1 /* 2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. 3 * Copyright (C) 2008 Juergen Beisert 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License 7 * as published by the Free Software Foundation; either version 2 8 * of the License, or (at your option) any later version. 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the 16 * Free Software Foundation 17 * 51 Franklin Street, Fifth Floor 18 * Boston, MA 02110-1301, USA. 19 */ 20 21 #include <linux/clk.h> 22 #include <linux/completion.h> 23 #include <linux/delay.h> 24 #include <linux/dmaengine.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/err.h> 27 #include <linux/gpio.h> 28 #include <linux/interrupt.h> 29 #include <linux/io.h> 30 #include <linux/irq.h> 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/platform_device.h> 34 #include <linux/slab.h> 35 #include <linux/spi/spi.h> 36 #include <linux/spi/spi_bitbang.h> 37 #include <linux/types.h> 38 #include <linux/of.h> 39 #include <linux/of_device.h> 40 #include <linux/of_gpio.h> 41 42 #include <linux/platform_data/dma-imx.h> 43 #include <linux/platform_data/spi-imx.h> 44 45 #define DRIVER_NAME "spi_imx" 46 47 #define MXC_CSPIRXDATA 0x00 48 #define MXC_CSPITXDATA 0x04 49 #define MXC_CSPICTRL 0x08 50 #define MXC_CSPIINT 0x0c 51 #define MXC_RESET 0x1c 52 53 /* generic defines to abstract from the different register layouts */ 54 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */ 55 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */ 56 57 /* The maximum bytes that a sdma BD can transfer.*/ 58 #define MAX_SDMA_BD_BYTES (1 << 15) 59 struct spi_imx_config { 60 unsigned int speed_hz; 61 unsigned int bpw; 62 }; 63 64 enum spi_imx_devtype { 65 IMX1_CSPI, 66 IMX21_CSPI, 67 IMX27_CSPI, 68 IMX31_CSPI, 69 IMX35_CSPI, /* CSPI on all i.mx except above */ 70 IMX51_ECSPI, /* ECSPI on i.mx51 and later */ 71 }; 72 73 struct spi_imx_data; 74 75 struct spi_imx_devtype_data { 76 void (*intctrl)(struct spi_imx_data *, int); 77 int (*config)(struct spi_device *, struct spi_imx_config *); 78 void (*trigger)(struct spi_imx_data *); 79 int (*rx_available)(struct spi_imx_data *); 80 void (*reset)(struct spi_imx_data *); 81 enum spi_imx_devtype devtype; 82 }; 83 84 struct spi_imx_data { 85 struct spi_bitbang bitbang; 86 struct device *dev; 87 88 struct completion xfer_done; 89 void __iomem *base; 90 unsigned long base_phys; 91 92 struct clk *clk_per; 93 struct clk *clk_ipg; 94 unsigned long spi_clk; 95 unsigned int spi_bus_clk; 96 97 unsigned int bytes_per_word; 98 99 unsigned int count; 100 void (*tx)(struct spi_imx_data *); 101 void (*rx)(struct spi_imx_data *); 102 void *rx_buf; 103 const void *tx_buf; 104 unsigned int txfifo; /* number of words pushed in tx FIFO */ 105 106 /* DMA */ 107 bool usedma; 108 u32 wml; 109 struct completion dma_rx_completion; 110 struct completion dma_tx_completion; 111 112 const struct spi_imx_devtype_data *devtype_data; 113 }; 114 115 static inline int is_imx27_cspi(struct spi_imx_data *d) 116 { 117 return d->devtype_data->devtype == IMX27_CSPI; 118 } 119 120 static inline int is_imx35_cspi(struct spi_imx_data *d) 121 { 122 return d->devtype_data->devtype == IMX35_CSPI; 123 } 124 125 static inline int is_imx51_ecspi(struct spi_imx_data *d) 126 { 127 return d->devtype_data->devtype == IMX51_ECSPI; 128 } 129 130 static inline unsigned spi_imx_get_fifosize(struct spi_imx_data *d) 131 { 132 return is_imx51_ecspi(d) ? 64 : 8; 133 } 134 135 #define MXC_SPI_BUF_RX(type) \ 136 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \ 137 { \ 138 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \ 139 \ 140 if (spi_imx->rx_buf) { \ 141 *(type *)spi_imx->rx_buf = val; \ 142 spi_imx->rx_buf += sizeof(type); \ 143 } \ 144 } 145 146 #define MXC_SPI_BUF_TX(type) \ 147 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \ 148 { \ 149 type val = 0; \ 150 \ 151 if (spi_imx->tx_buf) { \ 152 val = *(type *)spi_imx->tx_buf; \ 153 spi_imx->tx_buf += sizeof(type); \ 154 } \ 155 \ 156 spi_imx->count -= sizeof(type); \ 157 \ 158 writel(val, spi_imx->base + MXC_CSPITXDATA); \ 159 } 160 161 MXC_SPI_BUF_RX(u8) 162 MXC_SPI_BUF_TX(u8) 163 MXC_SPI_BUF_RX(u16) 164 MXC_SPI_BUF_TX(u16) 165 MXC_SPI_BUF_RX(u32) 166 MXC_SPI_BUF_TX(u32) 167 168 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set 169 * (which is currently not the case in this driver) 170 */ 171 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 172 256, 384, 512, 768, 1024}; 173 174 /* MX21, MX27 */ 175 static unsigned int spi_imx_clkdiv_1(unsigned int fin, 176 unsigned int fspi, unsigned int max) 177 { 178 int i; 179 180 for (i = 2; i < max; i++) 181 if (fspi * mxc_clkdivs[i] >= fin) 182 return i; 183 184 return max; 185 } 186 187 /* MX1, MX31, MX35, MX51 