1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. 3 // Copyright (C) 2008 Juergen Beisert 4 5 #include <linux/clk.h> 6 #include <linux/completion.h> 7 #include <linux/delay.h> 8 #include <linux/dmaengine.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/err.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/irq.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/pinctrl/consumer.h> 17 #include <linux/platform_device.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/slab.h> 20 #include <linux/spi/spi.h> 21 #include <linux/types.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/property.h> 25 26 #include <linux/dma/imx-dma.h> 27 28 #define DRIVER_NAME "spi_imx" 29 30 static bool use_dma = true; 31 module_param(use_dma, bool, 0644); 32 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)"); 33 34 /* define polling limits */ 35 static unsigned int polling_limit_us = 30; 36 module_param(polling_limit_us, uint, 0664); 37 MODULE_PARM_DESC(polling_limit_us, 38 "time in us to run a transfer in polling mode\n"); 39 40 #define MXC_RPM_TIMEOUT 2000 /* 2000ms */ 41 42 #define MXC_CSPIRXDATA 0x00 43 #define MXC_CSPITXDATA 0x04 44 #define MXC_CSPICTRL 0x08 45 #define MXC_CSPIINT 0x0c 46 #define MXC_RESET 0x1c 47 48 /* generic defines to abstract from the different register layouts */ 49 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */ 50 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */ 51 #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */ 52 53 /* The maximum bytes that a sdma BD can transfer. */ 54 #define MAX_SDMA_BD_BYTES (1 << 15) 55 #define MX51_ECSPI_CTRL_MAX_BURST 512 56 /* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/ 57 #define MX53_MAX_TRANSFER_BYTES 512 58 59 enum spi_imx_devtype { 60 IMX1_CSPI, 61 IMX21_CSPI, 62 IMX27_CSPI, 63 IMX31_CSPI, 64 IMX35_CSPI, /* CSPI on all i.mx except above */ 65 IMX51_ECSPI, /* ECSPI on i.mx51 */ 66 IMX53_ECSPI, /* ECSPI on i.mx53 and later */ 67 }; 68 69 struct spi_imx_data; 70 71 struct spi_imx_devtype_data { 72 void (*intctrl)(struct spi_imx_data *spi_imx, int enable); 73 int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg); 74 int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi); 75 void (*trigger)(struct spi_imx_data *spi_imx); 76 int (*rx_available)(struct spi_imx_data *spi_imx); 77 void (*reset)(struct spi_imx_data *spi_imx); 78 void (*setup_wml)(struct spi_imx_data *spi_imx); 79 void (*disable)(struct spi_imx_data *spi_imx); 80 bool has_dmamode; 81 bool has_slavemode; 82 unsigned int fifo_size; 83 bool dynamic_burst; 84 /* 85 * ERR009165 fixed or not: 86 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf 87 */ 88 bool tx_glitch_fixed; 89 enum spi_imx_devtype devtype; 90 }; 91 92 struct spi_imx_data { 93 struct spi_controller *controller; 94 struct device *dev; 95 96 struct completion xfer_done; 97 void __iomem *base; 98 unsigned long base_phys; 99 100 struct clk *clk_per; 101 struct clk *clk_ipg; 102 unsigned long spi_clk; 103 unsigned int spi_bus_clk; 104 105 unsigned int bits_per_word; 106 unsigned int spi_drctl; 107 108 unsigned int count, remainder; 109 void (*tx)(struct spi_imx_data *spi_imx); 110 void (*rx)(struct spi_imx_data *spi_imx); 111 void *rx_buf; 112 const void *tx_buf; 113 unsigned int txfifo; /* number of words pushed in tx FIFO */ 114 unsigned int dynamic_burst; 115 bool rx_only; 116 117 /* Slave mode */ 118 bool slave_mode; 119 bool slave_aborted; 120 unsigned int slave_burst; 121 122 /* DMA */ 123 bool usedma; 124 u32 wml; 125 struct completion dma_rx_completion; 126 struct completion dma_tx_completion; 127 128 const struct spi_imx_devtype_data *devtype_data; 129 }; 130 131 static inline int is_imx27_cspi(struct spi_imx_data *d) 132 { 133 return d->devtype_data->devtype == IMX27_CSPI; 134 } 135 136 static inline int is_imx35_cspi(struct spi_imx_data *d) 137 { 138 return d->devtype_data->devtype == IMX35_CSPI; 139 } 140 141 static inline int is_imx51_ecspi(struct spi_imx_data *d) 142 { 143 return d->devtype_data->devtype == IMX51_ECSPI; 144 } 145 146 static inline int is_imx53_ecspi(struct spi_imx_data *d) 147 { 148 return d->devtype_data->devtype == IMX53_ECSPI; 149 } 150 151 #define MXC_SPI_BUF_RX(type) \ 152 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \ 153 { \ 154 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \ 155 \ 156 if (spi_imx->rx_buf) { \ 157 *(type *)spi_imx->rx_buf = val; \ 158 spi_imx->rx_buf += sizeof(type); \ 159 } \ 160 \ 161 spi_imx->remainder -= sizeof(type); \ 162 } 163 164 #define MXC_SPI_BUF_TX(type) \ 165 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \ 166 { \ 167 type val = 0; \ 168 \ 169 if (spi_imx->tx_buf) { \ 170 val = *(type *)spi_imx->tx_buf; \ 171 spi_imx->tx_buf += sizeof(type); \ 172 } \ 173 \ 174 spi_imx->count -= sizeof(type); \ 175 \ 176 writel(val, spi_imx->base + MXC_CSPITXDATA); \ 177 } 178 179 MXC_SPI_BUF_RX(u8) 180 MXC_SPI_BUF_TX(u8) 181 MXC_SPI_BUF_RX(u16) 182 MXC_SPI_BUF_TX(u16) 183 MXC_SPI_BUF_RX(u32) 184 MXC_SPI_BUF_TX(u32) 185 186 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set 187 * (which is currently not the case in this driver) 188 */ 189 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 190 256, 384, 512, 768, 1024}; 191 192 /* MX21, MX27 */ 193 static unsigned int spi_imx_clkdiv_1(unsigned int fin, 194 unsigned int fspi, unsigned int max, unsigned int *fres) 195 { 196 int i; 197 198 for (i = 2; i < max; i++) 199 if (fspi * mxc_clkdivs[i] >= fin) 200 break; 201 202 *fres = fin / mxc_clkdivs[i]; 203 return i; 204 } 205 206 /* MX1, MX31, MX35, MX51 CSPI */ 207 static unsigned int spi_imx_clkdiv_2(unsigned int fin, 208 unsigned int fspi, unsigned int *fres) 209 { 210 int i, div = 4; 211 212 for (i = 0; i < 7; i++) { 213 if (fspi * div >= fin) 214 goto out; 215 div <<= 1; 216 } 217 218 out: 219 *fres = fin / div; 220 return i; 221 } 222 223 static int spi_imx_bytes_per_word(const int bits_per_word) 224 { 225 if (bits_per_word <= 8) 226 return 1; 227 else if (bits_per_word <= 16) 228 return 2; 229 else 230 return 4; 231 } 232 233 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi, 234 struct spi_transfer *transfer) 235 { 236 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 237 238 if (!use_dma || controller->fallback) 239 return false; 240 241 if (!controller->dma_rx) 242 return false; 243 244 if (spi_imx->slave_mode) 245 return false; 246 247 if (transfer->len < spi_imx->devtype_data->fifo_size) 248 return false; 249 250 spi_imx->dynamic_burst = 0; 251 252 return true; 253 } 254 255 /* 256 * Note the number of natively supported chip selects for MX51 is 4. Some 257 * devices may have less actual SS pins but the register map supports 4. When 258 * using gpio chip selects the cs values passed into the macros below can go 259 * outside the range 0 - 3. We therefore need to limit the cs value to avoid 260 * corrupting bits outside the allocated locations. 261 * 262 * The simplest way to do this is to just mask the cs bits to 2 bits. This 263 * still allows all 4 native chip selects to work as well as gpio chip selects 264 * (which can use any of the 4 chip select configurations). 