xref: /openbmc/linux/drivers/spi/spi-imx.c (revision 513dbc10)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4 
5 #include <linux/clk.h>
6 #include <linux/completion.h>
7 #include <linux/delay.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irq.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/types.h>
22 #include <linux/of.h>
23 #include <linux/property.h>
24 
25 #include <linux/dma/imx-dma.h>
26 
27 #define DRIVER_NAME "spi_imx"
28 
29 static bool use_dma = true;
30 module_param(use_dma, bool, 0644);
31 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
32 
33 /* define polling limits */
34 static unsigned int polling_limit_us = 30;
35 module_param(polling_limit_us, uint, 0664);
36 MODULE_PARM_DESC(polling_limit_us,
37 		 "time in us to run a transfer in polling mode\n");
38 
39 #define MXC_RPM_TIMEOUT		2000 /* 2000ms */
40 
41 #define MXC_CSPIRXDATA		0x00
42 #define MXC_CSPITXDATA		0x04
43 #define MXC_CSPICTRL		0x08
44 #define MXC_CSPIINT		0x0c
45 #define MXC_RESET		0x1c
46 
47 /* generic defines to abstract from the different register layouts */
48 #define MXC_INT_RR	(1 << 0) /* Receive data ready interrupt */
49 #define MXC_INT_TE	(1 << 1) /* Transmit FIFO empty interrupt */
50 #define MXC_INT_RDR	BIT(4) /* Receive date threshold interrupt */
51 
52 /* The maximum bytes that a sdma BD can transfer. */
53 #define MAX_SDMA_BD_BYTES (1 << 15)
54 #define MX51_ECSPI_CTRL_MAX_BURST	512
55 /* The maximum bytes that IMX53_ECSPI can transfer in target mode.*/
56 #define MX53_MAX_TRANSFER_BYTES		512
57 
58 enum spi_imx_devtype {
59 	IMX1_CSPI,
60 	IMX21_CSPI,
61 	IMX27_CSPI,
62 	IMX31_CSPI,
63 	IMX35_CSPI,	/* CSPI on all i.mx except above */
64 	IMX51_ECSPI,	/* ECSPI on i.mx51 */
65 	IMX53_ECSPI,	/* ECSPI on i.mx53 and later */
66 };
67 
68 struct spi_imx_data;
69 
70 struct spi_imx_devtype_data {
71 	void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
72 	int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
73 	int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi);
74 	void (*trigger)(struct spi_imx_data *spi_imx);
75 	int (*rx_available)(struct spi_imx_data *spi_imx);
76 	void (*reset)(struct spi_imx_data *spi_imx);
77 	void (*setup_wml)(struct spi_imx_data *spi_imx);
78 	void (*disable)(struct spi_imx_data *spi_imx);
79 	bool has_dmamode;
80 	bool has_targetmode;
81 	unsigned int fifo_size;
82 	bool dynamic_burst;
83 	/*
84 	 * ERR009165 fixed or not:
85 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
86 	 */
87 	bool tx_glitch_fixed;
88 	enum spi_imx_devtype devtype;
89 };
90 
91 struct spi_imx_data {
92 	struct spi_controller *controller;
93 	struct device *dev;
94 
95 	struct completion xfer_done;
96 	void __iomem *base;
97 	unsigned long base_phys;
98 
99 	struct clk *clk_per;
100 	struct clk *clk_ipg;
101 	unsigned long spi_clk;
102 	unsigned int spi_bus_clk;
103 
104 	unsigned int bits_per_word;
105 	unsigned int spi_drctl;
106 
107 	unsigned int count, remainder;
108 	void (*tx)(struct spi_imx_data *spi_imx);
109 	void (*rx)(struct spi_imx_data *spi_imx);
110 	void *rx_buf;
111 	const void *tx_buf;
112 	unsigned int txfifo; /* number of words pushed in tx FIFO */
113 	unsigned int dynamic_burst;
114 	bool rx_only;
115 
116 	/* Target mode */
117 	bool target_mode;
118 	bool target_aborted;
119 	unsigned int target_burst;
120 
121 	/* DMA */
122 	bool usedma;
123 	u32 wml;
124 	struct completion dma_rx_completion;
125 	struct completion dma_tx_completion;
126 
127 	const struct spi_imx_devtype_data *devtype_data;