CSPI */ 188 static unsigned int spi_imx_clkdiv_2(unsigned int fin, 189 unsigned int fspi) 190 { 191 int i, div = 4; 192 193 for (i = 0; i < 7; i++) { 194 if (fspi * div >= fin) 195 return i; 196 div <<= 1; 197 } 198 199 return 7; 200 } 201 202 static int spi_imx_bytes_per_word(const int bpw) 203 { 204 return DIV_ROUND_UP(bpw, BITS_PER_BYTE); 205 } 206 207 static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi, 208 struct spi_transfer *transfer) 209 { 210 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 211 unsigned int bpw; 212 213 if (!master->dma_rx) 214 return false; 215 216 if (!transfer) 217 return false; 218 219 bpw = transfer->bits_per_word; 220 if (!bpw) 221 bpw = spi->bits_per_word; 222 223 bpw = spi_imx_bytes_per_word(bpw); 224 225 if (bpw != 1 && bpw != 2 && bpw != 4) 226 return false; 227 228 if (transfer->len < spi_imx->wml * bpw) 229 return false; 230 231 if (transfer->len % (spi_imx->wml * bpw)) 232 return false; 233 234 return true; 235 } 236 237 #define MX51_ECSPI_CTRL 0x08 238 #define MX51_ECSPI_CTRL_ENABLE (1 << 0) 239 #define MX51_ECSPI_CTRL_XCH (1 << 2) 240 #define MX51_ECSPI_CTRL_SMC (1 << 3) 241 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4) 242 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8 243 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12 244 #define MX51_ECSPI_CTRL_CS(cs) ((cs) << 18) 245 #define MX51_ECSPI_CTRL_BL_OFFSET 20 246 247 #define MX51_ECSPI_CONFIG 0x0c 248 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs) + 0)) 249 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs) + 4)) 250 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs) + 8)) 251 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs) + 12)) 252 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs) + 20)) 253 254 #define MX51_ECSPI_INT 0x10 255 #define MX51_ECSPI_INT_TEEN (1 << 0) 256 #define MX51_ECSPI_INT_RREN (1 << 3) 257 258 #define MX51_ECSPI_DMA 0x14 259 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f) 260 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16) 261 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24) 262 263 #define MX51_ECSPI_DMA_TEDEN (1 << 7) 264 #define MX51_ECSPI_DMA_RXDEN (1 << 23) 265 #define MX51_ECSPI_DMA_RXTDEN (1 << 31) 266 267 #define MX51_ECSPI_STAT 0x18 268 #define MX51_ECSPI_STAT_RR (1 << 3) 269 270 #define MX51_ECSPI_TESTREG 0x20 271 #define MX51_ECSPI_TESTREG_LBC BIT(31) 272 273 /* MX51 eCSPI */ 274 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx, 275 unsigned int fspi, unsigned int *fres) 276 { 277 /* 278 * there are two 4-bit dividers, the pre-divider divides by 279 * $pre, the post-divider by 2^$post 280 */ 281 unsigned int pre, post; 282 unsigned int fin = spi_imx->spi_clk; 283 284 if (unlikely(fspi > fin)) 285 return 0; 286 287 post = fls(fin) - fls(fspi); 288 if (fin > fspi << post) 289 post++; 290 291 /* now we have: (fin <= fspi << post) with post being minimal */ 292 293 post = max(4U, post) - 4; 294 if (unlikely(post > 0xf)) { 295 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n", 296 fspi, fin); 297 return 0xff; 298 } 299 300 pre = DIV_ROUND_UP(fin, fspi << post) - 1; 301 302 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n", 303 __func__, fin, fspi, post, pre); 304 305 /* Resulting frequency for the SCLK line. */ 306 *fres = (fin / (pre + 1)) >> post; 307 308 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) | 309 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET); 310 } 311 312 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable) 313 { 314 unsigned val = 0; 315 316 if (enable & MXC_INT_TE) 317 val |= MX51_ECSPI_INT_TEEN; 318 319 if (enable & MXC_INT_RR) 320 val |= MX51_ECSPI_INT_RREN; 321 322 writel(val, spi_imx->base + MX51_ECSPI_INT); 323 } 324 325 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx) 326 { 327 u32 reg; 328 329 reg = readl(spi_imx->base + MX51_ECSPI_CTRL); 330 reg |= MX51_ECSPI_CTRL_XCH; 331 writel(reg, spi_imx->base + MX51_ECSPI_CTRL); 332 } 333 334 static int mx51_ecspi_config(struct spi_device *spi, 335 struct spi_imx_config *config) 336 { 337 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 338 u32 ctrl = MX51_ECSPI_CTRL_ENABLE; 339 u32 clk = config->speed_hz, delay, reg; 340 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 341 342 /* 343 * The hardware seems to have a race condition when changing modes. The 344 * current assumption is that the selection of the channel arrives 345 * earlier in the hardware than the mode bits when they are written at 346 * the same time. 347 * So set master mode for all channels as we do not support slave mode. 348 */ 349 ctrl |= MX51_ECSPI_CTRL_MODE_MASK; 350 351 /* set clock speed */ 352 ctrl |= mx51_ecspi_clkdiv(spi_imx, config->speed_hz, &clk); 353 spi_imx->spi_bus_clk = clk; 354 355 /* set chip select to use */ 356 ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select); 357 358 ctrl |= (config->bpw - 1) << MX51_ECSPI_CTRL_BL_OFFSET; 359 360 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select); 361 362 if (spi->mode & SPI_CPHA) 363 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select); 364 else 365 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select); 366 367 if (spi->mode & SPI_CPOL) { 368 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select); 369 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select); 370 } else { 371 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select); 372 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select); 373 } 374 if (spi->mode & SPI_CS_HIGH) 375 cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select); 376 else 377 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select); 378 379 if (spi_imx->usedma) 380 ctrl |= MX51_ECSPI_CTRL_SMC; 381 382 /* CTRL register always go first to bring out controller from reset */ 383 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 384 385 reg = readl(spi_imx->base + MX51_ECSPI_TESTREG); 386 if (spi->mode & SPI_LOOP) 387 reg |= MX51_ECSPI_TESTREG_LBC; 388 else 389 reg &= ~MX51_ECSPI_TESTREG_LBC; 390 writel(reg, spi_imx->base + MX51_ECSPI_TESTREG); 391 392 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 393 394 /* 395 * Wait until the changes in the configuration register CONFIGREG 396 * propagate into the hardware. It takes exactly one tick of the 397 * SCLK clock, but we will wait two SCLK clock just to be sure. The 398 * effect of the delay it takes for the hardware to apply changes 399 * is noticable if the SCLK clock run very slow. In such a case, if 400 * the polarity of SCLK should be inverted, the GPIO ChipSelect might 401 * be asserted before the SCLK polarity changes, which would disrupt 402 * the SPI communication as the device on the other end would consider 403 * the change of SCLK polarity as a clock tick already. 404 */ 405 delay = (2 * 1000000) / clk; 406 if (likely(delay < 10)) /* SCLK is faster than 100 kHz */ 407 udelay(delay); 408 else /* SCLK is _very_ slow */ 409 usleep_range(delay, delay + 10); 410 411 /* 412 * Configure the DMA register: setup the watermark 413 * and enable DMA request. 414 */ 415 416 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml) | 417 MX51_ECSPI_DMA_TX_WML(spi_imx->wml) | 418 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) | 419 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN | 420 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA); 421 422 return 0; 423 } 424 425 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx) 426 { 427 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR; 428 } 429 430 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx) 431 { 432 /* drain receive buffer */ 433 while (mx51_ecspi_rx_available(spi_imx)) 434 readl(spi_imx->base + MXC_CSPIRXDATA); 435 } 436 437 #define MX31_INTREG_TEEN (1 << 0) 438 #define MX31_INTREG_RREN (1 << 3) 439 440 #define MX31_CSPICTRL_ENABLE (1 << 0) 441 #define MX31_CSPICTRL_MASTER (1 << 1) 442 #define MX31_CSPICTRL_XCH (1 << 2) 443 #define MX31_CSPICTRL_POL (1 << 4) 444 #define MX31_CSPICTRL_PHA (1 << 5) 445 #define MX31_CSPICTRL_SSCTL (1 << 6) 446 #define MX31_CSPICTRL_SSPOL (1 << 7) 447 #define MX31_CSPICTRL_BC_SHIFT 8 448 #define MX35_CSPICTRL_BL_SHIFT 20 449 #define MX31_CSPICTRL_CS_SHIFT 24 450 #define MX35_CSPICTRL_CS_SHIFT 12 451 #define MX31_CSPICTRL_DR_SHIFT 16 452 453 #define MX31_CSPISTATUS 0x14 454 #define MX31_STATUS_RR (1 << 3) 455 456 /* These functions also work for the i.MX35, but be aware that 457 * the i.MX35 has a slightly different register layout for bits 458 * we do not use here. 459 */ 460 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable) 461 { 462 unsigned int val = 0; 463 464 if (enable & MXC_INT_TE) 465 val |= MX31_INTREG_TEEN; 466 if (enable & MXC_INT_RR) 467 val |= MX31_INTREG_RREN; 468 469 writel(val, spi_imx->base + MXC_CSPIINT); 470 } 471 472 static void mx31_trigger(struct spi_imx_data *spi_imx) 473 { 474 unsigned int reg; 475 476 reg = readl(spi_imx->base + MXC_CSPICTRL); 477 reg |= MX31_CSPICTRL_XCH; 478 writel(reg, spi_imx->base + MXC_CSPICTRL); 479 } 480 481 static int mx31_config(struct spi_device *spi, struct spi_imx_config *config) 482 { 483 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 484 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER; 485 486 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, config->speed_hz) << 487 MX31_CSPICTRL_DR_SHIFT; 488 489 if (is_imx35_cspi(spi_imx)) { 490 reg |= (config->bpw - 1) << MX35_CSPICTRL_BL_SHIFT; 491 reg |= MX31_CSPICTRL_SSCTL; 492 } else { 493 reg |= (config->bpw - 1) << MX31_CSPICTRL_BC_SHIFT; 494 } 495 496 if (spi->mode & SPI_CPHA) 497 reg |= MX31_CSPICTRL_PHA; 498 if (spi->mode & SPI_CPOL) 499 reg |= MX31_CSPICTRL_POL; 500 if (spi->mode & SPI_CS_HIGH) 501 reg |= MX31_CSPICTRL_SSPOL; 502 if (spi->cs_gpio < 0) 503 reg |= (spi->cs_gpio + 32) << 504 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT : 505 MX31_CSPICTRL_CS_SHIFT); 506 507 writel(reg, spi_imx->base + MXC_CSPICTRL); 508 509 return 0; 510 } 511 512 static int mx31_rx_available(struct spi_imx_data *spi_imx) 513 { 514 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR; 515 } 516 517 static void mx31_reset(struct spi_imx_data *spi_imx) 518 { 519 /* drain receive buffer */ 520 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR) 521 readl(spi_imx->base + MXC_CSPIRXDATA); 522 } 523 524 #define MX21_INTREG_RR (1 << 4) 525 #define MX21_INTREG_TEEN (1 << 9) 526 #define MX21_INTREG_RREN (1 << 13) 527 528 #define MX21_CSPICTRL_POL (1 << 5) 529 #define MX21_CSPICTRL_PHA (1 << 6) 530 #define MX21_CSPICTRL_SSPOL (1 << 8) 531 #define MX21_CSPICTRL_XCH (1 << 9) 532 #define MX21_CSPICTRL_ENABLE (1 << 10) 533 #define MX21_CSPICTRL_MASTER (1 << 11) 534 #define MX21_CSPICTRL_DR_SHIFT 14 535 #define MX21_CSPICTRL_CS_SHIFT 19 536 537 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable) 538 { 539 unsigned int val = 0; 540 541 if (enable & MXC_INT_TE) 542 val |= MX21_INTREG_TEEN; 543 if (enable & MXC_INT_RR) 544 val |= MX21_INTREG_RREN; 545 546 writel(val, spi_imx->base + MXC_CSPIINT); 547 } 548 549 static void mx21_trigger(struct spi_imx_data *spi_imx) 550 { 551 unsigned int reg; 552 553 reg = readl(spi_imx->base + MXC_CSPICTRL); 554 reg |= MX21_CSPICTRL_XCH; 555 writel(reg, spi_imx->base + MXC_CSPICTRL); 556 } 557 558 static int mx21_config(struct spi_device *spi, struct spi_imx_config *config) 559 { 560 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 561 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER; 562 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18; 563 564 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, config->speed_hz, max) << 565 MX21_CSPICTRL_DR_SHIFT; 566 reg |= config->bpw - 1; 567 568 if (spi->mode & SPI_CPHA) 569 reg |= MX21_CSPICTRL_PHA; 570 if (spi->mode & SPI_CPOL) 571 reg |= MX21_CSPICTRL_POL; 572 if (spi->mode & SPI_CS_HIGH) 573 reg |= MX21_CSPICTRL_SSPOL; 574 if (spi->cs_gpio < 0) 575 reg |= (spi->cs_gpio + 32) << MX21_CSPICTRL_CS_SHIFT; 576 577 writel(reg, spi_imx->base + MXC_CSPICTRL); 578 579 return 0; 580 } 581 582 static int mx21_rx_available(struct spi_imx_data *spi_imx) 583 { 584 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR; 585 } 586 587 static void mx21_reset(struct spi_imx_data *spi_imx) 588 { 589 writel(1, spi_imx->base + MXC_RESET); 590 } 591 592 #define MX1_INTREG_RR (1 << 3) 593 #define MX1_INTREG_TEEN (1 << 8) 594 #define MX1_INTREG_RREN (1 << 11) 595 596 #define MX1_CSPICTRL_POL (1 << 4) 597 #define MX1_CSPICTRL_PHA (1 << 5) 598 #define MX1_CSPICTRL_XCH (1 << 8) 599 #define MX1_CSPICTRL_ENABLE (1 << 9) 600 #define MX1_CSPICTRL_MASTER (1 << 10) 601 #define MX1_CSPICTRL_DR_SHIFT 13 602 603 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable) 604 { 605 unsigned int val = 0; 606 607 if (enable & MXC_INT_TE) 608 val |= MX1_INTREG_TEEN; 609 if (enable & MXC_INT_RR) 610 val |= MX1_INTREG_RREN; 611 612 writel(val, spi_imx->base + MXC_CSPIINT); 613 } 614 615 static void mx1_trigger(struct spi_imx_data *spi_imx) 616 { 617 unsigned int reg; 618 619 reg = readl(spi_imx->base + MXC_CSPICTRL); 620 reg |= MX1_CSPICTRL_XCH; 621 writel(reg, spi_imx->base + MXC_CSPICTRL); 622 } 623 624 static int mx1_config(struct spi_device *spi, struct spi_imx_config *config) 625 { 626 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 627 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER; 628 629 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, config->speed_hz) << 630 MX1_CSPICTRL_DR_SHIFT; 631 reg |= config->bpw - 1; 632 633 if (spi->mode & SPI_CPHA) 634 reg |= MX1_CSPICTRL_PHA; 635 if (spi->mode & SPI_CPOL) 636 reg |= MX1_CSPICTRL_POL; 637 638 writel(reg, spi_imx->base + MXC_CSPICTRL); 639 640 return 0; 641 } 642 643 static int mx1_rx_available(struct spi_imx_data *spi_imx) 644 { 645 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR; 646 } 647 648 static void mx1_reset(struct spi_imx_data *spi_imx) 649 { 650 writel(1, spi_imx->base + MXC_RESET); 651 } 652 653 static struct spi_imx_devtype_data imx1_cspi_devtype_data = { 654 .intctrl = mx1_intctrl, 655 .config = mx1_config, 656 .trigger = mx1_trigger, 657 .rx_available = mx1_rx_available, 