265 */ 266 267 #define MX51_ECSPI_CTRL 0x08 268 #define MX51_ECSPI_CTRL_ENABLE (1 << 0) 269 #define MX51_ECSPI_CTRL_XCH (1 << 2) 270 #define MX51_ECSPI_CTRL_SMC (1 << 3) 271 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4) 272 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16) 273 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8 274 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12 275 #define MX51_ECSPI_CTRL_CS(cs) ((cs & 3) << 18) 276 #define MX51_ECSPI_CTRL_BL_OFFSET 20 277 #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20) 278 279 #define MX51_ECSPI_CONFIG 0x0c 280 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs & 3) + 0)) 281 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs & 3) + 4)) 282 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs & 3) + 8)) 283 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs & 3) + 12)) 284 #define MX51_ECSPI_CONFIG_DATACTL(cs) (1 << ((cs & 3) + 16)) 285 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs & 3) + 20)) 286 287 #define MX51_ECSPI_INT 0x10 288 #define MX51_ECSPI_INT_TEEN (1 << 0) 289 #define MX51_ECSPI_INT_RREN (1 << 3) 290 #define MX51_ECSPI_INT_RDREN (1 << 4) 291 292 #define MX51_ECSPI_DMA 0x14 293 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f) 294 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16) 295 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24) 296 297 #define MX51_ECSPI_DMA_TEDEN (1 << 7) 298 #define MX51_ECSPI_DMA_RXDEN (1 << 23) 299 #define MX51_ECSPI_DMA_RXTDEN (1 << 31) 300 301 #define MX51_ECSPI_STAT 0x18 302 #define MX51_ECSPI_STAT_RR (1 << 3) 303 304 #define MX51_ECSPI_TESTREG 0x20 305 #define MX51_ECSPI_TESTREG_LBC BIT(31) 306 307 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx) 308 { 309 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); 310 311 if (spi_imx->rx_buf) { 312 #ifdef __LITTLE_ENDIAN 313 unsigned int bytes_per_word; 314 315 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 316 if (bytes_per_word == 1) 317 swab32s(&val); 318 else if (bytes_per_word == 2) 319 swahw32s(&val); 320 #endif 321 *(u32 *)spi_imx->rx_buf = val; 322 spi_imx->rx_buf += sizeof(u32); 323 } 324 325 spi_imx->remainder -= sizeof(u32); 326 } 327 328 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx) 329 { 330 int unaligned; 331 u32 val; 332 333 unaligned = spi_imx->remainder % 4; 334 335 if (!unaligned) { 336 spi_imx_buf_rx_swap_u32(spi_imx); 337 return; 338 } 339 340 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 341 spi_imx_buf_rx_u16(spi_imx); 342 return; 343 } 344 345 val = readl(spi_imx->base + MXC_CSPIRXDATA); 346 347 while (unaligned--) { 348 if (spi_imx->rx_buf) { 349 *(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff; 350 spi_imx->rx_buf++; 351 } 352 spi_imx->remainder--; 353 } 354 } 355 356 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx) 357 { 358 u32 val = 0; 359 #ifdef __LITTLE_ENDIAN 360 unsigned int bytes_per_word; 361 #endif 362 363 if (spi_imx->tx_buf) { 364 val = *(u32 *)spi_imx->tx_buf; 365 spi_imx->tx_buf += sizeof(u32); 366 } 367 368 spi_imx->count -= sizeof(u32); 369 #ifdef __LITTLE_ENDIAN 370 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 371 372 if (bytes_per_word == 1) 373 swab32s(&val); 374 else if (bytes_per_word == 2) 375 swahw32s(&val); 376 #endif 377 writel(val, spi_imx->base + MXC_CSPITXDATA); 378 } 379 380 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx) 381 { 382 int unaligned; 383 u32 val = 0; 384 385 unaligned = spi_imx->count % 4; 386 387 if (!unaligned) { 388 spi_imx_buf_tx_swap_u32(spi_imx); 389 return; 390 } 391 392 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 393 spi_imx_buf_tx_u16(spi_imx); 394 return; 395 } 396 397 while (unaligned--) { 398 if (spi_imx->tx_buf) { 399 val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned); 400 spi_imx->tx_buf++; 401 } 402 spi_imx->count--; 403 } 404 405 writel(val, spi_imx->base + MXC_CSPITXDATA); 406 } 407 408 static void mx53_ecspi_rx_slave(struct spi_imx_data *spi_imx) 409 { 410 u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA)); 411 412 if (spi_imx->rx_buf) { 413 int n_bytes = spi_imx->slave_burst % sizeof(val); 414 415 if (!n_bytes) 416 n_bytes = sizeof(val); 417 418 memcpy(spi_imx->rx_buf, 419 ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes); 420 421 spi_imx->rx_buf += n_bytes; 422 spi_imx->slave_burst -= n_bytes; 423 } 424 425 spi_imx->remainder -= sizeof(u32); 426 } 427 428 static void mx53_ecspi_tx_slave(struct spi_imx_data *spi_imx) 429 { 430 u32 val = 0; 431 int n_bytes = spi_imx->count % sizeof(val); 432 433 if (!n_bytes) 434 n_bytes = sizeof(val); 435 436 if (spi_imx->tx_buf) { 437 memcpy(((u8 *)&val) + sizeof(val) - n_bytes, 438 spi_imx->tx_buf, n_bytes); 439 val = cpu_to_be32(val); 440 spi_imx->tx_buf += n_bytes; 441 } 442 443 spi_imx->count -= n_bytes; 444 445 writel(val, spi_imx->base + MXC_CSPITXDATA); 446 } 447 448 /* MX51 eCSPI */ 449 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx, 450 unsigned int fspi, unsigned int *fres) 451 { 452 /* 453 * there are two 4-bit dividers, the pre-divider divides by 454 * $pre, the post-divider by 2^$post 455 */ 456 unsigned int pre, post; 457 unsigned int fin = spi_imx->spi_clk; 458 459 fspi = min(fspi, fin); 460 461 post = fls(fin) - fls(fspi); 462 if (fin > fspi << post) 463 post++; 464 465 /* now we have: (fin <= fspi << post) with post being minimal */ 466 467 post = max(4U, post) - 4; 468 if (unlikely(post > 0xf)) { 469 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n", 470 fspi, fin); 471 return 0xff; 472 } 473 474 pre = DIV_ROUND_UP(fin, fspi << post) - 1; 475 476 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n", 477 __func__, fin, fspi, post, pre); 478 479 /* Resulting frequency for the SCLK line. */ 480 *fres = (fin / (pre + 1)) >> post; 481 482 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) | 483 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET); 484 } 485 486 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable) 487 { 488 unsigned int val = 0; 489 490 if (enable & MXC_INT_TE) 491 val |= MX51_ECSPI_INT_TEEN; 492 493 if (enable & MXC_INT_RR) 494 val |= MX51_ECSPI_INT_RREN; 495 496 if (enable & MXC_INT_RDR) 497 val |= MX51_ECSPI_INT_RDREN; 498 499 writel(val, spi_imx->base + MX51_ECSPI_INT); 500 } 501 502 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx) 503 { 504 u32 reg; 505 506 reg = readl(spi_imx->base + MX51_ECSPI_CTRL); 507 reg |= MX51_ECSPI_CTRL_XCH; 508 writel(reg, spi_imx->base + MX51_ECSPI_CTRL); 509 } 510 511 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx) 512 { 513 u32 ctrl; 514 515 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 516 ctrl &= ~MX51_ECSPI_CTRL_ENABLE; 517 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 518 } 519 520 static int mx51_ecspi_channel(const struct spi_device *spi) 521 { 522 if (!spi_get_csgpiod(spi, 0)) 523 return spi_get_chipselect(spi, 0); 524 return spi->controller->unused_native_cs; 525 } 526 527 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx, 528 struct spi_message *msg) 529 { 530 struct spi_device *spi = msg->spi; 531 struct spi_transfer *xfer; 532 u32 ctrl = MX51_ECSPI_CTRL_ENABLE; 533 u32 min_speed_hz = ~0U; 534 u32 testreg, delay; 535 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 536 u32 current_cfg = cfg; 537 int channel = mx51_ecspi_channel(spi); 538 539 /* set Master or Slave mode */ 540 if (spi_imx->slave_mode) 541 ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK; 542 else 543 ctrl |= MX51_ECSPI_CTRL_MODE_MASK; 544 545 /* 546 * Enable SPI_RDY handling (falling edge/level triggered). 