mode & SPI_CS_HIGH)
565 		cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
566 	else
567 		cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
568 
569 	if (cfg == current_cfg)
570 		return 0;
571 
572 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
573 
574 	/*
575 	 * Wait until the changes in the configuration register CONFIGREG
576 	 * propagate into the hardware. It takes exactly one tick of the
577 	 * SCLK clock, but we will wait two SCLK clock just to be sure. The
578 	 * effect of the delay it takes for the hardware to apply changes
579 	 * is noticable if the SCLK clock run very slow. In such a case, if
580 	 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
581 	 * be asserted before the SCLK polarity changes, which would disrupt
582 	 * the SPI communication as the device on the other end would consider
583 	 * the change of SCLK polarity as a clock tick already.
584 	 *
585 	 * Because spi_imx->spi_bus_clk is only set in prepare_message
586 	 * callback, iterate over all the transfers in spi_message, find the
587 	 * one with lowest bus frequency, and use that bus frequency for the
588 	 * delay calculation. In case all transfers have speed_hz == 0, then
589 	 * min_speed_hz is ~0 and the resulting delay is zero.
590 	 */
591 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
592 		if (!xfer->speed_hz)
593 			continue;
594 		min_speed_hz = min(xfer->speed_hz, min_speed_hz);
595 	}
596 
597 	delay = (2 * 1000000) / min_speed_hz;
598 	if (likely(delay < 10))	/* SCLK is faster than 200 kHz */
599 		udelay(delay);
600 	else			/* SCLK is _very_ slow */
601 		usleep_range(delay, delay + 10);
602 
603 	return 0;
604 }
605 
606 static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
607 				struct spi_device *spi)
608 {
609 	bool cpha = (spi->mode & SPI_CPHA);
610 	bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
611 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
612 
613 	/* Flip cpha logical value iff flip_cpha */
614 	cpha ^= flip_cpha;
615 
616 	if (cpha)
617 		cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
618 	else
619 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
620 
621 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
622 }
623 
624 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
625 				       struct spi_device *spi)
626 {
627 	u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
628 	u32 clk;
629 
630 	/* Clear BL field and set the right value */
631 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
632 	if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
633 		ctrl |= (spi_imx->slave_burst * 8 - 1)
634 			<< MX51_ECSPI_CTRL_BL_OFFSET;
635 	else
636 		ctrl |= (spi_imx->bits_per_word - 1)
637 			<< MX51_ECSPI_CTRL_BL_OFFSET;
638 
639 	/* set clock speed */
640 	ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
641 		  0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
642 	ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
643 	spi_imx->spi_bus_clk = clk;
644 
645 	mx51_configure_cpha(spi_imx, spi);
646 
647 	/*
648 	 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
649 	 * before i.mx6ul.
650 	 */
651 	if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
652 		ctrl |= MX51_ECSPI_CTRL_SMC;
653 	else
654 		ctrl &= ~MX51_ECSPI_CTRL_SMC;
655 
656 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
657 
658 	return 0;
659 }
660 
661 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
662 {
663 	u32 tx_wml = 0;
664 
665 	if (spi_imx->devtype_data->tx_glitch_fixed)
666 		tx_wml = spi_imx->wml;
667 	/*
668 	 * Configure the DMA register: setup the watermark
669 	 * and enable DMA request.
670 	 */
671 	writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
672 		MX51_ECSPI_DMA_TX_WML(tx_wml) |
673 		MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
674 		MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
675 		MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
676 }
677 
678 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
679 {
680 	return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
681 }
682 
683 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
684 {
685 	/* drain receive buffer */
686 	while (mx51_ecspi_rx_available(spi_imx))
687 		readl(spi_imx->base + MXC_CSPIRXDATA);
688 }
689 
690 #define MX31_INTREG_TEEN	(1 << 0)
691 #define MX31_INTREG_RREN	(1 << 3)
692 
693 #define MX31_CSPICTRL_ENABLE	(1 << 0)
694 #define MX31_CSPICTRL_MASTER	(1 << 1)
695 #define MX31_CSPICTRL_XCH	(1 << 2)
696 #define MX31_CSPICTRL_SMC	(1 << 3)
697 #define MX31_CSPICTRL_POL	(1 << 4)
698 #define MX31_CSPICTRL_PHA	(1 << 5)
699 #define MX31_CSPICTRL_SSCTL	(1 << 6)
700 #define MX31_CSPICTRL_SSPOL	(1 << 7)
701 #define MX31_CSPICTRL_BC_SHIFT	8
702 #define MX35_CSPICTRL_BL_SHIFT	20
703 #define MX31_CSPICTRL_CS_SHIFT	24
704 #define MX35_CSPICTRL_CS_SHIFT	12
705 #define MX31_CSPICTRL_DR_SHIFT	16
706 
707 #define MX31_CSPI_DMAREG	0x10
708 #define MX31_DMAREG_RH_DEN	(1<<4)
709 #define MX31_DMAREG_TH_DEN	(1<<1)
710 
711 #define MX31_CSPISTATUS		0x14
712 #define MX31_STATUS_RR		(1 << 3)
713 
714 #define MX31_CSPI_TESTREG	0x1C
715 #define MX31_TEST_LBC		(1 << 14)
716 
717 /* These functions also work for the i.MX35, but be aware that
718  * the i.MX35 has a slightly different register layout for bits
719  * we do not use here.