658 .reset = mx1_reset, 659 .devtype = IMX1_CSPI, 660 }; 661 662 static struct spi_imx_devtype_data imx21_cspi_devtype_data = { 663 .intctrl = mx21_intctrl, 664 .config = mx21_config, 665 .trigger = mx21_trigger, 666 .rx_available = mx21_rx_available, 667 .reset = mx21_reset, 668 .devtype = IMX21_CSPI, 669 }; 670 671 static struct spi_imx_devtype_data imx27_cspi_devtype_data = { 672 /* i.mx27 cspi shares the functions with i.mx21 one */ 673 .intctrl = mx21_intctrl, 674 .config = mx21_config, 675 .trigger = mx21_trigger, 676 .rx_available = mx21_rx_available, 677 .reset = mx21_reset, 678 .devtype = IMX27_CSPI, 679 }; 680 681 static struct spi_imx_devtype_data imx31_cspi_devtype_data = { 682 .intctrl = mx31_intctrl, 683 .config = mx31_config, 684 .trigger = mx31_trigger, 685 .rx_available = mx31_rx_available, 686 .reset = mx31_reset, 687 .devtype = IMX31_CSPI, 688 }; 689 690 static struct spi_imx_devtype_data imx35_cspi_devtype_data = { 691 /* i.mx35 and later cspi shares the functions with i.mx31 one */ 692 .intctrl = mx31_intctrl, 693 .config = mx31_config, 694 .trigger = mx31_trigger, 695 .rx_available = mx31_rx_available, 696 .reset = mx31_reset, 697 .devtype = IMX35_CSPI, 698 }; 699 700 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = { 701 .intctrl = mx51_ecspi_intctrl, 702 .config = mx51_ecspi_config, 703 .trigger = mx51_ecspi_trigger, 704 .rx_available = mx51_ecspi_rx_available, 705 .reset = mx51_ecspi_reset, 706 .devtype = IMX51_ECSPI, 707 }; 708 709 static const struct platform_device_id spi_imx_devtype[] = { 710 { 711 .name = "imx1-cspi", 712 .driver_data = (kernel_ulong_t) &imx1_cspi_devtype_data, 713 }, { 714 .name = "imx21-cspi", 715 .driver_data = (kernel_ulong_t) &imx21_cspi_devtype_data, 716 }, { 717 .name = "imx27-cspi", 718 .driver_data = (kernel_ulong_t) &imx27_cspi_devtype_data, 719 }, { 720 .name = "imx31-cspi", 721 .driver_data = (kernel_ulong_t) &imx31_cspi_devtype_data, 722 }, { 723 .name = "imx35-cspi", 724 .driver_data = (kernel_ulong_t) &imx35_cspi_devtype_data, 725 }, { 726 .name = "imx51-ecspi", 727 .driver_data = (kernel_ulong_t) &imx51_ecspi_devtype_data, 728 }, { 729 /* sentinel */ 730 } 731 }; 732 733 static const struct of_device_id spi_imx_dt_ids[] = { 734 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, }, 735 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, }, 736 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, }, 737 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, }, 738 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, }, 739 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, }, 740 { /* sentinel */ } 741 }; 742 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids); 743 744 static void spi_imx_chipselect(struct spi_device *spi, int is_active) 745 { 746 int active = is_active != BITBANG_CS_INACTIVE; 747 int dev_is_lowactive = !(spi->mode & SPI_CS_HIGH); 748 749 if (!gpio_is_valid(spi->cs_gpio)) 750 return; 751 752 gpio_set_value(spi->cs_gpio, dev_is_lowactive ^ active); 753 } 754 755 static void spi_imx_push(struct spi_imx_data *spi_imx) 756 { 757 while (spi_imx->txfifo < spi_imx_get_fifosize(spi_imx)) { 758 if (!spi_imx->count) 759 break; 760 spi_imx->tx(spi_imx); 761 spi_imx->txfifo++; 762 } 763 764 spi_imx->devtype_data->trigger(spi_imx); 765 } 766 767 static irqreturn_t spi_imx_isr(int irq, void *dev_id) 768 { 769 struct spi_imx_data *spi_imx = dev_id; 770 771 while (spi_imx->devtype_data->rx_available(spi_imx)) { 772 spi_imx->rx(spi_imx); 773 spi_imx->txfifo--; 774 } 775 776 if (spi_imx->count) { 777 spi_imx_push(spi_imx); 778 return IRQ_HANDLED; 779 } 780 781 if (spi_imx->txfifo) { 782 /* No data left to push, but still waiting for rx data, 783 * enable receive data available interrupt. 784 */ 785 spi_imx->devtype_data->intctrl( 786 spi_imx, MXC_INT_RR); 787 return IRQ_HANDLED; 788 } 789 790 spi_imx->devtype_data->intctrl(spi_imx, 0); 791 complete(&spi_imx->xfer_done); 792 793 return IRQ_HANDLED; 794 } 795 796 static int spi_imx_dma_configure(struct spi_master *master, 797 int bytes_per_word) 798 { 799 int ret; 800 enum dma_slave_buswidth buswidth; 801 struct dma_slave_config rx = {}, tx = {}; 802 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 803 804 if (bytes_per_word == spi_imx->bytes_per_word) 805 /* Same as last time */ 806 return 0; 807 808 switch (bytes_per_word) { 809 case 4: 810 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 811 break; 812 case 2: 813 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 814 break; 815 case 1: 816 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 817 break; 818 default: 819 return -EINVAL; 820 } 821 822 tx.direction = DMA_MEM_TO_DEV; 823 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA; 