128 };
129 
130 static inline int is_imx27_cspi(struct spi_imx_data *d)
131 {
132 	return d->devtype_data->devtype == IMX27_CSPI;
133 }
134 
135 static inline int is_imx35_cspi(struct spi_imx_data *d)
136 {
137 	return d->devtype_data->devtype == IMX35_CSPI;
138 }
139 
140 static inline int is_imx51_ecspi(struct spi_imx_data *d)
141 {
142 	return d->devtype_data->devtype == IMX51_ECSPI;
143 }
144 
145 static inline int is_imx53_ecspi(struct spi_imx_data *d)
146 {
147 	return d->devtype_data->devtype == IMX53_ECSPI;
148 }
149 
150 #define MXC_SPI_BUF_RX(type)						\
151 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx)		\
152 {									\
153 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);	\
154 									\
155 	if (spi_imx->rx_buf) {						\
156 		*(type *)spi_imx->rx_buf = val;				\
157 		spi_imx->rx_buf += sizeof(type);			\
158 	}								\
159 									\
160 	spi_imx->remainder -= sizeof(type);				\
161 }
162 
163 #define MXC_SPI_BUF_TX(type)						\
164 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx)		\
165 {									\
166 	type val = 0;							\
167 									\
168 	if (spi_imx->tx_buf) {						\
169 		val = *(type *)spi_imx->tx_buf;				\
170 		spi_imx->tx_buf += sizeof(type);			\
171 	}								\
172 									\
173 	spi_imx->count -= sizeof(type);					\
174 									\
175 	writel(val, spi_imx->base + MXC_CSPITXDATA);			\
176 }
177 
178 MXC_SPI_BUF_RX(u8)
179 MXC_SPI_BUF_TX(u8)
180 MXC_SPI_BUF_RX(u16)
181 MXC_SPI_BUF_TX(u16)
182 MXC_SPI_BUF_RX(u32)
183 MXC_SPI_BUF_TX(u32)
184 
185 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
186  * (which is currently not the case in this driver)
187  */
188 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
189 	256, 384, 512, 768, 1024};
190 
191 /* MX21, MX27 */
192 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
193 		unsigned int fspi, unsigned int max, unsigned int *fres)
194 {
195 	int i;
196 
197 	for (i = 2; i < max; i++)
198 		if (fspi * mxc_clkdivs[i] >= fin)
199 			break;
200 
201 	*fres = fin / mxc_clkdivs[i];
202 	return i;
203 }
204 
205 /* MX1, MX31, MX35, MX51 CSPI */
206 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
207 		unsigned int fspi, unsigned int *fres)
208 {
209 	int i, div = 4;
210 
211 	for (i = 0; i < 7; i++) {
212 		if (fspi * div >= fin)
213 			goto out;
214 		div <<= 1;
215 	}
216 
217 out:
218 	*fres = fin / div;
219 	return i;
220 }
221 
222 static int spi_imx_bytes_per_word(const int bits_per_word)
223 {
224 	if (bits_per_word <= 8)
225 		return 1;
226 	else if (bits_per_word <= 16)
227 		return 2;
228 	else
229 		return 4;
230 }
231 
232 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
233 			 struct spi_transfer *transfer)
234 {
235 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
236 
237 	if (!use_dma || controller->fallback)
238 		return false;
239 
240 	if (!controller->dma_rx)
241 		return false;
242 
243 	if (spi_imx->target_mode)
244 		return false;
245 
246 	if (transfer->len < spi_imx->devtype_data->fifo_size)
247 		return false;
248 
249 	spi_imx->dynamic_burst = 0;
250 
251 	return true;
252 }
253 
254 /*
255  * Note the number of natively supported chip selects for MX51 is 4. Some
256  * devices may have less actual SS pins but the register map supports 4. When
257  * using gpio chip selects the cs values passed into the macros below can go
258  * outside the range 0 - 3. We therefore need to limit the cs value to avoid
259  * corrupting bits outside the allocated locations.