547 */ 548 if (spi->mode & SPI_READY) 549 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl); 550 551 /* set chip select to use */ 552 ctrl |= MX51_ECSPI_CTRL_CS(channel); 553 554 /* 555 * The ctrl register must be written first, with the EN bit set other 556 * registers must not be written to. 557 */ 558 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 559 560 testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG); 561 if (spi->mode & SPI_LOOP) 562 testreg |= MX51_ECSPI_TESTREG_LBC; 563 else 564 testreg &= ~MX51_ECSPI_TESTREG_LBC; 565 writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG); 566 567 /* 568 * eCSPI burst completion by Chip Select signal in Slave mode 569 * is not functional for imx53 Soc, config SPI burst completed when 570 * BURST_LENGTH + 1 bits are received 571 */ 572 if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx)) 573 cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel); 574 else 575 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel); 576 577 if (spi->mode & SPI_CPOL) { 578 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel); 579 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel); 580 } else { 581 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel); 582 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel); 583 } 584 585 if (spi->mode & SPI_MOSI_IDLE_LOW) 586 cfg |= MX51_ECSPI_CONFIG_DATACTL(channel); 587 else 588 cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel); 589 590 if (spi->mode & SPI_CS_HIGH) 591 cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel); 592 else 593 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel); 594 595 if (cfg == current_cfg) 596 return 0; 597 598 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 599 600 /* 601 * Wait until the changes in the configuration register CONFIGREG 602 * propagate into the hardware. It takes exactly one tick of the 603 * SCLK clock, but we will wait two SCLK clock just to be sure. The 604 * effect of the delay it takes for the hardware to apply changes 605 * is noticable if the SCLK clock run very slow. In such a case, if 606 * the polarity of SCLK should be inverted, the GPIO ChipSelect might 607 * be asserted before the SCLK polarity changes, which would disrupt 608 * the SPI communication as the device on the other end would consider 609 * the change of SCLK polarity as a clock tick already. 610 * 611 * Because spi_imx->spi_bus_clk is only set in prepare_message 612 * callback, iterate over all the transfers in spi_message, find the 613 * one with lowest bus frequency, and use that bus frequency for the 614 * delay calculation. In case all transfers have speed_hz == 0, then 615 * min_speed_hz is ~0 and the resulting delay is zero. 616 */ 617 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 618 if (!xfer->speed_hz) 619 continue; 620 min_speed_hz = min(xfer->speed_hz, min_speed_hz); 621 } 622 623 delay = (2 * 1000000) / min_speed_hz; 624 if (likely(delay < 10)) /* SCLK is faster than 200 kHz */ 625 udelay(delay); 626 else /* SCLK is _very_ slow */ 627 usleep_range(delay, delay + 10); 628 629 return 0; 630 } 631 632 static void mx51_configure_cpha(struct spi_imx_data *spi_imx, 633 struct spi_device *spi) 634 { 635 bool cpha = (spi->mode & SPI_CPHA); 636 bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only; 637 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 638 int channel = mx51_ecspi_channel(spi); 639 640 /* Flip cpha logical value iff flip_cpha */ 641 cpha ^= flip_cpha; 642 643 if (cpha) 644 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel); 645 else 646 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel); 647 648 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 649 } 650 651 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx, 652 struct spi_device *spi) 653 { 654 u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 655 u32 clk; 656 657 /* Clear BL field and set the right value */ 658 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 659 if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx)) 660 ctrl |= (spi_imx->slave_burst * 8 - 1) 661 << MX51_ECSPI_CTRL_BL_OFFSET; 662 else 663 ctrl |= (spi_imx->bits_per_word - 1) 664 << MX51_ECSPI_CTRL_BL_OFFSET; 665 666 /* set clock speed */ 667 ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET | 668 0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET); 669 ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk); 670 spi_imx->spi_bus_clk = clk; 671 672 mx51_configure_cpha(spi_imx, spi); 673 674 /* 675 * ERR009165: work in XHC mode instead of SMC as PIO on the chips 676 * before i.mx6ul. 677 */ 678 if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed) 679 ctrl |= MX51_ECSPI_CTRL_SMC; 680 else 681 ctrl &= ~MX51_ECSPI_CTRL_SMC; 682 683 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 684 685 return 0; 686 } 687 688 static void mx51_setup_wml(struct spi_imx_data *spi_imx) 689 { 690 u32 tx_wml = 0; 691 692 if (spi_imx->devtype_data->tx_glitch_fixed) 693 tx_wml = spi_imx->wml; 694 /* 695 * Configure the DMA register: setup the watermark 696 * and enable DMA request. 697 */ 698 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) | 699 MX51_ECSPI_DMA_TX_WML(tx_wml) | 700 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) | 701 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN | 702 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA); 703 } 704 705 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx) 706 { 707 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR; 708 } 709 710 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx) 711 { 712 /* drain receive buffer */ 713 while (mx51_ecspi_rx_available(spi_imx)) 714 readl(spi_imx->base + MXC_CSPIRXDATA); 715 } 716 717 #define MX31_INTREG_TEEN (1 << 0) 718 #define MX31_INTREG_RREN (1 << 3) 719 720 #define MX31_CSPICTRL_ENABLE (1 << 0) 721 #define MX31_CSPICTRL_MASTER (1 << 1) 722 #define MX31_CSPICTRL_XCH (1 << 2) 723 #define MX31_CSPICTRL_SMC (1 << 3) 724 #define MX31_CSPICTRL_POL (1 << 4) 725 #define MX31_CSPICTRL_PHA (1 << 5) 726 #define MX31_CSPICTRL_SSCTL (1 << 6) 727 #define MX31_CSPICTRL_SSPOL (1 << 7) 728 #define MX31_CSPICTRL_BC_SHIFT 8 729 #define MX35_CSPICTRL_BL_SHIFT 20 730 #define MX31_CSPICTRL_CS_SHIFT 24 731 #define MX35_CSPICTRL_CS_SHIFT 12 732 #define MX31_CSPICTRL_DR_SHIFT 16 733 734 #define MX31_CSPI_DMAREG 0x10 735 #define MX31_DMAREG_RH_DEN (1<<4) 736 #define MX31_DMAREG_TH_DEN (1<<1) 737 738 #define MX31_CSPISTATUS 0x14 739 #define MX31_STATUS_RR (1 << 3) 740 741 #define MX31_CSPI_TESTREG 0x1C 742 #define MX31_TEST_LBC (1 << 14) 743 744 /* These functions also work for the i.MX35, but be aware that 745 * the i.MX35 has a slightly different register layout for bits 746 * we do not use here. 747 */ 748 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable) 749 { 750 unsigned int val = 0; 751 752 if (enable & MXC_INT_TE) 753 