xref: /openbmc/linux/drivers/spi/spi-imx.c (revision bc5aa3a0)
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright (C) 2008 Juergen Beisert
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the
16  * Free Software Foundation
17  * 51 Franklin Street, Fifth Floor
18  * Boston, MA  02110-1301, USA.
19  */
20 
21 #include <linux/clk.h>
22 #include <linux/completion.h>
23 #include <linux/delay.h>
24 #include <linux/dmaengine.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/err.h>
27 #include <linux/gpio.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/irq.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/platform_device.h>
34 #include <linux/slab.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/spi_bitbang.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/of_gpio.h>
41 
42 #include <linux/platform_data/dma-imx.h>
43 #include <linux/platform_data/spi-imx.h>
44 
45 #define DRIVER_NAME "spi_imx"
46 
47 #define MXC_CSPIRXDATA		0x00
48 #define MXC_CSPITXDATA		0x04
49 #define MXC_CSPICTRL		0x08
50 #define MXC_CSPIINT		0x0c
51 #define MXC_RESET		0x1c
52 
53 /* generic defines to abstract from the different register layouts */
54 #define MXC_INT_RR	(1 << 0) /* Receive data ready interrupt */
55 #define MXC_INT_TE	(1 << 1) /* Transmit FIFO empty interrupt */
56 
57 /* The maximum  bytes that a sdma BD can transfer.*/
58 #define MAX_SDMA_BD_BYTES  (1 << 15)
59 struct spi_imx_config {
60 	unsigned int speed_hz;
61 	unsigned int bpw;
62 };
63 
64 enum spi_imx_devtype {
65 	IMX1_CSPI,
66 	IMX21_CSPI,
67 	IMX27_CSPI,
68 	IMX31_CSPI,
69 	IMX35_CSPI,	/* CSPI on all i.mx except above */
70 	IMX51_ECSPI,	/* ECSPI on i.mx51 and later */
71 };
72 
73 struct spi_imx_data;
74 
75 struct spi_imx_devtype_data {
76 	void (*intctrl)(struct spi_imx_data *, int);
77 	int (*config)(struct spi_device *, struct spi_imx_config *);
78 	void (*trigger)(struct spi_imx_data *);
79 	int (*rx_available)(struct spi_imx_data *);
80 	void (*reset)(struct spi_imx_data *);
81 	enum spi_imx_devtype devtype;
82 };
83 
84 struct spi_imx_data {
85 	struct spi_bitbang bitbang;
86 	struct device *dev;
87 
88 	struct completion xfer_done;
89 	void __iomem *base;
90 	unsigned long base_phys;
91 
92 	struct clk *clk_per;
93 	struct clk *clk_ipg;
94 	unsigned long spi_clk;
95 	unsigned int spi_bus_clk;
96 
97 	unsigned int bytes_per_word;
98 
99 	unsigned int count;
100 	void (*tx)(struct spi_imx_data *);
101 	void (*rx)(struct spi_imx_data *);
102 	void *rx_buf;
103 	const void *tx_buf;
104 	unsigned int txfifo; /* number of words pushed in tx FIFO */
105 
106 	/* DMA */
107 	bool usedma;
108 	u32 wml;
109 	struct completion dma_rx_completion;
110 	struct completion dma_tx_completion;
111 
112 	const struct spi_imx_devtype_data *devtype_data;
113 };
114 
115 static inline int is_imx27_cspi(struct spi_imx_data *d)
116 {
117 	return d->devtype_data->devtype == IMX27_CSPI;
118 }
119 
120 static inline int is_imx35_cspi(struct spi_imx_data *d)
121 {
122 	return d->devtype_data->devtype == IMX35_CSPI;
123 }
124 
125 static inline int is_imx51_ecspi(struct spi_imx_data *d)
126 {
127 	return d->devtype_data->devtype == IMX51_ECSPI;
128 }
129 
130 static inline unsigned spi_imx_get_fifosize(struct spi_imx_data *d)
131 {
132 	return is_imx51_ecspi(d) ? 64 : 8;
133 }
134 
135 #define MXC_SPI_BUF_RX(type)						\
136 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx)		\
137 {									\
138 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);	\
139 									\
140 	if (spi_imx->rx_buf) {						\
141 		*(type *)spi_imx->rx_buf = val;				\
142 		spi_imx->rx_buf += sizeof(type);			\
143 	}								\
144 }
145 
146 #define MXC_SPI_BUF_TX(type)						\
147 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx)		\
148 {									\
149 	type val = 0;							\
150 									\
151 	if (spi_imx->tx_buf) {						\
152 		val = *(type *)spi_imx->tx_buf;				\
153 		spi_imx->tx_buf += sizeof(type);			\
154 	}								\
155 									\
156 	spi_imx->count -= sizeof(type);					\
157 									\
158 	writel(val, spi_imx->base + MXC_CSPITXDATA);			\
159 }
160 
161 MXC_SPI_BUF_RX(u8)
162 MXC_SPI_BUF_TX(u8)
163 MXC_SPI_BUF_RX(u16)
164 MXC_SPI_BUF_TX(u16)
165 MXC_SPI_BUF_RX(u32)
166 MXC_SPI_BUF_TX(u32)
167 
168 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
169  * (which is currently not the case in this driver)
170  */
171 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
172 	256, 384, 512, 768, 1024};
173 
174 /* MX21, MX27 */
175 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
176 		unsigned int fspi, unsigned int max)
177 {
178 	int i;
179 
180 	for (i = 2; i < max; i++)
181 		if (fspi * mxc_clkdivs[i] >= fin)
182 			return i;
183 
184 	return max;
185 }
186 