260  *
261  * The simplest way to do this is to just mask the cs bits to 2 bits. This
262  * still allows all 4 native chip selects to work as well as gpio chip selects
263  * (which can use any of the 4 chip select configurations).
264  */
265 
266 #define MX51_ECSPI_CTRL		0x08
267 #define MX51_ECSPI_CTRL_ENABLE		(1 <<  0)
268 #define MX51_ECSPI_CTRL_XCH		(1 <<  2)
269 #define MX51_ECSPI_CTRL_SMC		(1 << 3)
270 #define MX51_ECSPI_CTRL_MODE_MASK	(0xf << 4)
271 #define MX51_ECSPI_CTRL_DRCTL(drctl)	((drctl) << 16)
272 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET	8
273 #define MX51_ECSPI_CTRL_PREDIV_OFFSET	12
274 #define MX51_ECSPI_CTRL_CS(cs)		((cs & 3) << 18)
275 #define MX51_ECSPI_CTRL_BL_OFFSET	20
276 #define MX51_ECSPI_CTRL_BL_MASK		(0xfff << 20)
277 
278 #define MX51_ECSPI_CONFIG	0x0c
279 #define MX51_ECSPI_CONFIG_SCLKPHA(cs)	(1 << ((cs & 3) +  0))
280 #define MX51_ECSPI_CONFIG_SCLKPOL(cs)	(1 << ((cs & 3) +  4))
281 #define MX51_ECSPI_CONFIG_SBBCTRL(cs)	(1 << ((cs & 3) +  8))
282 #define MX51_ECSPI_CONFIG_SSBPOL(cs)	(1 << ((cs & 3) + 12))
283 #define MX51_ECSPI_CONFIG_DATACTL(cs)	(1 << ((cs & 3) + 16))
284 #define MX51_ECSPI_CONFIG_SCLKCTL(cs)	(1 << ((cs & 3) + 20))
285 
286 #define MX51_ECSPI_INT		0x10
287 #define MX51_ECSPI_INT_TEEN		(1 <<  0)
288 #define MX51_ECSPI_INT_RREN		(1 <<  3)
289 #define MX51_ECSPI_INT_RDREN		(1 <<  4)
290 
291 #define MX51_ECSPI_DMA		0x14
292 #define MX51_ECSPI_DMA_TX_WML(wml)	((wml) & 0x3f)
293 #define MX51_ECSPI_DMA_RX_WML(wml)	(((wml) & 0x3f) << 16)
294 #define MX51_ECSPI_DMA_RXT_WML(wml)	(((wml) & 0x3f) << 24)
295 
296 #define MX51_ECSPI_DMA_TEDEN		(1 << 7)
297 #define MX51_ECSPI_DMA_RXDEN		(1 << 23)
298 #define MX51_ECSPI_DMA_RXTDEN		(1 << 31)
299 
300 #define MX51_ECSPI_STAT		0x18
301 #define MX51_ECSPI_STAT_RR		(1 <<  3)
302 
303 #define MX51_ECSPI_TESTREG	0x20
304 #define MX51_ECSPI_TESTREG_LBC	BIT(31)
305 
306 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
307 {
308 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
309 
310 	if (spi_imx->rx_buf) {
311 #ifdef __LITTLE_ENDIAN
312 		unsigned int bytes_per_word;
313 
314 		bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
315 		if (bytes_per_word == 1)
316 			swab32s(&val);
317 		else if (bytes_per_word == 2)
318 			swahw32s(&val);
319 #endif
320 		*(u32 *)spi_imx->rx_buf = val;
321 		spi_imx->rx_buf += sizeof(u32);
322 	}
323 
324 	spi_imx->remainder -= sizeof(u32);
325 }
326 
327 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
328 {
329 	int unaligned;
330 	u32 val;
331 
332 	unaligned = spi_imx->remainder % 4;
333 
334 	if (!unaligned) {
335 		spi_imx_buf_rx_swap_u32(spi_imx);
336 		return;
337 	}
338 
339 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
340 		spi_imx_buf_rx_u16(spi_imx);
341 		return;
342 	}
343 
344 	val = readl(spi_imx->base + MXC_CSPIRXDATA);
345 
346 	while (unaligned--) {
347 		if (spi_imx->rx_buf) {
348 			*(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
349 			spi_imx->rx_buf++;
350 		}
351 		spi_imx->remainder--;
352 	}
353 }
354 
355 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
356 {
357 	u32 val = 0;
358 #ifdef __LITTLE_ENDIAN
359 	unsigned int bytes_per_word;
360 #endif
361 
362 	if (spi_imx->tx_buf) {
363 		val = *(u32 *)spi_imx->tx_buf;
364 		spi_imx->tx_buf += sizeof(u32);
365 	}
366 
367 	spi_imx->count -= sizeof(u32);
368 #ifdef __LITTLE_ENDIAN
369 	bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
370 
371 	if (bytes_per_word == 1)
372 		swab32s(&val);
373 	else if (bytes_per_word == 2)