val |= MX31_INTREG_TEEN; 754 if (enable & MXC_INT_RR) 755 val |= MX31_INTREG_RREN; 756 757 writel(val, spi_imx->base + MXC_CSPIINT); 758 } 759 760 static void mx31_trigger(struct spi_imx_data *spi_imx) 761 { 762 unsigned int reg; 763 764 reg = readl(spi_imx->base + MXC_CSPICTRL); 765 reg |= MX31_CSPICTRL_XCH; 766 writel(reg, spi_imx->base + MXC_CSPICTRL); 767 } 768 769 static int mx31_prepare_message(struct spi_imx_data *spi_imx, 770 struct spi_message *msg) 771 { 772 return 0; 773 } 774 775 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx, 776 struct spi_device *spi) 777 { 778 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER; 779 unsigned int clk; 780 781 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) << 782 MX31_CSPICTRL_DR_SHIFT; 783 spi_imx->spi_bus_clk = clk; 784 785 if (is_imx35_cspi(spi_imx)) { 786 reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT; 787 reg |= MX31_CSPICTRL_SSCTL; 788 } else { 789 reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT; 790 } 791 792 if (spi->mode & SPI_CPHA) 793 reg |= MX31_CSPICTRL_PHA; 794 if (spi->mode & SPI_CPOL) 795 reg |= MX31_CSPICTRL_POL; 796 if (spi->mode & SPI_CS_HIGH) 797 reg |= MX31_CSPICTRL_SSPOL; 798 if (!spi_get_csgpiod(spi, 0)) 799 reg |= (spi_get_chipselect(spi, 0)) << 800 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT : 801 MX31_CSPICTRL_CS_SHIFT); 802 803 if (spi_imx->usedma) 804 reg |= MX31_CSPICTRL_SMC; 805 806 writel(reg, spi_imx->base + MXC_CSPICTRL); 807 808 reg = readl(spi_imx->base + MX31_CSPI_TESTREG); 809 if (spi->mode & SPI_LOOP) 810 reg |= MX31_TEST_LBC; 811 else 812 reg &= ~MX31_TEST_LBC; 813 writel(reg, spi_imx->base + MX31_CSPI_TESTREG); 814 815 if (spi_imx->usedma) { 816 /* 817 * configure DMA requests when RXFIFO is half full and 818 * when TXFIFO is half empty 819 */ 820 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN, 821 spi_imx->base + MX31_CSPI_DMAREG); 822 } 823 824 return 0; 825 } 826 827 static int mx31_rx_available(struct spi_imx_data *spi_imx) 828 { 829 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR; 830 } 831 832 static void mx31_reset(struct spi_imx_data *spi_imx) 833 { 834 /* drain receive buffer */ 835 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR) 836 readl(spi_imx->base + MXC_CSPIRXDATA); 837 } 838 839 #define MX21_INTREG_RR (1 << 4) 840 #define MX21_INTREG_TEEN (1 << 9) 841 #define MX21_INTREG_RREN (1 << 13) 842 843 #define MX21_CSPICTRL_POL (1 << 5) 844 #define MX21_CSPICTRL_PHA (1 << 6) 845 #define MX21_CSPICTRL_SSPOL (1 << 8) 846 #define MX21_CSPICTRL_XCH (1 << 9) 847 #define MX21_CSPICTRL_ENABLE (1 << 10) 848 #define MX21_CSPICTRL_MASTER (1 << 11) 849 #define MX21_CSPICTRL_DR_SHIFT 14 850 #define MX21_CSPICTRL_CS_SHIFT 19 851 852 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable) 853 { 854 unsigned int val = 0; 855 856 if (enable & MXC_INT_TE) 857 val |= MX21_INTREG_TEEN; 858 if (enable & MXC_INT_RR) 859 val |= MX21_INTREG_RREN; 860 861 writel(val, spi_imx->base + MXC_CSPIINT); 862 } 863 864 static void mx21_trigger(struct spi_imx_data *spi_imx) 865 { 866 unsigned int reg; 867 868 reg = readl(spi_imx->base + MXC_CSPICTRL); 869 reg |= MX21_CSPICTRL_XCH; 870 writel(reg, spi_imx->base + MXC_CSPICTRL); 871 } 872 873 static int mx21_prepare_message(struct spi_imx_data *spi_imx, 874 struct spi_message *msg) 875 { 876 return 0; 877 } 878 879 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx, 880 struct spi_device *spi) 881 { 882 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER; 883 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18; 884 unsigned int clk; 885 886 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk) 887 << MX21_CSPICTRL_DR_SHIFT; 888 spi_imx->spi_bus_clk = clk; 889 890 reg |= spi_imx->bits_per_word - 1; 891 892 if (spi->mode & SPI_CPHA) 893 reg |= MX21_CSPICTRL_PHA; 894 if (spi->mode & SPI_CPOL) 895 reg |= MX21_CSPICTRL_POL; 896 if (spi->mode & SPI_CS_HIGH) 897 reg |= MX21_CSPICTRL_SSPOL; 898 if (!spi_get_csgpiod(spi, 0)) 899 reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT; 900 901 writel(reg, spi_imx->base + MXC_CSPICTRL); 902 903 return 0; 904 } 905 906 static int mx21_rx_available(struct spi_imx_data *spi_imx) 907 { 908 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR; 909 } 910 911 static void mx21_reset(struct spi_imx_data *spi_imx) 912 { 913 writel(1, spi_imx->base + MXC_RESET); 914 } 915 916 #define MX1_INTREG_RR (1 << 3) 917 #define MX1_INTREG_TEEN (1 << 8) 918 #define MX1_INTREG_RREN (1 << 11) 919 920 #define MX1_CSPICTRL_POL (1 << 4) 921 #define MX1_CSPICTRL_PHA (1 << 5) 922 #define MX1_CSPICTRL_XCH (1 << 8) 923 #define MX1_CSPICTRL_ENABLE (1 << 9) 924 #define MX1_CSPICTRL_MASTER (1 << 10) 925 #define MX1_CSPICTRL_DR_SHIFT 13 926 927 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable) 928 { 929 unsigned int val = 0; 930 931 if (enable & MXC_INT_TE) 932 val |= MX1_INTREG_TEEN; 933 if (enable & MXC_INT_RR) 934 val |= MX1_INTREG_RREN; 935 936 writel(val, spi_imx->base + MXC_CSPIINT); 937 } 938 939 static void mx1_trigger(struct spi_imx_data *spi_imx) 940 { 941 unsigned int reg; 942 943 reg = readl(spi_imx->base + MXC_CSPICTRL); 944 reg |= MX1_CSPICTRL_XCH; 945 writel(reg, spi_imx->base + MXC_CSPICTRL); 946 } 947 948 static int mx1_prepare_message(struct spi_imx_data *spi_imx, 949 struct spi_message *msg) 950 { 951 return 0; 952 } 953 954 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx, 955 struct spi_device *spi) 956 { 957 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER; 958 unsigned int clk; 959 960 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) << 961 MX1_CSPICTRL_DR_SHIFT; 962 spi_imx->spi_bus_clk = clk; 963 964 reg |= spi_imx->bits_per_word - 1; 965 966 if (spi->mode & SPI_CPHA) 967 reg |= MX1_CSPICTRL_PHA; 968 if (spi->mode & SPI_CPOL) 969 reg |= MX1_CSPICTRL_POL; 970 971 writel(reg, spi_imx->base + MXC_CSPICTRL); 972 973 return 0; 974 } 975 976 static int mx1_rx_available(struct spi_imx_data *spi_imx) 977 { 978 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR; 979 } 980 981 static void mx1_reset(struct spi_imx_data *spi_imx) 982 { 983 writel(1, spi_imx->base + MXC_RESET); 984 } 985 986 static struct spi_imx_devtype_data imx1_cspi_devtype_data = { 987 .intctrl = mx1_intctrl, 988 .prepare_message = mx1_prepare_message, 989 .prepare_transfer = mx1_prepare_transfer, 990 .trigger = mx1_trigger, 991 .rx_available = mx1_rx_available, 992 .reset = mx1_reset, 993 .fifo_size = 8, 994 .has_dmamode = false, 995 .dynamic_burst = false, 996 .has_slavemode = false, 997 .devtype = IMX1_CSPI, 998 }; 999 1000 static struct spi_imx_devtype_data imx21_cspi_devtype_data = { 1001 .intctrl = mx21_intctrl, 1002 .prepare_message = mx21_prepare_message, 1003 .prepare_transfer = mx21_prepare_transfer, 1004 .trigger = mx21_trigger, 1005 .rx_available = mx21_rx_available, 1006 .reset = mx21_reset, 1007 .fifo_size = 8, 1008 .has_dmamode = false, 1009 .dynamic_burst = false, 1010 .has_slavemode = false, 1011 .devtype = IMX21_CSPI, 1012 }; 1013 1014 static struct spi_imx_devtype_data imx27_cspi_devtype_data = { 1015 /* i.mx27 cspi shares the functions with i.mx21 one */ 1016 .intctrl = mx21_intctrl, 1017 .prepare_message = mx21_prepare_message, 1018 .prepare_transfer = mx21_prepare_transfer, 1019 .trigger = mx21_trigger, 1020 .rx_available = mx21_rx_available, 1021 .reset = mx21_reset, 1022 .fifo_size = 8, 1023 .has_dmamode = false, 1024 .dynamic_burst = false, 1025 .has_slavemode = false, 1026 .devtype = IMX27_CSPI, 1027 }; 1028 1029 static struct spi_imx_devtype_data imx31_cspi_devtype_data = { 1030 .intctrl = mx31_intctrl, 1031 .prepare_message = mx31_prepare_message, 1032 .prepare_transfer = mx31_prepare_transfer, 1033 .trigger = mx31_trigger, 1034 .rx_available = mx31_rx_available, 1035 .reset = mx31_reset, 1036 .fifo_size = 8, 1037 .has_dmamode = false, 1038 .dynamic_burst = false, 1039 .has_slavemode = false, 1040 .devtype = IMX31_CSPI, 1041 }; 1042 1043 static struct spi_imx_devtype_data imx35_cspi_devtype_data = { 1044 /* i.mx35 and later cspi shares the functions with i.mx31 one */ 1045 .intctrl = mx31_intctrl, 1046 .prepare_message = mx31_prepare_message, 1047 .prepare_transfer = mx31_prepare_transfer, 1048 .trigger = mx31_trigger, 1049 .rx_available = mx31_rx_available, 1050 .reset = mx31_reset, 1051 .fifo_size = 8, 1052 .has_dmamode = true, 1053 .dynamic_burst = false, 1054 .has_slavemode = false, 1055 .devtype = IMX35_CSPI, 1056 }; 1057 1058 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = { 1059 .intctrl = mx51_ecspi_intctrl, 1060 .prepare_message = mx51_ecspi_prepare_message, 1061 .prepare_transfer = mx51_ecspi_prepare_transfer, 1062 .trigger = mx51_ecspi_trigger, 1063 .rx_available = mx51_ecspi_rx_available, 1064 .reset = mx51_ecspi_reset, 1065 .setup_wml = mx51_setup_wml, 1066 .fifo_size = 64, 1067 .has_dmamode = true, 1068 .dynamic_burst = true, 1069 .has_slavemode = true, 1070 .disable = mx51_ecspi_disable, 1071 .devtype = IMX51_ECSPI, 1072 }; 1073 1074 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = { 1075 .intctrl = mx51_ecspi_intctrl, 1076 .prepare_message = mx51_ecspi_prepare_message, 1077 .prepare_transfer = mx51_ecspi_prepare_transfer, 1078 .trigger = mx51_ecspi_trigger, 1079 .rx_available = mx51_ecspi_rx_available, 1080 .reset = mx51_ecspi_reset, 1081 .fifo_size = 64, 1082 .has_dmamode = true, 1083 .has_slavemode = true, 1084 .disable = mx51_ecspi_disable, 1085 .devtype = IMX53_ECSPI, 1086 }; 1087 1088 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = { 1089 .intctrl = mx51_ecspi_intctrl, 1090 .prepare_message = mx51_ecspi_prepare_message, 1091 .prepare_transfer = mx51_ecspi_prepare_transfer, 1092 .trigger = mx51_ecspi_trigger, 1093 .rx_available = mx51_ecspi_rx_available, 1094 .reset = mx51_ecspi_reset, 1095 .setup_wml = mx51_setup_wml, 1096 .fifo_size = 64, 1097 .has_dmamode = true, 1098 .dynamic_burst = true, 1099 .has_slavemode = true, 1100 .tx_glitch_fixed = true, 1101 .disable = mx51_ecspi_disable, 1102 .devtype = IMX51_ECSPI, 1103 }; 1104 1105 static const struct of_device_id spi_imx_dt_ids[] = { 1106 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, }, 1107 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, }, 1108 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, }, 1109 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, }, 1110 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, }, 1111 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, }, 1112 { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, }, 1113 { .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, }, 1114 { /* sentinel */ } 1115 }; 1116 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids); 1117 1118 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits) 1119 { 1120 u32 ctrl; 1121 1122 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 1123 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 1124 ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET); 1125 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 1126 } 1127 1128 static void spi_imx_push(struct spi_imx_data *spi_imx) 1129 { 1130 unsigned int burst_len; 1131 1132 /* 1133 * Reload the FIFO when the remaining bytes to be transferred in the 1134 * current burst is 0. This only applies when bits_per_word is a 1135 * multiple of 8. 1136 */ 1137 if (!spi_imx->remainder) { 1138 if (spi_imx->dynamic_burst) { 1139 1140 /* We need to deal unaligned data first */ 1141 burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST; 1142 1143 if (!burst_len) 1144 burst_len = MX51_ECSPI_CTRL_MAX_BURST; 1145 1146 spi_imx_set_burst_len(spi_imx, burst_len * 8); 1147 1148 spi_imx->remainder = burst_len; 1149 } else { 1150 spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word); 1151 } 1152 } 1153 1154 while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) { 1155 if (!spi_imx->count) 1156 break; 1157 if (spi_imx->dynamic_burst && 1158 spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4)) 1159 break; 1160 spi_imx->tx(spi_imx); 1161 spi_imx->txfifo++; 1162 } 1163 1164 if (!spi_imx->slave_mode) 1165 spi_imx->devtype_data->trigger(spi_imx); 1166 } 1167 1168 static irqreturn_t spi_imx_isr(int irq, void *dev_id) 1169 { 1170 struct spi_imx_data *spi_imx = dev_id; 1171 1172 while (spi_imx->txfifo && 1173 spi_imx->devtype_data->rx_available(spi_imx)) { 1174 spi_imx->rx(spi_imx); 1175 spi_imx->txfifo--; 1176 } 1177 1178 if (spi_imx->count) { 1179 spi_imx_push(spi_imx); 1180 return IRQ_HANDLED; 1181 } 1182 1183 if (spi_imx->txfifo) { 1184 /* No data left to push, but still waiting for rx data, 1185 * enable receive data available interrupt. 1186 */ 1187 spi_imx->devtype_data->intctrl( 1188 spi_imx, MXC_INT_RR); 1189 return IRQ_HANDLED; 1190 } 1191 1192 spi_imx->devtype_data->intctrl(spi_imx, 0); 1193 complete(&spi_imx->xfer_done); 1194 1195 return IRQ_HANDLED; 1196 } 1197 1198 static int spi_imx_dma_configure(struct spi_controller *controller) 1199 { 1200 int ret; 1201 enum dma_slave_buswidth buswidth; 1202 struct dma_slave_config rx = {}, tx = {}; 1203 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1204 1205 switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) { 1206 case 4: 1207 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1208 break; 1209 case 2: 1210 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1211 break; 1212 case 1: 1213 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1214 break; 1215 default: 1216 return -EINVAL; 1217 } 1218 1219 tx.direction = DMA_MEM_TO_DEV; 1220 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA; 1221 tx.dst_addr_width = buswidth; 1222 tx.dst_maxburst = spi_imx->wml; 1223 ret = dmaengine_slave_config(controller->dma_tx, &tx); 1224 if (ret) { 1225 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret); 1226 return ret; 1227 } 1228 1229 rx.direction = DMA_DEV_TO_MEM; 1230 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA; 1231 rx.src_addr_width = buswidth; 1232 rx.src_maxburst = spi_imx->wml; 1233 ret = dmaengine_slave_config(controller->dma_rx, &rx); 1234 if (ret) { 1235 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret); 1236 return ret; 1237 } 1238 1239 return 0; 1240 } 1241 1242 static int spi_imx_setupxfer(struct spi_device *spi, 1243 struct spi_transfer *t) 1244 { 1245 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1246 1247 if (!t) 1248 return 0; 1249 1250 if (!t->speed_hz) { 1251 if (!spi->max_speed_hz) { 1252 dev_err(&spi->dev, "no speed_hz provided!