187 /* MX1, MX31, MX35, MX51 CSPI */
188 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
189 		unsigned int fspi)
190 {
191 	int i, div = 4;
192 
193 	for (i = 0; i < 7; i++) {
194 		if (fspi * div >= fin)
195 			return i;
196 		div <<= 1;
197 	}
198 
199 	return 7;
200 }
201 
202 static int spi_imx_bytes_per_word(const int bpw)
203 {
204 	return DIV_ROUND_UP(bpw, BITS_PER_BYTE);
205 }
206 
207 static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi,
208 			 struct spi_transfer *transfer)
209 {
210 	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
211 	unsigned int bpw;
212 
213 	if (!master->dma_rx)
214 		return false;
215 
216 	if (!transfer)
217 		return false;
218 
219 	bpw = transfer->bits_per_word;
220 	if (!bpw)
221 		bpw = spi->bits_per_word;
222 
223 	bpw = spi_imx_bytes_per_word(bpw);
224 
225 	if (bpw != 1 && bpw != 2 && bpw != 4)
226 		return false;
227 
228 	if (transfer->len < spi_imx->wml * bpw)
229 		return false;
230 
231 	if (transfer->len % (spi_imx->wml * bpw))
232 		return false;
233 
234 	return true;
235 }
236 
237 #define MX51_ECSPI_CTRL		0x08
238 #define MX51_ECSPI_CTRL_ENABLE		(1 <<  0)
239 #define MX51_ECSPI_CTRL_XCH		(1 <<  2)
240 #define MX51_ECSPI_CTRL_SMC		(1 << 3)
241 #define MX51_ECSPI_CTRL_MODE_MASK	(0xf << 4)
242 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET	8
243 #define MX51_ECSPI_CTRL_PREDIV_OFFSET	12
244 #define MX51_ECSPI_CTRL_CS(cs)		((cs) << 18)
245 #define MX51_ECSPI_CTRL_BL_OFFSET	20
246 
247 #define MX51_ECSPI_CONFIG	0x0c
248 #define MX51_ECSPI_CONFIG_SCLKPHA(cs)	(1 << ((cs) +  0))
249 #define MX51_ECSPI_CONFIG_SCLKPOL(cs)	(1 << ((cs) +  4))
250 #define MX51_ECSPI_CONFIG_SBBCTRL(cs)	(1 << ((cs) +  8))
251 #define MX51_ECSPI_CONFIG_SSBPOL(cs)	(1 << ((cs) + 12))
252 #define MX51_ECSPI_CONFIG_SCLKCTL(cs)	(1 << ((cs) + 20))
253 
254 #define MX51_ECSPI_INT		0x10
255 #define MX51_ECSPI_INT_TEEN		(1 <<  0)
256 #define MX51_ECSPI_INT_RREN		(1 <<  3)
257 
258 #define MX51_ECSPI_DMA      0x14
259 #define MX51_ECSPI_DMA_TX_WML(wml)	((wml) & 0x3f)
260 #define MX51_ECSPI_DMA_RX_WML(wml)	(((wml) & 0x3f) << 16)
261 #define MX51_ECSPI_DMA_RXT_WML(wml)	(((wml) & 0x3f) << 24)
262 
263 #define MX51_ECSPI_DMA_TEDEN		(1 << 7)
264 #define MX51_ECSPI_DMA_RXDEN		(1 << 23)
265 #define MX51_ECSPI_DMA_RXTDEN		(1 << 31)
266 
267 #define MX51_ECSPI_STAT		0x18
268 #define MX51_ECSPI_STAT_RR		(1 <<  3)
269 
270 #define MX51_ECSPI_TESTREG	0x20
271 #define MX51_ECSPI_TESTREG_LBC	BIT(31)
272 
273 /* MX51 eCSPI */
274 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
275 				      unsigned int fspi, unsigned int *fres)
276 {
277 	/*
278 	 * there are two 4-bit dividers, the pre-divider divides by
279 	 * $pre, the post-divider by 2^$post
280 	 */
281 	unsigned int pre, post;
282 	unsigned int fin = spi_imx->spi_clk;
283 
284 	if (unlikely(fspi > fin))
285 		return 0;
286 
287 	post = fls(fin) - fls(fspi);
288 	if (fin > fspi << post)
289 		post++;
290 
291 	/* now we have: (fin <= fspi << post) with post being minimal */
292 
293 	post = max(4U, post) - 4;
294 	if (unlikely(post > 0xf)) {
295 		dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
296 				fspi, fin);
297 		return 0xff;
298 	}
299 
300 	pre = DIV_ROUND_UP(fin, fspi << post) - 1;
301 
302 	dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
303 			__func__, fin, fspi, post, pre);
304 
305 	/* Resulting frequency for the SCLK line. */
306 	*fres = (fin / (pre + 1)) >> post;
307 
308 	return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
309 		(post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
310 }
311 
312 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
313 {
314 	unsigned val = 0;
315 
316 	if (enable & MXC_INT_TE)
317 		val |= MX51_ECSPI_INT_TEEN;
318 
319 	if (enable & MXC_INT_RR)
320 		val |= MX51_ECSPI_INT_RREN;
321 
322 	writel(val, spi_imx->base + MX51_ECSPI_INT);
323 }
324 
325 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
326 {
327 	u32 reg;
328 
329 	reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
330 	reg |= MX51_ECSPI_CTRL_XCH;
331 	writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
332 }
333 
334 static int mx51_ecspi_config(struct spi_device *spi,
335 			     struct spi_imx_config *config)
336 {
337 	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
338 	u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
339 	u32 clk = config->speed_hz, delay, reg;
340 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
341 
342 	/*
343 	 * The hardware seems to have a race condition when changing modes. The
344 	 * current assumption is that the selection of the channel arrives
345 	 * earlier in the hardware than the mode bits when they are written at
346 	 * the same time.