720  */
721 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
722 {
723 	unsigned int val = 0;
724 
725 	if (enable & MXC_INT_TE)
726 		val |= MX31_INTREG_TEEN;
727 	if (enable & MXC_INT_RR)
728 		val |= MX31_INTREG_RREN;
729 
730 	writel(val, spi_imx->base + MXC_CSPIINT);
731 }
732 
733 static void mx31_trigger(struct spi_imx_data *spi_imx)
734 {
735 	unsigned int reg;
736 
737 	reg = readl(spi_imx->base + MXC_CSPICTRL);
738 	reg |= MX31_CSPICTRL_XCH;
739 	writel(reg, spi_imx->base + MXC_CSPICTRL);
740 }
741 
742 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
743 				struct spi_message *msg)
744 {
745 	return 0;
746 }
747 
748 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
749 				 struct spi_device *spi)
750 {
751 	unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
752 	unsigned int clk;
753 
754 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
755 		MX31_CSPICTRL_DR_SHIFT;
756 	spi_imx->spi_bus_clk = clk;
757 
758 	if (is_imx35_cspi(spi_imx)) {
759 		reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
760 		reg |= MX31_CSPICTRL_SSCTL;
761 	} else {
762 		reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
763 	}
764 
765 	if (spi->mode & SPI_CPHA)
766 		reg |= MX31_CSPICTRL_PHA;
767 	if (spi->mode & SPI_CPOL)
768 		reg |= MX31_CSPICTRL_POL;
769 	if (spi->mode & SPI_CS_HIGH)
770 		reg |= MX31_CSPICTRL_SSPOL;
771 	if (!spi->cs_gpiod)
772 		reg |= (spi->chip_select) <<
773 			(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
774 						  MX31_CSPICTRL_CS_SHIFT);
775 
776 	if (spi_imx->usedma)
777 		reg |= MX31_CSPICTRL_SMC;
778 
779 	writel(reg, spi_imx->base + MXC_CSPICTRL);
780 
781 	reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
782 	if (spi->mode & SPI_LOOP)
783 		reg |= MX31_TEST_LBC;
784 	else
785 		reg &= ~MX31_TEST_LBC;
786 	writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
787 
788 	if (spi_imx->usedma) {
789 		/*
790 		 * configure DMA requests when RXFIFO is half full and
791 		 * when TXFIFO is half empty
792 		 */
793 		writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
794 			spi_imx->base + MX31_CSPI_DMAREG);
795 	}
796 
797 	return 0;
798 }
799 
800 static int mx31_rx_available(struct spi_imx_data *spi_imx)
801 {
802 	return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
803 }
804 
805 static void mx31_reset(struct spi_imx_data *spi_imx)
806 {
807 	/* drain receive buffer */
808 	while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
809 		readl(spi_imx->base + MXC_CSPIRXDATA);
810 }
811 
812 #define MX21_INTREG_RR		(1 << 4)
813 #define MX21_INTREG_TEEN	(1 << 9)
814 #define MX21_INTREG_RREN	(1 << 13)
815 
816 #define MX21_CSPICTRL_POL	(1 << 5)
817 #define MX21_CSPICTRL_PHA	(1 << 6)
818 #define MX21_CSPICTRL_SSPOL	(1 << 8)
819 #define MX21_CSPICTRL_XCH	(1 << 9)
820 #define MX21_CSPICTRL_ENABLE	(1 << 10)
821 #define MX21_CSPICTRL_MASTER	(1 << 11)
822 #define MX21_CSPICTRL_DR_SHIFT	14
823 #define MX21_CSPICTRL_CS_SHIFT	19
824 
825 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
826 {
827 	unsigned int val = 0;
828 
829 	if (enable & MXC_INT_TE)
830 		val |= MX21_INTREG_TEEN;
831 	if (enable & MXC_INT_RR)
832 		val |= MX21_INTREG_RREN;
833 
834 	writel(val, spi_imx->base + MXC_CSPIINT);
835 }
836 
837 static void mx21_trigger(struct spi_imx_data *spi_imx)
838 {
839 	unsigned int reg;
840 
841 	reg = readl(spi_imx->base + MXC_CSPICTRL);
842 	reg |= MX21_CSPICTRL_XCH;
843 	writel(reg, spi_imx->base + MXC_CSPICTRL);
844 }
845 
846 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
847 				struct spi_message *msg)
848 {
849 	return 0;
850 }
851 
852 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
853 				 struct spi_device *spi)
854 {
855 	unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
856 	unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
857 	unsigned int clk;
858 
859 	reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
860 		<< MX21_CSPICTRL_DR_SHIFT;
861 	spi_imx->spi_bus_clk = clk;
862 
863 	reg |= spi_imx->bits_per_word - 1;
864 
865 	if (spi->mode & SPI_CPHA)
866 		reg |= MX21_CSPICTRL_PHA;
867 	if (spi->mode & SPI_CPOL)
868 		reg |= MX21_CSPICTRL_POL;
869 	if (spi->mode & SPI_CS_HIGH)
870 		reg |= MX21_CSPICTRL_SSPOL;
871 	if (!spi->cs_gpiod)
872 		reg |= spi->chip_select << MX21_CSPICTRL_CS_SHIFT;
873 
874 	writel(reg, spi_imx->base + MXC_CSPICTRL);
875 
876 	return 0;
877 }
878 
879 static int mx21_rx_available(struct spi_imx_data *spi_imx)
880 {
881 	return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
882 }
883 
884 static void mx21_reset(struct spi_imx_data *spi_imx)
885 {
886 	writel(1, spi_imx->base + MXC_RESET);
887 }
888 
889 #define MX1_INTREG_RR		(1 << 3)
890 #define MX1_INTREG_TEEN		(1 << 8)
891 #define MX1_INTREG_RREN		(1 << 11)
892 
893 #define MX1_CSPICTRL_POL	(1 << 4)
894 #define MX1_CSPICTRL_PHA	(1 << 5)
895 #define MX1_CSPICTRL_XCH	(1 << 8)
896 #define MX1_CSPICTRL_ENABLE	(1 << 9)
897 #define MX1_CSPICTRL_MASTER	(1 << 10)
898 #define MX1_CSPICTRL_DR_SHIFT	13
899 
900 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
901 {
902 	unsigned int val = 0;
903 
904 	if (enable & MXC_INT_TE)
905 		val |= MX1_INTREG_TEEN;
906 	if (enable & MXC_INT_RR)
907 		val |= MX1_INTREG_RREN;
908 
909 	writel(val, spi_imx->base + MXC_CSPIINT);
910 }
911 
912 static void mx1_trigger(struct spi_imx_data *spi_imx)
913 {
914 	unsigned int reg;
915 
916 	reg = readl(spi_imx->base + MXC_CSPICTRL);
917 	reg |= MX1_CSPICTRL_XCH;
918 	writel(reg, spi_imx->base + MXC_CSPICTRL);
919 }
920 
921 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
922 			       struct spi_message *msg)
923 {
924 	return 0;
925 }
926 
927 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
928 				struct spi_device *spi)
929 {
930 	unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER;