\n"); 1253 return -EINVAL; 1254 } 1255 dev_dbg(&spi->dev, "using spi->max_speed_hz!\n"); 1256 spi_imx->spi_bus_clk = spi->max_speed_hz; 1257 } else 1258 spi_imx->spi_bus_clk = t->speed_hz; 1259 1260 spi_imx->bits_per_word = t->bits_per_word; 1261 1262 /* 1263 * Initialize the functions for transfer. To transfer non byte-aligned 1264 * words, we have to use multiple word-size bursts, we can't use 1265 * dynamic_burst in that case. 1266 */ 1267 if (spi_imx->devtype_data->dynamic_burst && !spi_imx->slave_mode && 1268 !(spi->mode & SPI_CS_WORD) && 1269 (spi_imx->bits_per_word == 8 || 1270 spi_imx->bits_per_word == 16 || 1271 spi_imx->bits_per_word == 32)) { 1272 1273 spi_imx->rx = spi_imx_buf_rx_swap; 1274 spi_imx->tx = spi_imx_buf_tx_swap; 1275 spi_imx->dynamic_burst = 1; 1276 1277 } else { 1278 if (spi_imx->bits_per_word <= 8) { 1279 spi_imx->rx = spi_imx_buf_rx_u8; 1280 spi_imx->tx = spi_imx_buf_tx_u8; 1281 } else if (spi_imx->bits_per_word <= 16) { 1282 spi_imx->rx = spi_imx_buf_rx_u16; 1283 spi_imx->tx = spi_imx_buf_tx_u16; 1284 } else { 1285 spi_imx->rx = spi_imx_buf_rx_u32; 1286 spi_imx->tx = spi_imx_buf_tx_u32; 1287 } 1288 spi_imx->dynamic_burst = 0; 1289 } 1290 1291 if (spi_imx_can_dma(spi_imx->controller, spi, t)) 1292 spi_imx->usedma = true; 1293 else 1294 spi_imx->usedma = false; 1295 1296 spi_imx->rx_only = ((t->tx_buf == NULL) 1297 || (t->tx_buf == spi->controller->dummy_tx)); 1298 1299 if (is_imx53_ecspi(spi_imx) && spi_imx->slave_mode) { 1300 spi_imx->rx = mx53_ecspi_rx_slave; 1301 spi_imx->tx = mx53_ecspi_tx_slave; 1302 spi_imx->slave_burst = t->len; 1303 } 1304 1305 spi_imx->devtype_data->prepare_transfer(spi_imx, spi); 1306 1307 return 0; 1308 } 1309 1310 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx) 1311 { 1312 struct spi_controller *controller = spi_imx->controller; 1313 1314 if (controller->dma_rx) { 1315 dma_release_channel(controller->dma_rx); 1316 controller->dma_rx = NULL; 1317 } 1318 1319 if (controller->dma_tx) { 1320 dma_release_channel(controller->dma_tx); 1321 controller->dma_tx = NULL; 1322 } 1323 } 1324 1325 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx, 1326 struct spi_controller *controller) 1327 { 1328 int ret; 1329 1330 spi_imx->wml = spi_imx->devtype_data->fifo_size / 2; 1331 1332 /* Prepare for TX DMA: */ 1333 controller->dma_tx = dma_request_chan(dev, "tx"); 1334 if (IS_ERR(controller->dma_tx)) { 1335 ret = PTR_ERR(controller->dma_tx); 1336 dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret); 1337 controller->dma_tx = NULL; 1338 goto err; 1339 } 1340 1341 /* Prepare for RX : */ 1342 controller->dma_rx = dma_request_chan(dev, "rx"); 1343 if (IS_ERR(controller->dma_rx)) { 1344 ret = PTR_ERR(controller->dma_rx); 1345 dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret); 1346 controller->dma_rx = NULL; 1347 goto err; 1348 } 1349 1350 init_completion(&spi_imx->dma_rx_completion); 1351 init_completion(&spi_imx->dma_tx_completion); 1352 controller->can_dma = spi_imx_can_dma; 1353 controller->max_dma_len = MAX_SDMA_BD_BYTES; 1354 spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX | 1355 SPI_CONTROLLER_MUST_TX; 1356 1357 return 0; 1358 err: 1359 spi_imx_sdma_exit(spi_imx); 1360 return ret; 1361 } 1362 1363 static void spi_imx_dma_rx_callback(void *cookie) 1364 { 1365 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1366 1367 complete(&spi_imx->dma_rx_completion); 1368 } 1369 1370 static void spi_imx_dma_tx_callback(void *cookie) 1371 { 1372 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1373 1374 complete(&spi_imx->dma_tx_completion); 1375 } 1376 1377 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size) 1378 { 1379 unsigned long timeout = 0; 1380 1381 /* Time with actual data transfer and CS change delay related to HW */ 1382 timeout = (8 + 4) * size / spi_imx->spi_bus_clk; 1383 1384 /* Add extra second for scheduler related activities */ 1385 timeout += 1; 1386 1387 /* Double calculated timeout */ 1388 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC); 1389 } 1390 1391 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx, 1392 struct spi_transfer *transfer) 1393 { 1394 struct dma_async_tx_descriptor *desc_tx, *desc_rx; 1395 unsigned long transfer_timeout; 1396 unsigned long timeout; 1397 struct spi_controller *controller = spi_imx->controller; 1398 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg; 1399 struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents); 1400 unsigned int bytes_per_word, i; 1401 int ret; 1402 1403 /* Get the right burst length from the last sg to ensure no tail data */ 1404 bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word); 1405 for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) { 1406 if (!(sg_dma_len(last_sg) % (i * bytes_per_word))) 1407 break; 1408 } 1409 /* Use 1 as wml in case no available burst length got */ 1410 if (i == 0) 1411 i = 1; 1412 1413 spi_imx->wml = i; 1414 1415 ret = spi_imx_dma_configure(controller); 1416 if (ret) 1417 goto dma_failure_no_start; 1418 1419 if (!spi_imx->devtype_data->setup_wml) { 1420 dev_err(spi_imx->dev, "No setup_wml()?\n"); 1421 ret = -EINVAL; 1422 goto dma_failure_no_start; 1423 } 1424 spi_imx->devtype_data->setup_wml(spi_imx); 1425 1426 /* 1427 * The TX DMA setup starts the transfer, so make sure RX is configured 1428 * before TX. 1429 */ 1430 desc_rx = dmaengine_prep_slave_sg(controller->dma_rx, 1431 rx->sgl, rx->nents, DMA_DEV_TO_MEM, 1432 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1433 if (!desc_rx) { 1434 ret = -EINVAL; 1435 goto dma_failure_no_start; 1436 } 1437 1438 desc_rx->callback = spi_imx_dma_rx_callback; 1439 desc_rx->callback_param = (void *)spi_imx; 1440 dmaengine_submit(desc_rx); 1441 reinit_completion(&spi_imx->dma_rx_completion); 1442 dma_async_issue_pending(controller->dma_rx); 1443 1444 desc_tx = dmaengine_prep_slave_sg(controller->dma_tx, 1445 tx->sgl, tx->nents, DMA_MEM_TO_DEV, 1446 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1447 if (!desc_tx) { 1448 dmaengine_terminate_all(controller->dma_tx); 1449 dmaengine_terminate_all(controller->dma_rx); 1450 return -EINVAL; 1451 } 1452 1453 desc_tx->callback = spi_imx_dma_tx_callback; 1454 desc_tx->callback_param = (void *)spi_imx; 1455 dmaengine_submit(desc_tx); 1456 reinit_completion(&spi_imx->dma_tx_completion); 1457 dma_async_issue_pending(controller->dma_tx); 1458 1459 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1460 1461 /* Wait SDMA to finish the data transfer.