374 		swahw32s(&val);
375 #endif
376 	writel(val, spi_imx->base + MXC_CSPITXDATA);
377 }
378 
379 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
380 {
381 	int unaligned;
382 	u32 val = 0;
383 
384 	unaligned = spi_imx->count % 4;
385 
386 	if (!unaligned) {
387 		spi_imx_buf_tx_swap_u32(spi_imx);
388 		return;
389 	}
390 
391 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
392 		spi_imx_buf_tx_u16(spi_imx);
393 		return;
394 	}
395 
396 	while (unaligned--) {
397 		if (spi_imx->tx_buf) {
398 			val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
399 			spi_imx->tx_buf++;
400 		}
401 		spi_imx->count--;
402 	}
403 
404 	writel(val, spi_imx->base + MXC_CSPITXDATA);
405 }
406 
407 static void mx53_ecspi_rx_target(struct spi_imx_data *spi_imx)
408 {
409 	u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
410 
411 	if (spi_imx->rx_buf) {
412 		int n_bytes = spi_imx->target_burst % sizeof(val);
413 
414 		if (!n_bytes)
415 			n_bytes = sizeof(val);
416 
417 		memcpy(spi_imx->rx_buf,
418 		       ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
419 
420 		spi_imx->rx_buf += n_bytes;
421 		spi_imx->target_burst -= n_bytes;
422 	}
423 
424 	spi_imx->remainder -= sizeof(u32);
425 }
426 
427 static void mx53_ecspi_tx_target(struct spi_imx_data *spi_imx)
428 {
429 	u32 val = 0;
430 	int n_bytes = spi_imx->count % sizeof(val);
431 
432 	if (!n_bytes)
433 		n_bytes = sizeof(val);
434 
435 	if (spi_imx->tx_buf) {
436 		memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
437 		       spi_imx->tx_buf, n_bytes);
438 		val = cpu_to_be32(val);
439 		spi_imx->tx_buf += n_bytes;
440 	}
441 
442 	spi_imx->count -= n_bytes;
443 
444 	writel(val, spi_imx->base + MXC_CSPITXDATA);
445 }
446 
447 /* MX51 eCSPI */
448 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
449 				      unsigned int fspi, unsigned int *fres)
450 {
451 	/*
452 	 * there are two 4-bit dividers, the pre-divider divides by
453 	 * $pre, the post-divider by 2^$post
454 	 */
455 	unsigned int pre, post;
456 	unsigned int fin = spi_imx->spi_clk;
457 
458 	fspi = min(fspi, fin);
459 
460 	post = fls(fin) - fls(fspi);
461 	if (fin > fspi << post)
462 		post++;
463 
464 	/* now we have: (fin <= fspi << post) with post being minimal */
465 
466 	post = max(4U, post) - 4;
467 	if (unlikely(post > 0xf)) {
468 		dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
469 				fspi, fin);
470 		return 0xff;
471 	}
472 
473 	pre = DIV_ROUND_UP(fin, fspi << post) - 1;
474 
475 	dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
476 			__func__, fin, fspi, post, pre);
477 
478 	/* Resulting frequency for the SCLK line. */
479 	*fres = (fin / (pre + 1)) >> post;
480 
481 	return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
482 		(post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
483 }
484 
485 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
486 {
487 	unsigned int val = 0;
488 
489 	if (enable & MXC_INT_TE)
490 		val |= MX51_ECSPI_INT_TEEN;
491 
492 	if (enable & MXC_INT_RR)
493 		val |= MX51_ECSPI_INT_RREN;
494 
495 	if (enable & MXC_INT_RDR)
496 		val |= MX51_ECSPI_INT_RDREN;
497 
498 	writel(val, spi_imx->base + MX51_ECSPI_INT);
499 }
500 
501 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
502 {
503 	u32 reg;
504 
505 	reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
506 	reg |= MX51_ECSPI_CTRL_XCH;
507 	writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
508 }
509 
510 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
511 {
512 	u32 ctrl;
513 