931 	unsigned int clk;
932 
933 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
934 		MX1_CSPICTRL_DR_SHIFT;
935 	spi_imx->spi_bus_clk = clk;
936 
937 	reg |= spi_imx->bits_per_word - 1;
938 
939 	if (spi->mode & SPI_CPHA)
940 		reg |= MX1_CSPICTRL_PHA;
941 	if (spi->mode & SPI_CPOL)
942 		reg |= MX1_CSPICTRL_POL;
943 
944 	writel(reg, spi_imx->base + MXC_CSPICTRL);
945 
946 	return 0;
947 }
948 
949 static int mx1_rx_available(struct spi_imx_data *spi_imx)
950 {
951 	return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
952 }
953 
954 static void mx1_reset(struct spi_imx_data *spi_imx)
955 {
956 	writel(1, spi_imx->base + MXC_RESET);
957 }
958 
959 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
960 	.intctrl = mx1_intctrl,
961 	.prepare_message = mx1_prepare_message,
962 	.prepare_transfer = mx1_prepare_transfer,
963 	.trigger = mx1_trigger,
964 	.rx_available = mx1_rx_available,
965 	.reset = mx1_reset,
966 	.fifo_size = 8,
967 	.has_dmamode = false,
968 	.dynamic_burst = false,
969 	.has_slavemode = false,
970 	.devtype = IMX1_CSPI,
971 };
972 
973 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
974 	.intctrl = mx21_intctrl,
975 	.prepare_message = mx21_prepare_message,
976 	.prepare_transfer = mx21_prepare_transfer,
977 	.trigger = mx21_trigger,
978 	.rx_available = mx21_rx_available,
979 	.reset = mx21_reset,
980 	.fifo_size = 8,
981 	.has_dmamode = false,
982 	.dynamic_burst = false,
983 	.has_slavemode = false,
984 	.devtype = IMX21_CSPI,
985 };
986 
987 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
988 	/* i.mx27 cspi shares the functions with i.mx21 one */
989 	.intctrl = mx21_intctrl,
990 	.prepare_message = mx21_prepare_message,
991 	.prepare_transfer = mx21_prepare_transfer,
992 	.trigger = mx21_trigger,
993 	.rx_available = mx21_rx_available,
994 	.reset = mx21_reset,
995 	.fifo_size = 8,
996 	.has_dmamode = false,
997 	.dynamic_burst = false,
998 	.has_slavemode = false,
999 	.devtype = IMX27_CSPI,
1000 };
1001 
1002 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
1003 	.intctrl = mx31_intctrl,
1004 	.prepare_message = mx31_prepare_message,
1005 	.prepare_transfer = mx31_prepare_transfer,
1006 	.trigger = mx31_trigger,
1007 	.rx_available = mx31_rx_available,
1008 	.reset = mx31_reset,
1009 	.fifo_size = 8,
1010 	.has_dmamode = false,
1011 	.dynamic_burst = false,
1012 	.has_slavemode = false,
1013 	.devtype = IMX31_CSPI,
1014 };
1015 
1016 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1017 	/* i.mx35 and later cspi shares the functions with i.mx31 one */
1018 	.intctrl = mx31_intctrl,
1019 	.prepare_message = mx31_prepare_message,
1020 	.prepare_transfer = mx31_prepare_transfer,
1021 	.trigger = mx31_trigger,
1022 	.rx_available = mx31_rx_available,
1023 	.reset = mx31_reset,
1024 	.fifo_size = 8,
1025 	.has_dmamode = true,
1026 	.dynamic_burst = false,
1027 	.has_slavemode = false,
1028 	.devtype = IMX35_CSPI,
1029 };
1030 
1031 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1032 	.intctrl = mx51_ecspi_intctrl,
1033 	.prepare_message = mx51_ecspi_prepare_message,
1034 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1035 	.trigger = mx51_ecspi_trigger,
1036 	.rx_available = mx51_ecspi_rx_available,
1037 	.reset = mx51_ecspi_reset,
1038 	.setup_wml = mx51_setup_wml,
1039 	.fifo_size = 64,
1040 	.has_dmamode = true,
1041 	.dynamic_burst = true,
1042 	.has_slavemode = true,
1043 	.disable = mx51_ecspi_disable,
1044 	.devtype = IMX51_ECSPI,
1045 };
1046 
1047 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1048 	.intctrl = mx51_ecspi_intctrl,
1049 	.prepare_message = mx51_ecspi_prepare_message,
1050 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1051 	.trigger = mx51_ecspi_trigger,
1052 	.rx_available = mx51_ecspi_rx_available,
1053 	.reset = mx51_ecspi_reset,
1054 	.fifo_size = 64,
1055 	.has_dmamode = true,
1056 	.has_slavemode = true,
1057 	.disable = mx51_ecspi_disable,
1058 	.devtype = IMX53_ECSPI,
1059 };
1060 
1061 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1062 	.intctrl = mx51_ecspi_intctrl,
1063 	.prepare_message = mx51_ecspi_prepare_message,
1064 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1065 	.trigger = mx51_ecspi_trigger,
1066 	.rx_available = mx51_ecspi_rx_available,
1067 	.reset = mx51_ecspi_reset,
1068 	.setup_wml = mx51_setup_wml,
1069 	.fifo_size = 64,
1070 	.has_dmamode = true,
1071 	.dynamic_burst = true,
1072 	.has_slavemode = true,
1073 	.tx_glitch_fixed = true,
1074 	.disable = mx51_ecspi_disable,
1075 	.devtype = IMX51_ECSPI,
1076 };
1077 
1078 static const struct of_device_id spi_imx_dt_ids[] = {
1079 	{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1080 	{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1081 	{ .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1082 	{ .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1083 	{ .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1084 	{ .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1085 	{ .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1086 	{ .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1087 	{ /* sentinel */ }
1088 };
1089 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1090 
1091 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1092 {
1093 	u32 ctrl;
1094 
1095 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1096 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1097 	ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1098 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1099 }
1100 
1101 static void spi_imx_push(struct spi_imx_data *spi_imx)
1102 {
1103 	unsigned int burst_len;
1104 
1105 	/*
1106 	 * Reload the FIFO when the remaining bytes to be transferred in the
1107 	 * current burst is 0. This only applies when bits_per_word is a
1108 	 * multiple of 8.