347 	 * So set master mode for all channels as we do not support slave mode.
348 	 */
349 	ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
350 
351 	/* set clock speed */
352 	ctrl |= mx51_ecspi_clkdiv(spi_imx, config->speed_hz, &clk);
353 	spi_imx->spi_bus_clk = clk;
354 
355 	/* set chip select to use */
356 	ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select);
357 
358 	ctrl |= (config->bpw - 1) << MX51_ECSPI_CTRL_BL_OFFSET;
359 
360 	cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
361 
362 	if (spi->mode & SPI_CPHA)
363 		cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
364 	else
365 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
366 
367 	if (spi->mode & SPI_CPOL) {
368 		cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
369 		cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
370 	} else {
371 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
372 		cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
373 	}
374 	if (spi->mode & SPI_CS_HIGH)
375 		cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
376 	else
377 		cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
378 
379 	if (spi_imx->usedma)
380 		ctrl |= MX51_ECSPI_CTRL_SMC;
381 
382 	/* CTRL register always go first to bring out controller from reset */
383 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
384 
385 	reg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
386 	if (spi->mode & SPI_LOOP)
387 		reg |= MX51_ECSPI_TESTREG_LBC;
388 	else
389 		reg &= ~MX51_ECSPI_TESTREG_LBC;
390 	writel(reg, spi_imx->base + MX51_ECSPI_TESTREG);
391 
392 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
393 
394 	/*
395 	 * Wait until the changes in the configuration register CONFIGREG
396 	 * propagate into the hardware. It takes exactly one tick of the
397 	 * SCLK clock, but we will wait two SCLK clock just to be sure. The
398 	 * effect of the delay it takes for the hardware to apply changes
399 	 * is noticable if the SCLK clock run very slow. In such a case, if
400 	 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
401 	 * be asserted before the SCLK polarity changes, which would disrupt
402 	 * the SPI communication as the device on the other end would consider
403 	 * the change of SCLK polarity as a clock tick already.
404 	 */
405 	delay = (2 * 1000000) / clk;
406 	if (likely(delay < 10))	/* SCLK is faster than 100 kHz */
407 		udelay(delay);
408 	else			/* SCLK is _very_ slow */
409 		usleep_range(delay, delay + 10);
410 
411 	/*
412 	 * Configure the DMA register: setup the watermark
413 	 * and enable DMA request.
414 	 */
415 
416 	writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml) |
417 		MX51_ECSPI_DMA_TX_WML(spi_imx->wml) |
418 		MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
419 		MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
420 		MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
421 
422 	return 0;
423 }
424 
425 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
426 {
427 	return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
428 }
429 
430 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
431 {
432 	/* drain receive buffer */
433 	while (mx51_ecspi_rx_available(spi_imx))
434 		readl(spi_imx->base + MXC_CSPIRXDATA);
435 }
436 
437 #define MX31_INTREG_TEEN	(1 << 0)
438 #define MX31_INTREG_RREN	(1 << 3)
439 
440 #define MX31_CSPICTRL_ENABLE	(1 << 0)
441 #define MX31_CSPICTRL_MASTER	(1 << 1)
442 #define MX31_CSPICTRL_XCH	(1 << 2)
443 #define MX31_CSPICTRL_POL	(1 << 4)
444 #define MX31_CSPICTRL_PHA	(1 << 5)
445 #define MX31_CSPICTRL_SSCTL	(1 << 6)
446 #define MX31_CSPICTRL_SSPOL	(1 << 7)
447 #define MX31_CSPICTRL_BC_SHIFT	8
448 #define MX35_CSPICTRL_BL_SHIFT	20
449 #define MX31_CSPICTRL_CS_SHIFT	24
450 #define MX35_CSPICTRL_CS_SHIFT	12
451 #define MX31_CSPICTRL_DR_SHIFT	16
452 
453 #define MX31_CSPISTATUS		0x14
454 #define MX31_STATUS_RR		(1 << 3)
455 
456 /* These functions also work for the i.MX35, but be aware that
457  * the i.MX35 has a slightly different register layout for bits
458  * we do not use here.