514 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
515 	ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
516 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
517 }
518 
519 static int mx51_ecspi_channel(const struct spi_device *spi)
520 {
521 	if (!spi_get_csgpiod(spi, 0))
522 		return spi_get_chipselect(spi, 0);
523 	return spi->controller->unused_native_cs;
524 }
525 
526 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
527 				      struct spi_message *msg)
528 {
529 	struct spi_device *spi = msg->spi;
530 	struct spi_transfer *xfer;
531 	u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
532 	u32 min_speed_hz = ~0U;
533 	u32 testreg, delay;
534 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
535 	u32 current_cfg = cfg;
536 	int channel = mx51_ecspi_channel(spi);
537 
538 	/* set Host or Target mode */
539 	if (spi_imx->target_mode)
540 		ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
541 	else
542 		ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
543 
544 	/*
545 	 * Enable SPI_RDY handling (falling edge/level triggered).
546 	 */
547 	if (spi->mode & SPI_READY)
548 		ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
549 
550 	/* set chip select to use */
551 	ctrl |= MX51_ECSPI_CTRL_CS(channel);
552 
553 	/*
554 	 * The ctrl register must be written first, with the EN bit set other
555 	 * registers must not be written to.
556 	 */
557 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
558 
559 	testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
560 	if (spi->mode & SPI_LOOP)
561 		testreg |= MX51_ECSPI_TESTREG_LBC;
562 	else
563 		testreg &= ~MX51_ECSPI_TESTREG_LBC;
564 	writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
565 
566 	/*
567 	 * eCSPI burst completion by Chip Select signal in Target mode
568 	 * is not functional for imx53 Soc, config SPI burst completed when
569 	 * BURST_LENGTH + 1 bits are received
570 	 */
571 	if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
572 		cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel);
573 	else
574 		cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel);
575 
576 	if (spi->mode & SPI_CPOL) {
577 		cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel);
578 		cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel);
579 	} else {
580 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel);
581 		cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel);
582 	}
583 
584 	if (spi->mode & SPI_MOSI_IDLE_LOW)
585 		cfg |= MX51_ECSPI_CONFIG_DATACTL(channel);
586 	else
587 		cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel);
588 
589 	if (spi->mode & SPI_CS_HIGH)
590 		cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel);
591 	else
592 		cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel);
593 
594 	if (cfg == current_cfg)
595 		return 0;
596 
597 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
598 
599 	/*
600 	 * Wait until the changes in the configuration register CONFIGREG
601 	 * propagate into the hardware. It takes exactly one tick of the
602 	 * SCLK clock, but we will wait two SCLK clock just to be sure. The
603 	 * effect of the delay it takes for the hardware to apply changes
604 	 * is noticable if the SCLK clock run very slow. In such a case, if
605 	 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
606 	 * be asserted before the SCLK polarity changes, which would disrupt
607 	 * the SPI communication as the device on the other end would consider
608 	 * the change of SCLK polarity as a clock tick already.