824 tx.dst_addr_width = buswidth; 825 tx.dst_maxburst = spi_imx->wml; 826 ret = dmaengine_slave_config(master->dma_tx, &tx); 827 if (ret) { 828 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret); 829 return ret; 830 } 831 832 rx.direction = DMA_DEV_TO_MEM; 833 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA; 834 rx.src_addr_width = buswidth; 835 rx.src_maxburst = spi_imx->wml; 836 ret = dmaengine_slave_config(master->dma_rx, &rx); 837 if (ret) { 838 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret); 839 return ret; 840 } 841 842 spi_imx->bytes_per_word = bytes_per_word; 843 844 return 0; 845 } 846 847 static int spi_imx_setupxfer(struct spi_device *spi, 848 struct spi_transfer *t) 849 { 850 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 851 struct spi_imx_config config; 852 int ret; 853 854 config.bpw = t ? t->bits_per_word : spi->bits_per_word; 855 config.speed_hz = t ? t->speed_hz : spi->max_speed_hz; 856 857 if (!config.speed_hz) 858 config.speed_hz = spi->max_speed_hz; 859 if (!config.bpw) 860 config.bpw = spi->bits_per_word; 861 862 /* Initialize the functions for transfer */ 863 if (config.bpw <= 8) { 864 spi_imx->rx = spi_imx_buf_rx_u8; 865 spi_imx->tx = spi_imx_buf_tx_u8; 866 } else if (config.bpw <= 16) { 867 spi_imx->rx = spi_imx_buf_rx_u16; 868 spi_imx->tx = spi_imx_buf_tx_u16; 869 } else { 870 spi_imx->rx = spi_imx_buf_rx_u32; 871 spi_imx->tx = spi_imx_buf_tx_u32; 872 } 873 874 if (spi_imx_can_dma(spi_imx->bitbang.master, spi, t)) 875 spi_imx->usedma = 1; 876 else 877 spi_imx->usedma = 0; 878 879 if (spi_imx->usedma) { 880 ret = spi_imx_dma_configure(spi->master, 881 spi_imx_bytes_per_word(config.bpw)); 882 if (ret) 883 return ret; 884 } 885 886 spi_imx->devtype_data->config(spi, &config); 887 888 return 0; 889 } 890 891 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx) 892 { 893 struct spi_master *master = spi_imx->bitbang.master; 894 895 if (master->dma_rx) { 896 dma_release_channel(master->dma_rx); 897 master->dma_rx = NULL; 898 } 899 900 if (master->dma_tx) { 901 dma_release_channel(master->dma_tx); 902 master->dma_tx = NULL; 903 } 904 } 905 906 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx, 907 struct spi_master *master) 908 { 909 int ret; 910 911 /* use pio mode for i.mx6dl chip TKT238285 */ 912 if (of_machine_is_compatible("fsl,imx6dl")) 913 return 0; 914 915 spi_imx->wml = spi_imx_get_fifosize(spi_imx) / 2; 916 917 /* Prepare for TX DMA: */ 918 master->dma_tx = dma_request_slave_channel_reason(dev, "tx"); 919 if (IS_ERR(master->dma_tx)) { 920 ret = PTR_ERR(master->dma_tx); 921 dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret); 922 master->dma_tx = NULL; 923 goto err; 924 } 925 926 /* Prepare for RX : */ 927 master->dma_rx = dma_request_slave_channel_reason(dev, "rx"); 928 if (IS_ERR(master->dma_rx)) { 929 ret = PTR_ERR(master->dma_rx); 930 dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret); 931 master->dma_rx = NULL; 932 goto err; 933 } 934 935 spi_imx_dma_configure(master, 1); 936 937 init_completion(&spi_imx->dma_rx_completion); 938 init_completion(&spi_imx->dma_tx_completion); 939 master->can_dma = spi_imx_can_dma; 940 master->max_dma_len = MAX_SDMA_BD_BYTES; 941 spi_imx->bitbang.master->flags = SPI_MASTER_MUST_RX | 942 SPI_MASTER_MUST_TX; 943 944 return 0; 945 err: 946 spi_imx_sdma_exit(spi_imx); 947 return ret; 948 } 949 950 static void spi_imx_dma_rx_callback(void *cookie) 951 { 952 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 953 954 complete(&spi_imx->dma_rx_completion); 955 } 956 957 static void spi_imx_dma_tx_callback(void *cookie) 958 { 959 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 960 961 complete(&spi_imx->dma_tx_completion); 962 } 963 964 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size) 965 { 966 unsigned long timeout = 0; 967 968 /* Time with actual data transfer and CS change delay related to HW */ 969 timeout = (8 + 4) * size / spi_imx->spi_bus_clk; 970 971 /* Add extra second for scheduler related activities */ 972 timeout += 1; 973 974 /* Double calculated timeout */ 975 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC); 976 } 977 978 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx, 979 struct spi_transfer *transfer) 980 { 981 struct dma_async_tx_descriptor *desc_tx, *desc_rx; 982 unsigned long transfer_timeout; 983 unsigned long timeout; 984 struct spi_master *master = spi_imx->bitbang.master; 985 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg; 986 987 /* 988 * The TX DMA setup starts the transfer, so make sure RX is configured 989 * before TX. 990 */ 991 desc_rx = dmaengine_prep_slave_sg(master->dma_rx, 992 rx->sgl, rx->nents, DMA_DEV_TO_MEM, 993 