459  */
460 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
461 {
462 	unsigned int val = 0;
463 
464 	if (enable & MXC_INT_TE)
465 		val |= MX31_INTREG_TEEN;
466 	if (enable & MXC_INT_RR)
467 		val |= MX31_INTREG_RREN;
468 
469 	writel(val, spi_imx->base + MXC_CSPIINT);
470 }
471 
472 static void mx31_trigger(struct spi_imx_data *spi_imx)
473 {
474 	unsigned int reg;
475 
476 	reg = readl(spi_imx->base + MXC_CSPICTRL);
477 	reg |= MX31_CSPICTRL_XCH;
478 	writel(reg, spi_imx->base + MXC_CSPICTRL);
479 }
480 
481 static int mx31_config(struct spi_device *spi, struct spi_imx_config *config)
482 {
483 	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
484 	unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
485 
486 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, config->speed_hz) <<
487 		MX31_CSPICTRL_DR_SHIFT;
488 
489 	if (is_imx35_cspi(spi_imx)) {
490 		reg |= (config->bpw - 1) << MX35_CSPICTRL_BL_SHIFT;
491 		reg |= MX31_CSPICTRL_SSCTL;
492 	} else {
493 		reg |= (config->bpw - 1) << MX31_CSPICTRL_BC_SHIFT;
494 	}
495 
496 	if (spi->mode & SPI_CPHA)
497 		reg |= MX31_CSPICTRL_PHA;
498 	if (spi->mode & SPI_CPOL)
499 		reg |= MX31_CSPICTRL_POL;
500 	if (spi->mode & SPI_CS_HIGH)
501 		reg |= MX31_CSPICTRL_SSPOL;
502 	if (spi->cs_gpio < 0)
503 		reg |= (spi->cs_gpio + 32) <<
504 			(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
505 						  MX31_CSPICTRL_CS_SHIFT);
506 
507 	writel(reg, spi_imx->base + MXC_CSPICTRL);
508 
509 	return 0;
510 }
511 
512 static int mx31_rx_available(struct spi_imx_data *spi_imx)
513 {
514 	return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
515 }
516 
517 static void mx31_reset(struct spi_imx_data *spi_imx)
518 {
519 	/* drain receive buffer */
520 	while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
521 		readl(spi_imx->base + MXC_CSPIRXDATA);
522 }
523 
524 #define MX21_INTREG_RR		(1 << 4)
525 #define MX21_INTREG_TEEN	(1 << 9)
526 #define MX21_INTREG_RREN	(1 << 13)
527 
528 #define MX21_CSPICTRL_POL	(1 << 5)
529 #define MX21_CSPICTRL_PHA	(1 << 6)
530 #define MX21_CSPICTRL_SSPOL	(1 << 8)
531 #define MX21_CSPICTRL_XCH	(1 << 9)
532 #define MX21_CSPICTRL_ENABLE	(1 << 10)
533 #define MX21_CSPICTRL_MASTER	(1 << 11)
534 #define MX21_CSPICTRL_DR_SHIFT	14
535 #define MX21_CSPICTRL_CS_SHIFT	19
536 
537 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
538 {
539 	unsigned int val = 0;
540 
541 	if (enable & MXC_INT_TE)
542 		val |= MX21_INTREG_TEEN;
543 	if (enable & MXC_INT_RR)
544 		val |= MX21_INTREG_RREN;
545 
546 	writel(val, spi_imx->base + MXC_CSPIINT);
547 }
548 
549 static void mx21_trigger(struct spi_imx_data *spi_imx)
550 {
551 	unsigned int reg;
552 
553 	reg = readl(spi_imx->base + MXC_CSPICTRL);
554 	reg |= MX21_CSPICTRL_XCH;
555 	writel(reg, spi_imx->base + MXC_CSPICTRL);
556 }
557 
558 static int mx21_config(struct spi_device *spi, struct spi_imx_config *config)
559 {
560 	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
561 	unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
562 	unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
563 
564 	reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, config->speed_hz, max) <<
565 		MX21_CSPICTRL_DR_SHIFT;
566 	reg |= config->bpw - 1;
567 
568 	if (spi->mode & SPI_CPHA)
569 		reg |= MX21_CSPICTRL_PHA;
570 	if (spi->mode & SPI_CPOL)
571 		reg |= MX21_CSPICTRL_POL;
572 	if (spi->mode & SPI_CS_HIGH)
573 		reg |= MX21_CSPICTRL_SSPOL;
574 	if (spi->cs_gpio < 0)
575 		reg |= (spi->cs_gpio + 32) << MX21_CSPICTRL_CS_SHIFT;
576 
577 	writel(reg, spi_imx->base + MXC_CSPICTRL);
578 
579 	return 0;
580 }
581 
582 static int mx21_rx_available(struct spi_imx_data *spi_imx)
583 {
584 	return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
585 }
586 
587 static void mx21_reset(struct spi_imx_data *spi_imx)
588 {
589 	writel(1, spi_imx->base + MXC_RESET);
590 }
591 
592 #define MX1_INTREG_RR		(1 << 3)
593 #define MX1_INTREG_TEEN		(1 << 8)
594 #define MX1_INTREG_RREN		(1 << 11)
595 
596 #define MX1_CSPICTRL_POL	(1 << 4)
597 #define MX1_CSPICTRL_PHA	(1 << 5)
598 #define MX1_CSPICTRL_XCH	(1 << 8)
599 #define MX1_CSPICTRL_ENABLE	(1 << 9)
600 #define MX1_CSPICTRL_MASTER	(1 << 10)
601 #define MX1_CSPICTRL_DR_SHIFT	13
602 
603 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
604 {
605 	unsigned int val = 0;
606 
607 	if (enable & MXC_INT_TE)
608 		val |= MX1_INTREG_TEEN;
609 	if (enable & MXC_INT_RR)
610 		val |= MX1_INTREG_RREN;
611 
612 	writel(val, spi_imx->base + MXC_CSPIINT);
613 }
614 
615 static void mx1_trigger(struct spi_imx_data *spi_imx)
616 {
617 	unsigned int reg;
618 
619 	reg = readl(spi_imx->base + MXC_CSPICTRL);
620 	reg |= MX1_CSPICTRL_XCH;
621 	writel(reg, spi_imx->base + MXC_CSPICTRL);
622 }
623 
624 static int mx1_config(struct spi_device *spi, struct spi_imx_config *config)