1109 	 */
1110 	if (!spi_imx->remainder) {
1111 		if (spi_imx->dynamic_burst) {
1112 
1113 			/* We need to deal unaligned data first */
1114 			burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1115 
1116 			if (!burst_len)
1117 				burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1118 
1119 			spi_imx_set_burst_len(spi_imx, burst_len * 8);
1120 
1121 			spi_imx->remainder = burst_len;
1122 		} else {
1123 			spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1124 		}
1125 	}
1126 
1127 	while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1128 		if (!spi_imx->count)
1129 			break;
1130 		if (spi_imx->dynamic_burst &&
1131 		    spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1132 			break;
1133 		spi_imx->tx(spi_imx);
1134 		spi_imx->txfifo++;
1135 	}
1136 
1137 	if (!spi_imx->slave_mode)
1138 		spi_imx->devtype_data->trigger(spi_imx);
1139 }
1140 
1141 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1142 {
1143 	struct spi_imx_data *spi_imx = dev_id;
1144 
1145 	while (spi_imx->txfifo &&
1146 	       spi_imx->devtype_data->rx_available(spi_imx)) {
1147 		spi_imx->rx(spi_imx);
1148 		spi_imx->txfifo--;
1149 	}
1150 
1151 	if (spi_imx->count) {
1152 		spi_imx_push(spi_imx);
1153 		return IRQ_HANDLED;
1154 	}
1155 
1156 	if (spi_imx->txfifo) {
1157 		/* No data left to push, but still waiting for rx data,
1158 		 * enable receive data available interrupt.
1159 		 */
1160 		spi_imx->devtype_data->intctrl(
1161 				spi_imx, MXC_INT_RR);
1162 		return IRQ_HANDLED;
1163 	}
1164 
1165 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1166 	complete(&spi_imx->xfer_done);
1167 
1168 	return IRQ_HANDLED;
1169 }
1170 
1171 static int spi_imx_dma_configure(struct spi_controller *controller)
1172 {
1173 	int ret;
1174 	enum dma_slave_buswidth buswidth;
1175 	struct dma_slave_config rx = {}, tx = {};
1176 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1177 
1178 	switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1179 	case 4:
1180 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1181 		break;
1182 	case 2:
1183 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1184 		break;
1185 	case 1:
1186 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1187 		break;
1188 	default:
1189 		return -EINVAL;
1190 	}
1191 
1192 	tx.direction = DMA_MEM_TO_DEV;
1193 	tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1194 	tx.dst_addr_width = buswidth;
1195 	tx.dst_maxburst = spi_imx->wml;
1196 	ret = dmaengine_slave_config(controller->dma_tx, &tx);
1197 	if (ret) {
1198 		dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1199 		return ret;
1200 	}
1201 
1202 	rx.direction = DMA_DEV_TO_MEM;
1203 	rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1204 	rx.src_addr_width = buswidth;
1205 	rx.src_maxburst = spi_imx->wml;
1206 	ret = dmaengine_slave_config(controller->dma_rx, &rx);
1207 	if (ret) {
1208 		dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1209 		return ret;
1210 	}
1211 
1212 	return 0;
1213 }
1214 
1215 static int spi_imx_setupxfer(struct spi_device *spi,
1216 				 struct spi_transfer *t)
1217 {
1218 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1219 
1220 	if (!t)
1221 		return 0;
1222 
1223 	if (!t->speed_hz) {
1224 		if (!spi->max_speed_hz) {
1225 			dev_err(&spi->dev, "no speed_hz provided!\n");
1226 			return -EINVAL;
1227 		}
1228 		dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1229 		spi_imx->spi_bus_clk = spi->max_speed_hz;
1230 	} else
1231 		spi_imx->spi_bus_clk = t->speed_hz;
1232 
1233 	spi_imx->bits_per_word = t->bits_per_word;
1234 
1235 	/*
1236 	 * Initialize the functions for transfer. To transfer non byte-aligned
1237 	 * words, we have to use multiple word-size bursts, we can't use
1238 	 * dynamic_burst in that case.