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 994 if (!desc_rx) 995 return -EINVAL; 996 997 desc_rx->callback = spi_imx_dma_rx_callback; 998 desc_rx->callback_param = (void *)spi_imx; 999 dmaengine_submit(desc_rx); 1000 reinit_completion(&spi_imx->dma_rx_completion); 1001 dma_async_issue_pending(master->dma_rx); 1002 1003 desc_tx = dmaengine_prep_slave_sg(master->dma_tx, 1004 tx->sgl, tx->nents, DMA_MEM_TO_DEV, 1005 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1006 if (!desc_tx) { 1007 dmaengine_terminate_all(master->dma_tx); 1008 return -EINVAL; 1009 } 1010 1011 desc_tx->callback = spi_imx_dma_tx_callback; 1012 desc_tx->callback_param = (void *)spi_imx; 1013 dmaengine_submit(desc_tx); 1014 reinit_completion(&spi_imx->dma_tx_completion); 1015 dma_async_issue_pending(master->dma_tx); 1016 1017 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1018 1019 /* Wait SDMA to finish the data transfer.*/ 1020 timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion, 1021 transfer_timeout); 1022 if (!timeout) { 1023 dev_err(spi_imx->dev, "I/O Error in DMA TX\n"); 1024 dmaengine_terminate_all(master->dma_tx); 1025 dmaengine_terminate_all(master->dma_rx); 1026 return -ETIMEDOUT; 1027 } 1028 1029 timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion, 1030 transfer_timeout); 1031 if (!timeout) { 1032 dev_err(&master->dev, "I/O Error in DMA RX\n"); 1033 spi_imx->devtype_data->reset(spi_imx); 1034 dmaengine_terminate_all(master->dma_rx); 1035 return -ETIMEDOUT; 1036 } 1037 1038 return transfer->len; 1039 } 1040 1041 static int spi_imx_pio_transfer(struct spi_device *spi, 1042 struct spi_transfer *transfer) 1043 { 1044 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 1045 unsigned long transfer_timeout; 1046 unsigned long timeout; 1047 1048 spi_imx->tx_buf = transfer->tx_buf; 1049 spi_imx->rx_buf = transfer->rx_buf; 1050 spi_imx->count = transfer->len; 1051 spi_imx->txfifo = 0; 1052 1053 reinit_completion(&spi_imx->xfer_done); 1054 1055 spi_imx_push(spi_imx); 1056 1057 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE); 1058 1059 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1060 1061 timeout = wait_for_completion_timeout(&spi_imx->xfer_done, 1062 transfer_timeout); 1063 if (!timeout) { 1064 dev_err(&spi->dev, "I/O Error in PIO\n"); 1065 spi_imx->devtype_data->reset(spi_imx); 1066 return -ETIMEDOUT; 1067 } 1068 1069 return transfer->len; 1070 } 1071 1072 static int spi_imx_transfer(struct spi_device *spi, 1073 struct spi_transfer *transfer) 1074 { 1075 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 1076 1077 if (spi_imx->usedma) 1078 return spi_imx_dma_transfer(spi_imx, transfer); 1079 else 1080 return spi_imx_pio_transfer(spi, transfer); 1081 } 1082 1083 static int spi_imx_setup(struct spi_device *spi) 1084 { 1085 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__, 1086 spi->mode, spi->bits_per_word, spi->max_speed_hz); 1087 1088 if (gpio_is_valid(spi->cs_gpio)) 1089 gpio_direction_output(spi->cs_gpio, 1090 spi->mode & SPI_CS_HIGH ? 0 : 1); 1091 1092 spi_imx_chipselect(spi, BITBANG_CS_INACTIVE); 1093 1094 return 0; 1095 } 1096 1097 static void spi_imx_cleanup(struct spi_device *spi) 1098 { 1099 } 1100 1101 static int 1102 spi_imx_prepare_message(struct spi_master *master, struct spi_message *msg) 1103 { 1104 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 1105 int ret; 1106 1107 ret = clk_enable(spi_imx->clk_per); 1108 if (ret) 1109 return ret; 1110 1111 ret = clk_enable(spi_imx->clk_ipg); 1112 if (ret) { 1113 clk_disable(spi_imx->clk_per); 1114 return ret; 1115 } 1116 1117 return 0; 1118 } 1119 1120 static int 1121 spi_imx_unprepare_message(struct spi_master *master, struct spi_message *msg) 1122 { 1123 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 1124 1125 clk_disable(spi_imx->clk_ipg); 1126 clk_disable(spi_imx->clk_per); 1127 return 0; 1128 } 1129 1130 static int spi_imx_probe(struct platform_device *pdev) 1131 { 1132 struct device_node *np = pdev->dev.of_node; 1133 const struct of_device_id *of_id = 1134 of_match_device(spi_imx_dt_ids, &pdev->dev); 1135 struct spi_imx_master *mxc_platform_info = 1136 dev_get_platdata(&pdev->dev); 1137 struct spi_master *master; 1138 struct spi_imx_data *spi_imx; 1139 struct resource *res; 1140 int i, ret, irq; 1141 1142 if (!np && !mxc_platform_info) { 1143 dev_err(&pdev->dev, "can't get the platform data\n"); 1144 return -EINVAL; 1145 } 1146 1147 master = spi_alloc_master(&pdev->dev, sizeof(struct spi_imx_data)); 1148 if (!master) 1149 return -ENOMEM; 1150 1151 platform_set_drvdata(pdev, master); 1152 1153 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32); 1154 master->bus_num = np ? -1 : pdev->id; 1155 1156 spi_imx = spi_master_get_devdata(master); 