625 {
626 	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
627 	unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER;
628 
629 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, config->speed_hz) <<
630 		MX1_CSPICTRL_DR_SHIFT;
631 	reg |= config->bpw - 1;
632 
633 	if (spi->mode & SPI_CPHA)
634 		reg |= MX1_CSPICTRL_PHA;
635 	if (spi->mode & SPI_CPOL)
636 		reg |= MX1_CSPICTRL_POL;
637 
638 	writel(reg, spi_imx->base + MXC_CSPICTRL);
639 
640 	return 0;
641 }
642 
643 static int mx1_rx_available(struct spi_imx_data *spi_imx)
644 {
645 	return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
646 }
647 
648 static void mx1_reset(struct spi_imx_data *spi_imx)
649 {
650 	writel(1, spi_imx->base + MXC_RESET);
651 }
652 
653 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
654 	.intctrl = mx1_intctrl,
655 	.config = mx1_config,
656 	.trigger = mx1_trigger,
657 	.rx_available = mx1_rx_available,
658 	.reset = mx1_reset,
659 	.devtype = IMX1_CSPI,
660 };
661 
662 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
663 	.intctrl = mx21_intctrl,
664 	.config = mx21_config,
665 	.trigger = mx21_trigger,
666 	.rx_available = mx21_rx_available,
667 	.reset = mx21_reset,
668 	.devtype = IMX21_CSPI,
669 };
670 
671 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
672 	/* i.mx27 cspi shares the functions with i.mx21 one */
673 	.intctrl = mx21_intctrl,
674 	.config = mx21_config,
675 	.trigger = mx21_trigger,
676 	.rx_available = mx21_rx_available,
677 	.reset = mx21_reset,
678 	.devtype = IMX27_CSPI,
679 };
680 
681 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
682 	.intctrl = mx31_intctrl,
683 	.config = mx31_config,
684 	.trigger = mx31_trigger,
685 	.rx_available = mx31_rx_available,
686 	.reset = mx31_reset,
687 	.devtype = IMX31_CSPI,
688 };
689 
690 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
691 	/* i.mx35 and later cspi shares the functions with i.mx31 one */
692 	.intctrl = mx31_intctrl,
693 	.config = mx31_config,
694 	.trigger = mx31_trigger,
695 	.rx_available = mx31_rx_available,
696 	.reset = mx31_reset,
697 	.devtype = IMX35_CSPI,
698 };
699 
700 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
701 	.intctrl = mx51_ecspi_intctrl,
702 	.config = mx51_ecspi_config,
703 	.trigger = mx51_ecspi_trigger,
704 	.rx_available = mx51_ecspi_rx_available,
705 	.reset = mx51_ecspi_reset,
706 	.devtype = IMX51_ECSPI,
707 };
708 
709 static const struct platform_device_id spi_imx_devtype[] = {
710 	{
711 		.name = "imx1-cspi",
712 		.driver_data = (kernel_ulong_t) &imx1_cspi_devtype_data,
713 	}, {
714 		.name = "imx21-cspi",
715 		.driver_data = (kernel_ulong_t) &imx21_cspi_devtype_data,
716 	}, {
717 		.name = "imx27-cspi",
718 		.driver_data = (kernel_ulong_t) &imx27_cspi_devtype_data,
719 	}, {
720 		.name = "imx31-cspi",
721 		.driver_data = (kernel_ulong_t) &imx31_cspi_devtype_data,
722 	}, {
723 		.name = "imx35-cspi",
724 		.driver_data = (kernel_ulong_t) &imx35_cspi_devtype_data,
725 	}, {
726 		.name = "imx51-ecspi",
727 		.driver_data = (kernel_ulong_t) &imx51_ecspi_devtype_data,
728 	}, {
729 		/* sentinel */
730 	}
731 };
732 
733 static const struct of_device_id spi_imx_dt_ids[] = {
734 	{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
735 	{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
736 	{ .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
737 	{ .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
738 	{ .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
739 	{ .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
740 	{ /* sentinel */ }
741 };
742 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
743 
744 static void spi_imx_chipselect(struct spi_device *spi, int is_active)
745 {
746 	int active = is_active != BITBANG_CS_INACTIVE;
747 	int dev_is_lowactive = !(spi->mode & SPI_CS_HIGH);
748 
749 	if (!gpio_is_valid(spi->cs_gpio))
750 		return;
751 
752 	gpio_set_value(spi->cs_gpio, dev_is_lowactive ^ active);
753 }
754 
755 static void spi_imx_push(struct spi_imx_data *spi_imx)
756 {
757 	while (spi_imx->txfifo < spi_imx_get_fifosize(spi_imx)) {
758 		if (!spi_imx->count)
759 			break;
760 		spi_imx->tx(spi_imx);
761 		spi_imx->txfifo++;
762 	}
763 
764 	spi_imx->devtype_data->trigger(spi_imx);
765 }
766 
767 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
768 {
769 	struct spi_imx_data *spi_imx = dev_id;
770 
771 	while (spi_imx->devtype_data->rx_available(spi_imx)) {
772 		spi_imx->rx(spi_imx);
773 		spi_imx->txfifo--;
774 	}
775 
776 	if (spi_imx->count) {
777 		spi_imx_push(spi_imx);
778 		return IRQ_HANDLED;
779 	}
780 
781 	if (spi_imx->txfifo) {
782 		/* No data left to push, but still waiting for rx data,
783 		 * enable receive data available interrupt.