1239 	 */
1240 	if (spi_imx->devtype_data->dynamic_burst && !spi_imx->slave_mode &&
1241 	    !(spi->mode & SPI_CS_WORD) &&
1242 	    (spi_imx->bits_per_word == 8 ||
1243 	    spi_imx->bits_per_word == 16 ||
1244 	    spi_imx->bits_per_word == 32)) {
1245 
1246 		spi_imx->rx = spi_imx_buf_rx_swap;
1247 		spi_imx->tx = spi_imx_buf_tx_swap;
1248 		spi_imx->dynamic_burst = 1;
1249 
1250 	} else {
1251 		if (spi_imx->bits_per_word <= 8) {
1252 			spi_imx->rx = spi_imx_buf_rx_u8;
1253 			spi_imx->tx = spi_imx_buf_tx_u8;
1254 		} else if (spi_imx->bits_per_word <= 16) {
1255 			spi_imx->rx = spi_imx_buf_rx_u16;
1256 			spi_imx->tx = spi_imx_buf_tx_u16;
1257 		} else {
1258 			spi_imx->rx = spi_imx_buf_rx_u32;
1259 			spi_imx->tx = spi_imx_buf_tx_u32;
1260 		}
1261 		spi_imx->dynamic_burst = 0;
1262 	}
1263 
1264 	if (spi_imx_can_dma(spi_imx->controller, spi, t))
1265 		spi_imx->usedma = true;
1266 	else
1267 		spi_imx->usedma = false;
1268 
1269 	spi_imx->rx_only = ((t->tx_buf == NULL)
1270 			|| (t->tx_buf == spi->controller->dummy_tx));
1271 
1272 	if (is_imx53_ecspi(spi_imx) && spi_imx->slave_mode) {
1273 		spi_imx->rx = mx53_ecspi_rx_slave;
1274 		spi_imx->tx = mx53_ecspi_tx_slave;
1275 		spi_imx->slave_burst = t->len;
1276 	}
1277 
1278 	spi_imx->devtype_data->prepare_transfer(spi_imx, spi);
1279 
1280 	return 0;
1281 }
1282 
1283 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1284 {
1285 	struct spi_controller *controller = spi_imx->controller;
1286 
1287 	if (controller->dma_rx) {
1288 		dma_release_channel(controller->dma_rx);
1289 		controller->dma_rx = NULL;
1290 	}
1291 
1292 	if (controller->dma_tx) {
1293 		dma_release_channel(controller->dma_tx);
1294 		controller->dma_tx = NULL;
1295 	}
1296 }
1297 
1298 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1299 			     struct spi_controller *controller)
1300 {
1301 	int ret;
1302 
1303 	spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1304 
1305 	/* Prepare for TX DMA: */
1306 	controller->dma_tx = dma_request_chan(dev, "tx");
1307 	if (IS_ERR(controller->dma_tx)) {
1308 		ret = PTR_ERR(controller->dma_tx);
1309 		dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
1310 		controller->dma_tx = NULL;
1311 		goto err;
1312 	}
1313 
1314 	/* Prepare for RX : */
1315 	controller->dma_rx = dma_request_chan(dev, "rx");
1316 	if (IS_ERR(controller->dma_rx)) {
1317 		ret = PTR_ERR(controller->dma_rx);
1318 		dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
1319 		controller->dma_rx = NULL;
1320 		goto err;
1321 	}
1322 
1323 	init_completion(&spi_imx->dma_rx_completion);
1324 	init_completion(&spi_imx->dma_tx_completion);
1325 	controller->can_dma = spi_imx_can_dma;
1326 	controller->max_dma_len = MAX_SDMA_BD_BYTES;
1327 	spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
1328 					 SPI_CONTROLLER_MUST_TX;
1329 
1330 	return 0;
1331 err:
1332 	spi_imx_sdma_exit(spi_imx);
1333 	return ret;
1334 }
1335 
1336 static void spi_imx_dma_rx_callback(void *cookie)
1337 {
1338 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1339 
1340 	complete(&spi_imx->dma_rx_completion);
1341 }
1342 
1343 static void spi_imx_dma_tx_callback(void *cookie)
1344 {
1345 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1346 
1347 	complete(&spi_imx->dma_tx_completion);
1348 }
1349 
1350 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1351 {
1352 	unsigned long timeout = 0;
1353 
1354 	/* Time with actual data transfer and CS change delay related to HW */
1355 	timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1356 
1357 	/* Add extra second for scheduler related activities */
1358 	timeout += 1;
1359 
1360 	/* Double calculated timeout */
1361 	return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
1362 }
1363 
1364 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1365 				struct spi_transfer *transfer)
1366 {
1367 	struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1368 	unsigned long transfer_timeout;
1369 	unsigned long timeout;
1370 	struct spi_controller *controller = spi_imx->controller;
1371 	struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1372 	struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1373 	unsigned int bytes_per_word, i;
1374 	int ret;
1375 
1376 	/* Get the right burst length from the last sg to ensure no tail data */
1377 	bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1378 	for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1379 		if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1380 			break;
1381 	}
1382 	/* Use 1 as wml in case no available burst length got */
1383 	if (i == 0)
1384 		i = 1;
1385 
1386 	spi_imx->wml =  i;
1387 
1388 	ret = spi_imx_dma_configure(controller);
1389 	if (ret)
1390 		goto dma_failure_no_start;
1391 
1392 	if (!spi_imx->devtype_data->setup_wml) {
1393 		dev_err(spi_imx->dev, "No setup_wml()?\n");
1394 		ret = -EINVAL;
1395 		goto dma_failure_no_start;
1396 	}
1397 	spi_imx->devtype_data->setup_wml(spi_imx);
1398 
1399 	/*
1400 	 * The TX DMA setup starts the transfer, so make sure RX is configured
1401 	 * before TX.