*/ 1462 timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion, 1463 transfer_timeout); 1464 if (!timeout) { 1465 dev_err(spi_imx->dev, "I/O Error in DMA TX\n"); 1466 dmaengine_terminate_all(controller->dma_tx); 1467 dmaengine_terminate_all(controller->dma_rx); 1468 return -ETIMEDOUT; 1469 } 1470 1471 timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion, 1472 transfer_timeout); 1473 if (!timeout) { 1474 dev_err(&controller->dev, "I/O Error in DMA RX\n"); 1475 spi_imx->devtype_data->reset(spi_imx); 1476 dmaengine_terminate_all(controller->dma_rx); 1477 return -ETIMEDOUT; 1478 } 1479 1480 return 0; 1481 /* fallback to pio */ 1482 dma_failure_no_start: 1483 transfer->error |= SPI_TRANS_FAIL_NO_START; 1484 return ret; 1485 } 1486 1487 static int spi_imx_pio_transfer(struct spi_device *spi, 1488 struct spi_transfer *transfer) 1489 { 1490 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1491 unsigned long transfer_timeout; 1492 unsigned long timeout; 1493 1494 spi_imx->tx_buf = transfer->tx_buf; 1495 spi_imx->rx_buf = transfer->rx_buf; 1496 spi_imx->count = transfer->len; 1497 spi_imx->txfifo = 0; 1498 spi_imx->remainder = 0; 1499 1500 reinit_completion(&spi_imx->xfer_done); 1501 1502 spi_imx_push(spi_imx); 1503 1504 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE); 1505 1506 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1507 1508 timeout = wait_for_completion_timeout(&spi_imx->xfer_done, 1509 transfer_timeout); 1510 if (!timeout) { 1511 dev_err(&spi->dev, "I/O Error in PIO\n"); 1512 spi_imx->devtype_data->reset(spi_imx); 1513 return -ETIMEDOUT; 1514 } 1515 1516 return 0; 1517 } 1518 1519 static int spi_imx_poll_transfer(struct spi_device *spi, 1520 struct spi_transfer *transfer) 1521 { 1522 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1523 unsigned long timeout; 1524 1525 spi_imx->tx_buf = transfer->tx_buf; 1526 spi_imx->rx_buf = transfer->rx_buf; 1527 spi_imx->count = transfer->len; 1528 spi_imx->txfifo = 0; 1529 spi_imx->remainder = 0; 1530 1531 /* fill in the fifo before timeout calculations if we are 1532 * interrupted here, then the data is getting transferred by 1533 * the HW while we are interrupted 1534 */ 1535 spi_imx_push(spi_imx); 1536 1537 timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies; 1538 while (spi_imx->txfifo) { 1539 /* RX */ 1540 while (spi_imx->txfifo && 1541 spi_imx->devtype_data->rx_available(spi_imx)) { 1542 spi_imx->rx(spi_imx); 1543 spi_imx->txfifo--; 1544 } 1545 1546 /* TX */ 1547 if (spi_imx->count) { 1548 spi_imx_push(spi_imx); 1549 continue; 1550 } 1551 1552 if (spi_imx->txfifo && 1553 time_after(jiffies, timeout)) { 1554 1555 dev_err_ratelimited(&spi->dev, 1556 "timeout period reached: jiffies: %lu- falling back to interrupt mode\n", 1557 jiffies - timeout); 1558 1559 /* fall back to interrupt mode */ 1560 return spi_imx_pio_transfer(spi, transfer); 1561 } 1562 } 1563 1564 return 0; 1565 } 1566 1567 static int spi_imx_pio_transfer_slave(struct spi_device *spi, 1568 struct spi_transfer *transfer) 1569 { 1570 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1571 int ret = 0; 1572 1573 if (is_imx53_ecspi(spi_imx) && 1574 transfer->len > MX53_MAX_TRANSFER_BYTES) { 1575 dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n", 1576 MX53_MAX_TRANSFER_BYTES); 1577 return -EMSGSIZE; 1578 } 1579 1580 spi_imx->tx_buf = transfer->tx_buf; 1581 spi_imx->rx_buf = transfer->rx_buf; 1582 spi_imx->count = transfer->len; 1583 spi_imx->txfifo = 0; 1584 spi_imx->remainder = 0; 1585 1586 reinit_completion(&spi_imx->xfer_done); 1587 spi_imx->slave_aborted = false; 1588 1589 spi_imx_push(spi_imx); 1590 1591 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR); 1592 1593 if (wait_for_completion_interruptible(&spi_imx->xfer_done) || 1594 spi_imx->slave_aborted) { 1595 dev_dbg(&spi->dev, "interrupted\n"); 1596 ret = -EINTR; 1597 } 1598 1599 /* ecspi has a HW issue when works in Slave mode, 1600 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty, 1601 * ECSPI_TXDATA keeps shift out the last word data, 1602 * so we have to disable ECSPI when in slave mode after the 1603 * transfer completes 1604 */ 1605 if (spi_imx->devtype_data->disable) 1606 spi_imx->devtype_data->disable(spi_imx); 1607 1608 return ret; 1609 } 1610 1611 static int spi_imx_transfer_one(struct spi_controller *controller, 1612 struct spi_device *spi, 1613 struct spi_transfer *transfer) 1614 { 1615 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1616 unsigned long hz_per_byte, byte_limit; 1617 1618 spi_imx_setupxfer(spi, transfer); 1619 transfer->effective_speed_hz = spi_imx->spi_bus_clk; 1620 1621 /* flush rxfifo before transfer */ 1622 while (spi_imx->devtype_data->rx_available(spi_imx)) 1623 readl(spi_imx->base + MXC_CSPIRXDATA); 1624 1625 if (spi_imx->slave_mode) 1626 return spi_imx_pio_transfer_slave(spi, transfer); 1627 1628 /* 1629 * If we decided in spi_imx_can_dma() that we want to do a DMA 1630 * transfer, the SPI transfer has already been mapped, so we 1631 * have to do the DMA transfer here. 1632 */ 1633 if (spi_imx->usedma) 1634 return spi_imx_dma_transfer(spi_imx, transfer); 1635 /* 1636 * Calculate the estimated time in us the transfer runs. Find 1637 * the number of Hz per byte per polling limit. 1638 */ 1639 hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0; 1640 byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1; 1641 1642 /* run in polling mode for short transfers */ 1643 if (transfer->len < byte_limit) 1644 return spi_imx_poll_transfer(spi, transfer); 1645 1646 return spi_imx_pio_transfer(spi, transfer); 1647 } 1648 1649 static int spi_imx_setup(struct spi_device *spi) 1650 { 1651 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__, 1652 spi->mode, spi->bits_per_word, spi->max_speed_hz); 1653 1654 return 0; 1655 } 1656 1657 static void spi_imx_cleanup(struct spi_device *spi) 1658 { 1659 } 1660 1661 static int 1662 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg) 1663 { 1664 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1665 int ret; 1666 1667 ret = pm_runtime_resume_and_get(spi_imx->dev); 1668 if (ret < 0) { 1669 dev_err(spi_imx->dev, "failed to enable clock\n"); 1670 return ret; 1671 } 1672 1673 ret = spi_imx->devtype_data->prepare_message(spi_imx, msg); 1674 if (ret) { 1675 pm_runtime_mark_last_busy(spi_imx->dev); 1676 pm_runtime_put_autosuspend(spi_imx->dev); 1677 } 1678 1679 return ret; 1680 } 1681 1682 static int 1683 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg) 1684 { 1685 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1686 1687 pm_runtime_mark_last_busy(spi_imx->dev); 1688 pm_runtime_put_autosuspend(spi_imx->dev); 1689 return 0; 1690 } 1691 1692 static int spi_imx_slave_abort(struct spi_controller *controller) 1693 { 1694 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1695 1696 spi_imx->slave_aborted = true; 1697 complete(&spi_imx->xfer_done); 1698 1699 return 0; 1700 } 1701 1702 static int spi_imx_probe(struct platform_device *pdev) 1703 { 1704 struct device_node *np = pdev->dev.of_node; 1705 struct spi_controller *controller; 1706 struct spi_imx_data *spi_imx; 1707 struct resource *res; 1708 int ret, irq, spi_drctl; 1709 const struct spi_imx_devtype_data *devtype_data = 1710 of_device_get_match_data(&pdev->dev); 1711 bool slave_mode; 1712 u32 val; 1713 1714 slave_mode = devtype_data->has_slavemode && 1715 of_property_read_bool(np, "spi-slave"); 1716 if (slave_mode) 1717 controller = spi_alloc_slave(&pdev->dev, 1718 sizeof(struct spi_imx_data)); 1719 else 1720 controller = spi_alloc_master(&pdev->dev, 1721 sizeof(struct spi_imx_data)); 1722 if (!controller) 1723 return -ENOMEM; 1724 1725 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl); 1726 if ((ret < 0) || (spi_drctl >= 0x3)) { 1727 /* '11' is reserved */ 1728 spi_drctl = 0; 1729 } 1730 1731 platform_set_drvdata(pdev, controller); 1732 1733 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32); 1734 controller->bus_num = np ? -1 : pdev->id; 1735 controller->use_gpio_descriptors = true; 1736 1737 spi_imx = spi_controller_get_devdata(controller); 1738 spi_imx->controller = controller; 1739 spi_imx->dev = &pdev->dev; 1740 spi_imx->slave_mode = slave_mode; 1741 1742 spi_imx->devtype_data = devtype_data; 1743 1744 /* 1745 * Get number of chip selects from device properties. This can be 1746 * coming from device tree or boardfiles, if it is not defined, 1747 * a default value of 3 chip selects will be used, as all the legacy 1748 * board files have <= 3 chip selects. 