784 		 */
785 		spi_imx->devtype_data->intctrl(
786 				spi_imx, MXC_INT_RR);
787 		return IRQ_HANDLED;
788 	}
789 
790 	spi_imx->devtype_data->intctrl(spi_imx, 0);
791 	complete(&spi_imx->xfer_done);
792 
793 	return IRQ_HANDLED;
794 }
795 
796 static int spi_imx_dma_configure(struct spi_master *master,
797 				 int bytes_per_word)
798 {
799 	int ret;
800 	enum dma_slave_buswidth buswidth;
801 	struct dma_slave_config rx = {}, tx = {};
802 	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
803 
804 	if (bytes_per_word == spi_imx->bytes_per_word)
805 		/* Same as last time */
806 		return 0;
807 
808 	switch (bytes_per_word) {
809 	case 4:
810 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
811 		break;
812 	case 2:
813 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
814 		break;
815 	case 1:
816 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
817 		break;
818 	default:
819 		return -EINVAL;
820 	}
821 
822 	tx.direction = DMA_MEM_TO_DEV;
823 	tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
824 	tx.dst_addr_width = buswidth;
825 	tx.dst_maxburst = spi_imx->wml;
826 	ret = dmaengine_slave_config(master->dma_tx, &tx);
827 	if (ret) {
828 		dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
829 		return ret;
830 	}
831 
832 	rx.direction = DMA_DEV_TO_MEM;
833 	rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
834 	rx.src_addr_width = buswidth;
835 	rx.src_maxburst = spi_imx->wml;
836 	ret = dmaengine_slave_config(master->dma_rx, &rx);
837 	if (ret) {
838 		dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
839 		return ret;
840 	}
841 
842 	spi_imx->bytes_per_word = bytes_per_word;
843 
844 	return 0;
845 }
846 
847 static int spi_imx_setupxfer(struct spi_device *spi,
848 				 struct spi_transfer *t)
849 {
850 	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
851 	struct spi_imx_config config;
852 	int ret;
853 
854 	config.bpw = t ? t->bits_per_word : spi->bits_per_word;
855 	config.speed_hz  = t ? t->speed_hz : spi->max_speed_hz;
856 
857 	if (!config.speed_hz)
858 		config.speed_hz = spi->max_speed_hz;
859 	if (!config.bpw)
860 		config.bpw = spi->bits_per_word;
861 
862 	/* Initialize the functions for transfer */
863 	if (config.bpw <= 8) {
864 		spi_imx->rx = spi_imx_buf_rx_u8;
865 		spi_imx->tx = spi_imx_buf_tx_u8;
866 	} else if (config.bpw <= 16) {
867 		spi_imx->rx = spi_imx_buf_rx_u16;
868 		spi_imx->tx = spi_imx_buf_tx_u16;
869 	} else {
870 		spi_imx->rx = spi_imx_buf_rx_u32;
871 		spi_imx->tx = spi_imx_buf_tx_u32;
872 	}
873 
874 	if (spi_imx_can_dma(spi_imx->bitbang.master, spi, t))
875 		spi_imx->usedma = 1;
876 	else
877 		spi_imx->usedma = 0;
878 
879 	if (spi_imx->usedma) {
880 		ret = spi_imx_dma_configure(spi->master,
881 					    spi_imx_bytes_per_word(config.bpw));
882 		if (ret)
883 			return ret;
884 	}
885 
886 	spi_imx->devtype_data->config(spi, &config);
887 
888 	return 0;
889 }
890 
891 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
892 {
893 	struct spi_master *master = spi_imx->bitbang.master;
894 
895 	if (master->dma_rx) {
896 		dma_release_channel(master->dma_rx);
897 		master->dma_rx = NULL;
898 	}
899 
900 	if (master->dma_tx) {
901 		dma_release_channel(master->dma_tx);
902 		master->dma_tx = NULL;
903 	}
904 }
905 
906 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
907 			     struct spi_master *master)
908 {
909 	int ret;
910 
911 	/* use pio mode for i.mx6dl chip TKT238285 */
912 	if (of_machine_is_compatible("fsl,imx6dl"))
913 		return 0;
914 
915 	spi_imx->wml = spi_imx_get_fifosize(spi_imx) / 2;
916 
917 	/* Prepare for TX DMA: */
918 	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
919 	if (IS_ERR(master->dma_tx)) {
920 		ret = PTR_ERR(master->dma_tx);
921 		dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
922 		master->dma_tx = NULL;
923 		goto err;
924 	}
925 
926 	/* Prepare for RX : */
927 	master->dma_rx = dma_request_slave_channel_reason(dev, "rx");
928 	if (IS_ERR(master->dma_rx)) {
929 		ret = PTR_ERR(master->dma_rx);
930 		dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
931 		master->dma_rx = NULL;
932 		goto err;
933 	}
934 
935 	spi_imx_dma_configure(master, 1);
936 
937 	init_completion(&spi_imx->dma_rx_completion);
938 	init_completion(&spi_imx->dma_tx_completion);
939 	master->can_dma = spi_imx_can_dma;
940 	master->max_dma_len = MAX_SDMA_BD_BYTES;
941 	spi_imx->bitbang.master->flags = SPI_MASTER_MUST_RX |
942 					 SPI_MASTER_MUST_TX;
943 
944 	return 0;
945 err:
946 	spi_imx_sdma_exit(spi_imx);
947 	return ret;
948 }
949 
950 static void spi_imx_dma_rx_callback(void *cookie)
951 {
952 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
953 
954 	complete(&spi_imx->dma_rx_completion);
955 }
956 
957 static void spi_imx_dma_tx_callback(void *cookie)
958 {
959 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
960 
961 	complete(&spi_imx->dma_tx_completion);
962 }
963 
964 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
965 {
966 	unsigned long timeout = 0;
967 
968 	/* Time with actual data transfer and CS change delay related to HW */
969 	timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
970 
971 	/* Add extra second for scheduler related activities */
972 	timeout += 1;
973 
974 	/* Double calculated timeout */
975 	return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
976 }
977 
978 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
979 				struct spi_transfer *transfer)
980 {
981 	struct dma_async_tx_descriptor *desc_tx, *desc_rx;
982 	unsigned long transfer_timeout;
983 	unsigned long timeout;
984 	struct spi_master *master = spi_imx->bitbang.master;
985 	struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
986 
987 	/*
988 	 * The TX DMA setup starts the transfer, so make sure RX is configured
989 	 * before TX.