1402 	 */
1403 	desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
1404 				rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1405 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1406 	if (!desc_rx) {
1407 		ret = -EINVAL;
1408 		goto dma_failure_no_start;
1409 	}
1410 
1411 	desc_rx->callback = spi_imx_dma_rx_callback;
1412 	desc_rx->callback_param = (void *)spi_imx;
1413 	dmaengine_submit(desc_rx);
1414 	reinit_completion(&spi_imx->dma_rx_completion);
1415 	dma_async_issue_pending(controller->dma_rx);
1416 
1417 	desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
1418 				tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1419 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1420 	if (!desc_tx) {
1421 		dmaengine_terminate_all(controller->dma_tx);
1422 		dmaengine_terminate_all(controller->dma_rx);
1423 		return -EINVAL;
1424 	}
1425 
1426 	desc_tx->callback = spi_imx_dma_tx_callback;
1427 	desc_tx->callback_param = (void *)spi_imx;
1428 	dmaengine_submit(desc_tx);
1429 	reinit_completion(&spi_imx->dma_tx_completion);
1430 	dma_async_issue_pending(controller->dma_tx);
1431 
1432 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1433 
1434 	/* Wait SDMA to finish the data transfer.*/
1435 	timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1436 						transfer_timeout);
1437 	if (!timeout) {
1438 		dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1439 		dmaengine_terminate_all(controller->dma_tx);
1440 		dmaengine_terminate_all(controller->dma_rx);
1441 		return -ETIMEDOUT;
1442 	}
1443 
1444 	timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1445 					      transfer_timeout);
1446 	if (!timeout) {
1447 		dev_err(&controller->dev, "I/O Error in DMA RX\n");
1448 		spi_imx->devtype_data->reset(spi_imx);
1449 		dmaengine_terminate_all(controller->dma_rx);
1450 		return -ETIMEDOUT;
1451 	}
1452 
1453 	return 0;
1454 /* fallback to pio */
1455 dma_failure_no_start:
1456 	transfer->error |= SPI_TRANS_FAIL_NO_START;
1457 	return ret;
1458 }
1459 
1460 static int spi_imx_pio_transfer(struct spi_device *spi,
1461 				struct spi_transfer *transfer)
1462 {
1463 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1464 	unsigned long transfer_timeout;
1465 	unsigned long timeout;
1466 
1467 	spi_imx->tx_buf = transfer->tx_buf;
1468 	spi_imx->rx_buf = transfer->rx_buf;
1469 	spi_imx->count = transfer->len;
1470 	spi_imx->txfifo = 0;
1471 	spi_imx->remainder = 0;
1472 
1473 	reinit_completion(&spi_imx->xfer_done);
1474 
1475 	spi_imx_push(spi_imx);
1476 
1477 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1478 
1479 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1480 
1481 	timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
1482 					      transfer_timeout);
1483 	if (!timeout) {
1484 		dev_err(&spi->dev, "I/O Error in PIO\n");
1485 		spi_imx->devtype_data->reset(spi_imx);
1486 		return -ETIMEDOUT;
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 static int spi_imx_poll_transfer(struct spi_device *spi,
1493 				 struct spi_transfer *transfer)
1494 {
1495 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1496 	unsigned long timeout;
1497 
1498 	spi_imx->tx_buf = transfer->tx_buf;
1499 	spi_imx->rx_buf = transfer->rx_buf;
1500 	spi_imx->count = transfer->len;
1501 	spi_imx->txfifo = 0;
1502 	spi_imx->remainder = 0;
1503 
1504 	/* fill in the fifo before timeout calculations if we are
1505 	 * interrupted here, then the data is getting transferred by
1506 	 * the HW while we are interrupted
1507 	 */
1508 	spi_imx_push(spi_imx);
1509 
1510 	timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
1511 	while (spi_imx->txfifo) {
1512 		/* RX */
1513 		while (spi_imx->txfifo &&
1514 		       spi_imx->devtype_data->rx_available(spi_imx)) {
1515 			spi_imx->rx(spi_imx);
1516 			spi_imx->txfifo--;
1517 		}
1518 
1519 		/* TX */
1520 		if (spi_imx->count) {
1521 			spi_imx_push(spi_imx);
1522 			continue;
1523 		}
1524 
1525 		if (spi_imx->txfifo &&
1526 		    time_after(jiffies, timeout)) {
1527 
1528 			dev_err_ratelimited(&spi->dev,
1529 					    "timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
1530 					    jiffies - timeout);
1531 
1532 			/* fall back to interrupt mode */
1533 			return spi_imx_pio_transfer(spi, transfer);
1534 		}
1535 	}
1536 
1537 	return 0;
1538 }
1539 
1540 static int spi_imx_pio_transfer_slave(struct spi_device *spi,
1541 				      struct spi_transfer *transfer)
1542 {
1543 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1544 	int ret = 0;
1545 
1546 	if (is_imx53_ecspi(spi_imx) &&
1547 	    transfer->len > MX53_MAX_TRANSFER_BYTES) {
1548 		dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1549 			MX53_MAX_TRANSFER_BYTES);
1550 		return -EMSGSIZE;
1551 	}
1552 
1553 	spi_imx->tx_buf = transfer->tx_buf;
1554 	spi_imx->rx_buf = transfer->rx_buf;
1555 	spi_imx->count = transfer->len;
1556 	spi_imx->txfifo = 0;
1557 	spi_imx->remainder = 0;
1558 
1559 	reinit_completion(&spi_imx->xfer_done);
1560 	spi_imx->slave_aborted = false;
1561 
1562 	spi_imx_push(spi_imx);
1563 
1564 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1565 
1566 	if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1567 	    spi_imx->slave_aborted) {
1568 		dev_dbg(&spi->dev, "interrupted\n");
1569 		ret = -EINTR;
1570 	}
1571 
1572 	/* ecspi has a HW issue when works in Slave mode,
1573 	 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1574 	 * ECSPI_TXDATA keeps shift out the last word data,
1575 	 * so we have to disable ECSPI when in slave mode after the
1576 	 * transfer completes
1577 	 */
1578 	if (spi_imx->devtype_data->disable)
1579 		spi_imx->devtype_data->disable(spi_imx);
1580 
1581 	return ret;
1582 }
1583 
1584 static int spi_imx_transfer_one(struct spi_controller *controller,
1585 				struct spi_device *spi,
1586 				struct spi_transfer *transfer)
1587 {
1588 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1589 	unsigned long hz_per_byte, byte_limit;
1590 
1591 	spi_imx_setupxfer(spi, transfer);
1592 	transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1593 
1594 	/* flush rxfifo before transfer */
1595 	while (spi_imx->devtype_data->rx_available(spi_imx))
1596 		readl(spi_imx->base + MXC_CSPIRXDATA);
1597 
1598 	if (spi_imx->slave_mode)
1599 		return spi_imx_pio_transfer_slave(spi, transfer);
1600 
1601 	/*
1602 	 * If we decided in spi_imx_can_dma() that we want to do a DMA
1603 	 * transfer, the SPI transfer has already been mapped, so we
1604 	 * have to do the DMA transfer here.