1157 spi_imx->bitbang.master = master; 1158 spi_imx->dev = &pdev->dev; 1159 1160 spi_imx->devtype_data = of_id ? of_id->data : 1161 (struct spi_imx_devtype_data *)pdev->id_entry->driver_data; 1162 1163 if (mxc_platform_info) { 1164 master->num_chipselect = mxc_platform_info->num_chipselect; 1165 master->cs_gpios = devm_kzalloc(&master->dev, 1166 sizeof(int) * master->num_chipselect, GFP_KERNEL); 1167 if (!master->cs_gpios) 1168 return -ENOMEM; 1169 1170 for (i = 0; i < master->num_chipselect; i++) 1171 master->cs_gpios[i] = mxc_platform_info->chipselect[i]; 1172 } 1173 1174 spi_imx->bitbang.chipselect = spi_imx_chipselect; 1175 spi_imx->bitbang.setup_transfer = spi_imx_setupxfer; 1176 spi_imx->bitbang.txrx_bufs = spi_imx_transfer; 1177 spi_imx->bitbang.master->setup = spi_imx_setup; 1178 spi_imx->bitbang.master->cleanup = spi_imx_cleanup; 1179 spi_imx->bitbang.master->prepare_message = spi_imx_prepare_message; 1180 spi_imx->bitbang.master->unprepare_message = spi_imx_unprepare_message; 1181 spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1182 if (is_imx51_ecspi(spi_imx)) 1183 spi_imx->bitbang.master->mode_bits |= SPI_LOOP; 1184 1185 init_completion(&spi_imx->xfer_done); 1186 1187 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1188 spi_imx->base = devm_ioremap_resource(&pdev->dev, res); 1189 if (IS_ERR(spi_imx->base)) { 1190 ret = PTR_ERR(spi_imx->base); 1191 goto out_master_put; 1192 } 1193 spi_imx->base_phys = res->start; 1194 1195 irq = platform_get_irq(pdev, 0); 1196 if (irq < 0) { 1197 ret = irq; 1198 goto out_master_put; 1199 } 1200 1201 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0, 1202 dev_name(&pdev->dev), spi_imx); 1203 if (ret) { 1204 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret); 1205 goto out_master_put; 1206 } 1207 1208 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 1209 if (IS_ERR(spi_imx->clk_ipg)) { 1210 ret = PTR_ERR(spi_imx->clk_ipg); 1211 goto out_master_put; 1212 } 1213 1214 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per"); 1215 if (IS_ERR(spi_imx->clk_per)) { 1216 ret = PTR_ERR(spi_imx->clk_per); 1217 goto out_master_put; 1218 } 1219 1220 ret = clk_prepare_enable(spi_imx->clk_per); 1221 if (ret) 1222 goto out_master_put; 1223 1224 ret = clk_prepare_enable(spi_imx->clk_ipg); 1225 if (ret) 1226 goto out_put_per; 1227 1228 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per); 1229 /* 1230 * Only validated on i.mx6 now, can remove the constrain if validated on 1231 * other chips. 1232 */ 1233 if (is_imx51_ecspi(spi_imx)) { 1234 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, master); 1235 if (ret == -EPROBE_DEFER) 1236 goto out_clk_put; 1237 1238 if (ret < 0) 1239 dev_err(&pdev->dev, "dma setup error %d, use pio\n", 1240 ret); 1241 } 1242 1243 spi_imx->devtype_data->reset(spi_imx); 1244 1245 spi_imx->devtype_data->intctrl(spi_imx, 0); 1246 1247 master->dev.of_node = pdev->dev.of_node; 1248 ret = spi_bitbang_start(&spi_imx->bitbang); 1249 if (ret) { 1250 dev_err(&pdev->dev, "bitbang start failed with %d\n", ret); 1251 goto out_clk_put; 1252 } 1253 1254 for (i = 0; i < master->num_chipselect; i++) { 1255 if (!gpio_is_valid(master->cs_gpios[i])) 1256 continue; 1257 1258 ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i], 1259 DRIVER_NAME); 1260 if (ret) { 1261 dev_err(&pdev->dev, "Can't get CS GPIO %i\n", 1262 master->cs_gpios[i]); 1263 goto out_clk_put; 1264 } 1265 } 1266 1267 dev_info(&pdev->dev, "probed\n"); 1268 1269 clk_disable(spi_imx->clk_ipg); 1270 clk_disable(spi_imx->clk_per); 1271 return ret; 1272 1273 out_clk_put: 1274 clk_disable_unprepare(spi_imx->clk_ipg); 1275 out_put_per: 1276 clk_disable_unprepare(spi_imx->clk_per); 1277 out_master_put: 1278 spi_master_put(master); 1279 1280 return ret; 1281 } 1282 1283 static int spi_imx_remove(struct platform_device *pdev) 1284 { 1285 struct spi_master *master = platform_get_drvdata(pdev); 1286 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 1287 1288 spi_bitbang_stop(&spi_imx->bitbang); 1289 1290 writel(0, spi_imx->base + MXC_CSPICTRL); 1291 clk_unprepare(spi_imx->clk_ipg); 1292 clk_unprepare(spi_imx->clk_per); 1293 spi_imx_sdma_exit(spi_imx); 1294 spi_master_put(master); 1295 1296 return 0; 1297 } 1298 1299 static struct platform_driver spi_imx_driver = { 1300 .driver = { 1301 .name = DRIVER_NAME, 1302 .of_match_table = spi_imx_dt_ids, 1303 }, 1304 .id_table = spi_imx_devtype, 1305 .probe = spi_imx_probe, 1306 .remove = spi_imx_remove, 1307 }; 1308 module_platform_driver(spi_imx_driver); 1309 1310 MODULE_DESCRIPTION("SPI Master Controller driver"); 1311 MODULE_AUTHOR("Sascha Hauer, Pengutronix"); 1312 MODULE_LICENSE("GPL"); 1313 MODULE_ALIAS("platform:" DRIVER_NAME); 1314