990 	 */
991 	desc_rx = dmaengine_prep_slave_sg(master->dma_rx,
992 				rx->sgl, rx->nents, DMA_DEV_TO_MEM,
993 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
994 	if (!desc_rx)
995 		return -EINVAL;
996 
997 	desc_rx->callback = spi_imx_dma_rx_callback;
998 	desc_rx->callback_param = (void *)spi_imx;
999 	dmaengine_submit(desc_rx);
1000 	reinit_completion(&spi_imx->dma_rx_completion);
1001 	dma_async_issue_pending(master->dma_rx);
1002 
1003 	desc_tx = dmaengine_prep_slave_sg(master->dma_tx,
1004 				tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1005 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1006 	if (!desc_tx) {
1007 		dmaengine_terminate_all(master->dma_tx);
1008 		return -EINVAL;
1009 	}
1010 
1011 	desc_tx->callback = spi_imx_dma_tx_callback;
1012 	desc_tx->callback_param = (void *)spi_imx;
1013 	dmaengine_submit(desc_tx);
1014 	reinit_completion(&spi_imx->dma_tx_completion);
1015 	dma_async_issue_pending(master->dma_tx);
1016 
1017 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1018 
1019 	/* Wait SDMA to finish the data transfer.*/
1020 	timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1021 						transfer_timeout);
1022 	if (!timeout) {
1023 		dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1024 		dmaengine_terminate_all(master->dma_tx);
1025 		dmaengine_terminate_all(master->dma_rx);
1026 		return -ETIMEDOUT;
1027 	}
1028 
1029 	timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1030 					      transfer_timeout);
1031 	if (!timeout) {
1032 		dev_err(&master->dev, "I/O Error in DMA RX\n");
1033 		spi_imx->devtype_data->reset(spi_imx);
1034 		dmaengine_terminate_all(master->dma_rx);
1035 		return -ETIMEDOUT;
1036 	}
1037 
1038 	return transfer->len;
1039 }
1040 
1041 static int spi_imx_pio_transfer(struct spi_device *spi,
1042 				struct spi_transfer *transfer)
1043 {
1044 	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
1045 	unsigned long transfer_timeout;
1046 	unsigned long timeout;
1047 
1048 	spi_imx->tx_buf = transfer->tx_buf;
1049 	spi_imx->rx_buf = transfer->rx_buf;
1050 	spi_imx->count = transfer->len;
1051 	spi_imx->txfifo = 0;
1052 
1053 	reinit_completion(&spi_imx->xfer_done);
1054 
1055 	spi_imx_push(spi_imx);
1056 
1057 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1058 
1059 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1060 
1061 	timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
1062 					      transfer_timeout);
1063 	if (!timeout) {
1064 		dev_err(&spi->dev, "I/O Error in PIO\n");
1065 		spi_imx->devtype_data->reset(spi_imx);
1066 		return -ETIMEDOUT;
1067 	}
1068 
1069 	return transfer->len;
1070 }
1071 
1072 static int spi_imx_transfer(struct spi_device *spi,
1073 				struct spi_transfer *transfer)
1074 {
1075 	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
1076 
1077 	if (spi_imx->usedma)
1078 		return spi_imx_dma_transfer(spi_imx, transfer);
1079 	else
1080 		return spi_imx_pio_transfer(spi, transfer);
1081 }
1082 
1083 static int spi_imx_setup(struct spi_device *spi)
1084 {
1085 	dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1086 		 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1087 
1088 	if (gpio_is_valid(spi->cs_gpio))
1089 		gpio_direction_output(spi->cs_gpio,
1090 				      spi->mode & SPI_CS_HIGH ? 0 : 1);
1091 
1092 	spi_imx_chipselect(spi, BITBANG_CS_INACTIVE);
1093 
1094 	return 0;
1095 }
1096 
1097 static void spi_imx_cleanup(struct spi_device *spi)
1098 {
1099 }
1100 
1101 static int
1102 spi_imx_prepare_message(struct spi_master *master, struct spi_message *msg)
1103 {
1104 	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1105 	int ret;
1106 
1107 	ret = clk_enable(spi_imx->clk_per);
1108 	if (ret)
1109 		return ret;
1110 
1111 	ret = clk_enable(spi_imx->clk_ipg);
1112 	if (ret) {
1113 		clk_disable(spi_imx->clk_per);
1114 		return ret;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 static int
1121 spi_imx_unprepare_message(struct spi_master *master, struct spi_message *msg)
1122 {
1123 	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1124 
1125 	clk_disable(spi_imx->clk_ipg);
1126 	clk_disable(spi_imx->clk_per);
1127 	return 0;
1128 }
1129 
1130 static int spi_imx_probe(struct platform_device *pdev)
1131 {
1132 	struct device_node *np = pdev->dev.of_node;
1133 	const struct of_device_id *of_id =
1134 			of_match_device(spi_imx_dt_ids, &pdev->dev);
1135 	struct spi_imx_master *mxc_platform_info =
1136 			dev_get_platdata(&pdev->dev);
1137 	struct spi_master *master;
1138 	struct spi_imx_data *spi_imx;
1139 	struct resource *res;
1140 	int i, ret, irq;
1141 
1142 	if (!np && !mxc_platform_info) {
1143 		dev_err(&pdev->dev, "can't get the platform data\n");
1144 		return -EINVAL;
1145 	}
1146 
1147 	master = spi_alloc_master(&pdev->dev, sizeof(struct spi_imx_data));
1148 	if (!master)
1149 		return -ENOMEM;
1150 
1151 	platform_set_drvdata(pdev, master);
1152 
1153 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1154 	master->bus_num = np ? -1 : pdev->id;