1605 	 */
1606 	if (spi_imx->usedma)
1607 		return spi_imx_dma_transfer(spi_imx, transfer);
1608 	/*
1609 	 * Calculate the estimated time in us the transfer runs. Find
1610 	 * the number of Hz per byte per polling limit.
1611 	 */
1612 	hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0;
1613 	byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1;
1614 
1615 	/* run in polling mode for short transfers */
1616 	if (transfer->len < byte_limit)
1617 		return spi_imx_poll_transfer(spi, transfer);
1618 
1619 	return spi_imx_pio_transfer(spi, transfer);
1620 }
1621 
1622 static int spi_imx_setup(struct spi_device *spi)
1623 {
1624 	dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1625 		 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1626 
1627 	return 0;
1628 }
1629 
1630 static void spi_imx_cleanup(struct spi_device *spi)
1631 {
1632 }
1633 
1634 static int
1635 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
1636 {
1637 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1638 	int ret;
1639 
1640 	ret = pm_runtime_resume_and_get(spi_imx->dev);
1641 	if (ret < 0) {
1642 		dev_err(spi_imx->dev, "failed to enable clock\n");
1643 		return ret;
1644 	}
1645 
1646 	ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1647 	if (ret) {
1648 		pm_runtime_mark_last_busy(spi_imx->dev);
1649 		pm_runtime_put_autosuspend(spi_imx->dev);
1650 	}
1651 
1652 	return ret;
1653 }
1654 
1655 static int
1656 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
1657 {
1658 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1659 
1660 	pm_runtime_mark_last_busy(spi_imx->dev);
1661 	pm_runtime_put_autosuspend(spi_imx->dev);
1662 	return 0;
1663 }
1664 
1665 static int spi_imx_slave_abort(struct spi_controller *controller)
1666 {
1667 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1668 
1669 	spi_imx->slave_aborted = true;
1670 	complete(&spi_imx->xfer_done);
1671 
1672 	return 0;
1673 }
1674 
1675 static int spi_imx_probe(struct platform_device *pdev)
1676 {
1677 	struct device_node *np = pdev->dev.of_node;
1678 	struct spi_controller *controller;
1679 	struct spi_imx_data *spi_imx;
1680 	struct resource *res;
1681 	int ret, irq, spi_drctl;
1682 	const struct spi_imx_devtype_data *devtype_data =
1683 			of_device_get_match_data(&pdev->dev);
1684 	bool slave_mode;
1685 	u32 val;
1686 
1687 	slave_mode = devtype_data->has_slavemode &&
1688 			of_property_read_bool(np, "spi-slave");
1689 	if (slave_mode)
1690 		controller = spi_alloc_slave(&pdev->dev,
1691 					     sizeof(struct spi_imx_data));
1692 	else
1693 		controller = spi_alloc_master(&pdev->dev,
1694 					      sizeof(struct spi_imx_data));
1695 	if (!controller)
1696 		return -ENOMEM;
1697 
1698 	ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1699 	if ((ret < 0) || (spi_drctl >= 0x3)) {
1700 		/* '11' is reserved */
1701 		spi_drctl = 0;
1702 	}
1703 
1704 	platform_set_drvdata(pdev, controller);
1705 
1706 	controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1707 	controller->bus_num = np ? -1 : pdev->id;
1708 	controller->use_gpio_descriptors = true;
1709 
1710 	spi_imx = spi_controller_get_devdata(controller);
1711 	spi_imx->controller = controller;
1712 	spi_imx->dev = &pdev->dev;
1713 	spi_imx->slave_mode = slave_mode;
1714 
1715 	spi_imx->devtype_data = devtype_data;
1716 
1717 	/*
1718 	 * Get number of chip selects from device properties. This can be
1719 	 * coming from device tree or boardfiles, if it is not defined,
1720 	 * a default value of 3 chip selects will be used, as all the legacy
1721 	 * board files have <= 3 chip selects.
1722 	 */
1723 	if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1724 		controller->num_chipselect = val;
1725 	else
1726 		controller->num_chipselect = 3;
1727 
1728 	spi_imx->controller->transfer_one = spi_imx_transfer_one;
1729 	spi_imx->controller->setup = spi_imx_setup;
1730 	spi_imx->controller->cleanup = spi_imx_cleanup;
1731 	spi_imx->controller->prepare_message = spi_imx_prepare_message;
1732 	spi_imx->controller->unprepare_message = spi_imx_unprepare_message;
1733 	spi_imx->controller->slave_abort = spi_imx_slave_abort;
1734 	spi_imx->controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS;
1735 
1736 	if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1737 	    is_imx53_ecspi(spi_imx))
1738 		spi_imx->controller->mode_bits |= SPI_LOOP | SPI_READY;
1739 
1740 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
1741 		spi_imx->controller->mode_bits |= SPI_RX_CPHA_FLIP;
1742 
1743 	if (is_imx51_ecspi(spi_imx) &&
1744 	    device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1745 		/*
1746 		 * When using HW-CS implementing SPI_CS_WORD can be done by just
1747 		 * setting the burst length to the word size. This is
1748 		 * considerably faster than manually controlling the CS.