1749 */ 1750 if (!device_property_read_u32(&pdev->dev, "num-cs", &val)) 1751 controller->num_chipselect = val; 1752 else 1753 controller->num_chipselect = 3; 1754 1755 controller->transfer_one = spi_imx_transfer_one; 1756 controller->setup = spi_imx_setup; 1757 controller->cleanup = spi_imx_cleanup; 1758 controller->prepare_message = spi_imx_prepare_message; 1759 controller->unprepare_message = spi_imx_unprepare_message; 1760 controller->slave_abort = spi_imx_slave_abort; 1761 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS | 1762 SPI_MOSI_IDLE_LOW; 1763 1764 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) || 1765 is_imx53_ecspi(spi_imx)) 1766 controller->mode_bits |= SPI_LOOP | SPI_READY; 1767 1768 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) 1769 controller->mode_bits |= SPI_RX_CPHA_FLIP; 1770 1771 if (is_imx51_ecspi(spi_imx) && 1772 device_property_read_u32(&pdev->dev, "cs-gpios", NULL)) 1773 /* 1774 * When using HW-CS implementing SPI_CS_WORD can be done by just 1775 * setting the burst length to the word size. This is 1776 * considerably faster than manually controlling the CS. 1777 */ 1778 controller->mode_bits |= SPI_CS_WORD; 1779 1780 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) { 1781 controller->max_native_cs = 4; 1782 controller->flags |= SPI_MASTER_GPIO_SS; 1783 } 1784 1785 spi_imx->spi_drctl = spi_drctl; 1786 1787 init_completion(&spi_imx->xfer_done); 1788 1789 spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1790 if (IS_ERR(spi_imx->base)) { 1791 ret = PTR_ERR(spi_imx->base); 1792 goto out_controller_put; 1793 } 1794 spi_imx->base_phys = res->start; 1795 1796 irq = platform_get_irq(pdev, 0); 1797 if (irq < 0) { 1798 ret = irq; 1799 goto out_controller_put; 1800 } 1801 1802 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0, 1803 dev_name(&pdev->dev), spi_imx); 1804 if (ret) { 1805 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret); 1806 goto out_controller_put; 1807 } 1808 1809 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 1810 if (IS_ERR(spi_imx->clk_ipg)) { 1811 ret = PTR_ERR(spi_imx->clk_ipg); 1812 goto out_controller_put; 1813 } 1814 1815 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per"); 1816 if (IS_ERR(spi_imx->clk_per)) { 1817 ret = PTR_ERR(spi_imx->clk_per); 1818 goto out_controller_put; 1819 } 1820 1821 ret = clk_prepare_enable(spi_imx->clk_per); 1822 if (ret) 1823 goto out_controller_put; 1824 1825 ret = clk_prepare_enable(spi_imx->clk_ipg); 1826 if (ret) 1827 goto out_put_per; 1828 1829 pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT); 1830 pm_runtime_use_autosuspend(spi_imx->dev); 1831 pm_runtime_get_noresume(spi_imx->dev); 1832 pm_runtime_set_active(spi_imx->dev); 1833 pm_runtime_enable(spi_imx->dev); 1834 1835 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per); 1836 /* 1837 * Only validated on i.mx35 and i.mx6 now, can remove the constraint 1838 * if validated on other chips. 1839 */ 1840 if (spi_imx->devtype_data->has_dmamode) { 1841 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller); 1842 if (ret == -EPROBE_DEFER) 1843 goto out_runtime_pm_put; 1844 1845 if (ret < 0) 1846 dev_dbg(&pdev->dev, "dma setup error %d, use pio\n", 1847 ret); 1848 } 1849 1850 spi_imx->devtype_data->reset(spi_imx); 1851 1852 spi_imx->devtype_data->intctrl(spi_imx, 0); 1853 1854 controller->dev.of_node = pdev->dev.of_node; 1855 ret = spi_register_controller(controller); 1856 if (ret) { 1857 dev_err_probe(&pdev->dev, ret, "register controller failed\n"); 1858 goto out_register_controller; 1859 } 1860 1861 pm_runtime_mark_last_busy(spi_imx->dev); 1862 pm_runtime_put_autosuspend(spi_imx->dev); 1863 1864 return ret; 1865 1866 out_register_controller: 1867 if (spi_imx->devtype_data->has_dmamode) 1868 spi_imx_sdma_exit(spi_imx); 1869 out_runtime_pm_put: 1870 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1871 pm_runtime_set_suspended(&pdev->dev); 1872 pm_runtime_disable(spi_imx->dev); 1873 1874 clk_disable_unprepare(spi_imx->clk_ipg); 1875 out_put_per: 1876 clk_disable_unprepare(spi_imx->clk_per); 1877 out_controller_put: 1878 spi_controller_put(controller); 1879 1880 return ret; 1881 } 1882 1883 static void spi_imx_remove(struct platform_device *pdev) 1884 { 1885 struct spi_controller *controller = platform_get_drvdata(pdev); 1886 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1887 int ret; 1888 1889 spi_unregister_controller(controller); 1890 1891 ret = pm_runtime_get_sync(spi_imx->dev); 1892 if (ret >= 0) 1893 writel(0, spi_imx->base + MXC_CSPICTRL); 1894 else 1895 dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n"); 1896 1897 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1898 pm_runtime_put_sync(spi_imx->dev); 1899 pm_runtime_disable(spi_imx->dev); 1900 1901 spi_imx_sdma_exit(spi_imx); 1902 } 1903 1904 static int __maybe_unused spi_imx_runtime_resume(struct device *dev) 1905 { 1906 struct spi_controller *controller = dev_get_drvdata(dev); 1907 struct spi_imx_data *spi_imx; 1908 int ret; 1909 1910 spi_imx = spi_controller_get_devdata(controller); 1911 1912 ret = clk_prepare_enable(spi_imx->clk_per); 1913 if (ret) 1914 return ret; 1915 1916 ret = clk_prepare_enable(spi_imx->clk_ipg); 1917 if (ret) { 1918 clk_disable_unprepare(spi_imx->clk_per); 1919 return ret; 1920 } 1921 1922 return 0; 1923 } 1924 1925 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev) 1926 { 1927 struct spi_controller *controller = dev_get_drvdata(dev); 1928 struct spi_imx_data *spi_imx; 1929 1930 spi_imx = spi_controller_get_devdata(controller); 1931 1932 clk_disable_unprepare(spi_imx->clk_per); 1933 clk_disable_unprepare(spi_imx->clk_ipg); 1934 1935 return 0; 1936 } 1937 1938 static int __maybe_unused spi_imx_suspend(struct device *dev) 1939 { 1940 pinctrl_pm_select_sleep_state(dev); 1941 return 0; 1942 } 1943 1944 static int __maybe_unused spi_imx_resume(struct device *dev) 1945 { 1946 pinctrl_pm_select_default_state(dev); 1947 return 0; 1948 } 1949 1950 static const struct dev_pm_ops imx_spi_pm = { 1951 SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend, 1952 spi_imx_runtime_resume, NULL) 1953 SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume) 1954 }; 1955 1956 static struct platform_driver spi_imx_driver = { 1957 .driver = { 1958 .name = DRIVER_NAME, 1959 .of_match_table = spi_imx_dt_ids, 1960 .pm = &imx_spi_pm, 1961 }, 1962 .probe = spi_imx_probe, 1963 .remove_new = spi_imx_remove, 1964 }; 1965 module_platform_driver(spi_imx_driver); 1966 1967 MODULE_DESCRIPTION("i.MX SPI Controller driver"); 1968 MODULE_AUTHOR("Sascha Hauer, Pengutronix"); 1969 MODULE_LICENSE("GPL"); 1970 MODULE_ALIAS("platform:" DRIVER_NAME); 1971