1155 
1156 	spi_imx = spi_master_get_devdata(master);
1157 	spi_imx->bitbang.master = master;
1158 	spi_imx->dev = &pdev->dev;
1159 
1160 	spi_imx->devtype_data = of_id ? of_id->data :
1161 		(struct spi_imx_devtype_data *)pdev->id_entry->driver_data;
1162 
1163 	if (mxc_platform_info) {
1164 		master->num_chipselect = mxc_platform_info->num_chipselect;
1165 		master->cs_gpios = devm_kzalloc(&master->dev,
1166 			sizeof(int) * master->num_chipselect, GFP_KERNEL);
1167 		if (!master->cs_gpios)
1168 			return -ENOMEM;
1169 
1170 		for (i = 0; i < master->num_chipselect; i++)
1171 			master->cs_gpios[i] = mxc_platform_info->chipselect[i];
1172  	}
1173 
1174 	spi_imx->bitbang.chipselect = spi_imx_chipselect;
1175 	spi_imx->bitbang.setup_transfer = spi_imx_setupxfer;
1176 	spi_imx->bitbang.txrx_bufs = spi_imx_transfer;
1177 	spi_imx->bitbang.master->setup = spi_imx_setup;
1178 	spi_imx->bitbang.master->cleanup = spi_imx_cleanup;
1179 	spi_imx->bitbang.master->prepare_message = spi_imx_prepare_message;
1180 	spi_imx->bitbang.master->unprepare_message = spi_imx_unprepare_message;
1181 	spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1182 	if (is_imx51_ecspi(spi_imx))
1183 		spi_imx->bitbang.master->mode_bits |= SPI_LOOP;
1184 
1185 	init_completion(&spi_imx->xfer_done);
1186 
1187 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1188 	spi_imx->base = devm_ioremap_resource(&pdev->dev, res);
1189 	if (IS_ERR(spi_imx->base)) {
1190 		ret = PTR_ERR(spi_imx->base);
1191 		goto out_master_put;
1192 	}
1193 	spi_imx->base_phys = res->start;
1194 
1195 	irq = platform_get_irq(pdev, 0);
1196 	if (irq < 0) {
1197 		ret = irq;
1198 		goto out_master_put;
1199 	}
1200 
1201 	ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1202 			       dev_name(&pdev->dev), spi_imx);
1203 	if (ret) {
1204 		dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1205 		goto out_master_put;
1206 	}
1207 
1208 	spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1209 	if (IS_ERR(spi_imx->clk_ipg)) {
1210 		ret = PTR_ERR(spi_imx->clk_ipg);
1211 		goto out_master_put;
1212 	}
1213 
1214 	spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1215 	if (IS_ERR(spi_imx->clk_per)) {
1216 		ret = PTR_ERR(spi_imx->clk_per);
1217 		goto out_master_put;
1218 	}
1219 
1220 	ret = clk_prepare_enable(spi_imx->clk_per);
1221 	if (ret)
1222 		goto out_master_put;
1223 
1224 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1225 	if (ret)
1226 		goto out_put_per;
1227 
1228 	spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1229 	/*
1230 	 * Only validated on i.mx6 now, can remove the constrain if validated on
1231 	 * other chips.
1232 	 */
1233 	if (is_imx51_ecspi(spi_imx)) {
1234 		ret = spi_imx_sdma_init(&pdev->dev, spi_imx, master);
1235 		if (ret == -EPROBE_DEFER)
1236 			goto out_clk_put;
1237 
1238 		if (ret < 0)
1239 			dev_err(&pdev->dev, "dma setup error %d, use pio\n",
1240 				ret);
1241 	}
1242 
1243 	spi_imx->devtype_data->reset(spi_imx);
1244 
1245 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1246 
1247 	master->dev.of_node = pdev->dev.of_node;
1248 	ret = spi_bitbang_start(&spi_imx->bitbang);
1249 	if (ret) {
1250 		dev_err(&pdev->dev, "bitbang start failed with %d\n", ret);
1251 		goto out_clk_put;
1252 	}
1253 
1254 	for (i = 0; i < master->num_chipselect; i++) {
1255 		if (!gpio_is_valid(master->cs_gpios[i]))
1256 			continue;
1257 
1258 		ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i],
1259 					DRIVER_NAME);
1260 		if (ret) {
1261 			dev_err(&pdev->dev, "Can't get CS GPIO %i\n",
1262 				master->cs_gpios[i]);
1263 			goto out_clk_put;
1264 		}
1265 	}
1266 
1267 	dev_info(&pdev->dev, "probed\n");
1268 
1269 	clk_disable(spi_imx->clk_ipg);
1270 	clk_disable(spi_imx->clk_per);
1271 	return ret;
1272 
1273 out_clk_put:
1274 	clk_disable_unprepare(spi_imx->clk_ipg);
1275 out_put_per:
1276 	clk_disable_unprepare(spi_imx->clk_per);
1277 out_master_put:
1278 	spi_master_put(master);
1279 
1280 	return ret;
1281 }
1282 
1283 static int spi_imx_remove(struct platform_device *pdev)
1284 {
1285 	struct spi_master *master = platform_get_drvdata(pdev);
1286 	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1287 
1288 	spi_bitbang_stop(&spi_imx->bitbang);
1289 
1290 	writel(0, spi_imx->base + MXC_CSPICTRL);
1291 	clk_unprepare(spi_imx->clk_ipg);
1292 	clk_unprepare(spi_imx->clk_per);
1293 	spi_imx_sdma_exit(spi_imx);
1294 	spi_master_put(master);
1295 
1296 	return 0;
1297 }
1298 
1299 static struct platform_driver spi_imx_driver = {
1300 	.driver = {
1301 		   .name = DRIVER_NAME,
1302 		   .of_match_table = spi_imx_dt_ids,
1303 		   },
1304 	.id_table = spi_imx_devtype,
1305 	.probe = spi_imx_probe,
1306 	.remove = spi_imx_remove,
1307 };
1308 module_platform_driver(spi_imx_driver);
1309 
1310 MODULE_DESCRIPTION("SPI Master Controller driver");
1311 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
1312 MODULE_LICENSE("GPL");
1313 MODULE_ALIAS("platform:" DRIVER_NAME);
1314