1749 		 */
1750 		spi_imx->controller->mode_bits |= SPI_CS_WORD;
1751 
1752 	spi_imx->spi_drctl = spi_drctl;
1753 
1754 	init_completion(&spi_imx->xfer_done);
1755 
1756 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1757 	spi_imx->base = devm_ioremap_resource(&pdev->dev, res);
1758 	if (IS_ERR(spi_imx->base)) {
1759 		ret = PTR_ERR(spi_imx->base);
1760 		goto out_controller_put;
1761 	}
1762 	spi_imx->base_phys = res->start;
1763 
1764 	irq = platform_get_irq(pdev, 0);
1765 	if (irq < 0) {
1766 		ret = irq;
1767 		goto out_controller_put;
1768 	}
1769 
1770 	ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1771 			       dev_name(&pdev->dev), spi_imx);
1772 	if (ret) {
1773 		dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1774 		goto out_controller_put;
1775 	}
1776 
1777 	spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1778 	if (IS_ERR(spi_imx->clk_ipg)) {
1779 		ret = PTR_ERR(spi_imx->clk_ipg);
1780 		goto out_controller_put;
1781 	}
1782 
1783 	spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1784 	if (IS_ERR(spi_imx->clk_per)) {
1785 		ret = PTR_ERR(spi_imx->clk_per);
1786 		goto out_controller_put;
1787 	}
1788 
1789 	ret = clk_prepare_enable(spi_imx->clk_per);
1790 	if (ret)
1791 		goto out_controller_put;
1792 
1793 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1794 	if (ret)
1795 		goto out_put_per;
1796 
1797 	pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1798 	pm_runtime_use_autosuspend(spi_imx->dev);
1799 	pm_runtime_get_noresume(spi_imx->dev);
1800 	pm_runtime_set_active(spi_imx->dev);
1801 	pm_runtime_enable(spi_imx->dev);
1802 
1803 	spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1804 	/*
1805 	 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1806 	 * if validated on other chips.
1807 	 */
1808 	if (spi_imx->devtype_data->has_dmamode) {
1809 		ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
1810 		if (ret == -EPROBE_DEFER)
1811 			goto out_runtime_pm_put;
1812 
1813 		if (ret < 0)
1814 			dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1815 				ret);
1816 	}
1817 
1818 	spi_imx->devtype_data->reset(spi_imx);
1819 
1820 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1821 
1822 	controller->dev.of_node = pdev->dev.of_node;
1823 	ret = spi_register_controller(controller);
1824 	if (ret) {
1825 		dev_err_probe(&pdev->dev, ret, "register controller failed\n");
1826 		goto out_register_controller;
1827 	}
1828 
1829 	pm_runtime_mark_last_busy(spi_imx->dev);
1830 	pm_runtime_put_autosuspend(spi_imx->dev);
1831 
1832 	return ret;
1833 
1834 out_register_controller:
1835 	if (spi_imx->devtype_data->has_dmamode)
1836 		spi_imx_sdma_exit(spi_imx);
1837 out_runtime_pm_put:
1838 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1839 	pm_runtime_set_suspended(&pdev->dev);
1840 	pm_runtime_disable(spi_imx->dev);
1841 
1842 	clk_disable_unprepare(spi_imx->clk_ipg);
1843 out_put_per:
1844 	clk_disable_unprepare(spi_imx->clk_per);
1845 out_controller_put:
1846 	spi_controller_put(controller);
1847 
1848 	return ret;
1849 }
1850 
1851 static int spi_imx_remove(struct platform_device *pdev)
1852 {
1853 	struct spi_controller *controller = platform_get_drvdata(pdev);
1854 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1855 	int ret;
1856 
1857 	spi_unregister_controller(controller);
1858 
1859 	ret = pm_runtime_resume_and_get(spi_imx->dev);
1860 	if (ret < 0) {
1861 		dev_err(spi_imx->dev, "failed to enable clock\n");
1862 		return ret;
1863 	}
1864 
1865 	writel(0, spi_imx->base + MXC_CSPICTRL);
1866 
1867 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1868 	pm_runtime_put_sync(spi_imx->dev);
1869 	pm_runtime_disable(spi_imx->dev);
1870 
1871 	spi_imx_sdma_exit(spi_imx);
1872 
1873 	return 0;
1874 }
1875 
1876 static int __maybe_unused spi_imx_runtime_resume(struct device *dev)
1877 {
1878 	struct spi_controller *controller = dev_get_drvdata(dev);
1879 	struct spi_imx_data *spi_imx;
1880 	int ret;
1881 
1882 	spi_imx = spi_controller_get_devdata(controller);
1883 
1884 	ret = clk_prepare_enable(spi_imx->clk_per);
1885 	if (ret)
1886 		return ret;
1887 
1888 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1889 	if (ret) {
1890 		clk_disable_unprepare(spi_imx->clk_per);
1891 		return ret;
1892 	}
1893 
1894 	return 0;
1895 }
1896 
1897 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev)
1898 {
1899 	struct spi_controller *controller = dev_get_drvdata(dev);
1900 	struct spi_imx_data *spi_imx;
1901 
1902 	spi_imx = spi_controller_get_devdata(controller);
1903 
1904 	clk_disable_unprepare(spi_imx->clk_per);
1905 	clk_disable_unprepare(spi_imx->clk_ipg);
1906 
1907 	return 0;
1908 }
1909 
1910 static int __maybe_unused spi_imx_suspend(struct device *dev)
1911 {
1912 	pinctrl_pm_select_sleep_state(dev);
1913 	return 0;
1914 }
1915 
1916 static int __maybe_unused spi_imx_resume(struct device *dev)
1917 {
1918 	pinctrl_pm_select_default_state(dev);
1919 	return 0;
1920 }
1921 
1922 static const struct dev_pm_ops imx_spi_pm = {
1923 	SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend,
1924 				spi_imx_runtime_resume, NULL)
1925 	SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
1926 };
1927 
1928 static struct platform_driver spi_imx_driver = {
1929 	.driver = {
1930 		   .name = DRIVER_NAME,
1931 		   .of_match_table = spi_imx_dt_ids,
1932 		   .pm = &imx_spi_pm,
1933 	},
1934 	.probe = spi_imx_probe,
1935 	.remove = spi_imx_remove,
1936 };
1937 module_platform_driver(spi_imx_driver);
1938 
1939 MODULE_DESCRIPTION("i.MX SPI Controller driver");
1940 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
1941 MODULE_LICENSE("GPL");
1942 MODULE_ALIAS("platform:" DRIVER_NAME);
1943