609 	 *
610 	 * Because spi_imx->spi_bus_clk is only set in prepare_message
611 	 * callback, iterate over all the transfers in spi_message, find the
612 	 * one with lowest bus frequency, and use that bus frequency for the
613 	 * delay calculation. In case all transfers have speed_hz == 0, then
614 	 * min_speed_hz is ~0 and the resulting delay is zero.
615 	 */
616 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
617 		if (!xfer->speed_hz)
618 			continue;
619 		min_speed_hz = min(xfer->speed_hz, min_speed_hz);
620 	}
621 
622 	delay = (2 * 1000000) / min_speed_hz;
623 	if (likely(delay < 10))	/* SCLK is faster than 200 kHz */
624 		udelay(delay);
625 	else			/* SCLK is _very_ slow */
626 		usleep_range(delay, delay + 10);
627 
628 	return 0;
629 }
630 
631 static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
632 				struct spi_device *spi)
633 {
634 	bool cpha = (spi->mode & SPI_CPHA);
635 	bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
636 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
637 	int channel = mx51_ecspi_channel(spi);
638 
639 	/* Flip cpha logical value iff flip_cpha */
640 	cpha ^= flip_cpha;
641 
642 	if (cpha)
643 		cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel);
644 	else
645 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel);
646 
647 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
648 }
649 
650 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
651 				       struct spi_device *spi)
652 {
653 	u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
654 	u32 clk;
655 
656 	/* Clear BL field and set the right value */
657 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
658 	if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
659 		ctrl |= (spi_imx->target_burst * 8 - 1)
660 			<< MX51_ECSPI_CTRL_BL_OFFSET;
661 	else {
662 		if (spi_imx->count >= 512)
663 			ctrl |= 0xFFF << MX51_ECSPI_CTRL_BL_OFFSET;
664 		else
665 			ctrl |= (spi_imx->count * spi_imx->bits_per_word - 1)
666 				<< MX51_ECSPI_CTRL_BL_OFFSET;
667 	}
668 
669 	/* set clock speed */
670 	ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
671 		  0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
672 	ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
673 	spi_imx->spi_bus_clk = clk;
674 
675 	mx51_configure_cpha(spi_imx, spi);
676 
677 	/*
678 	 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
679 	 * before i.mx6ul.
680 	 */
681 	if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
682 		ctrl |= MX51_ECSPI_CTRL_SMC;
683 	else
684 		ctrl &= ~MX51_ECSPI_CTRL_SMC;
685 
686 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
687 
688 	return 0;
689 }
690 
691 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
692 {
693 	u32 tx_wml = 0;
694 
695 	if (spi_imx->devtype_data->tx_glitch_fixed)
696 		tx_wml = spi_imx->wml;
697 	/*
698 	 * Configure the DMA register: setup the watermark
699 	 * and enable DMA request.
700 	 */
701 	writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
702 		MX51_ECSPI_DMA_TX_WML(tx_wml) |
703 		MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
704 		MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
705 		MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
706 }
707 
708 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
709 {
710 	return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
711 }
712 
713 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
714 {
715 	/* drain receive buffer */
716 	while (mx51_ecspi_rx_available(spi_imx))
717 		readl(spi_imx->base + MXC_CSPIRXDATA);
718 }
719 
720 #define MX31_INTREG_TEEN	(1 << 0)
721 #define MX31_INTREG_RREN	(1 << 3)
722 
723 #define MX31_CSPICTRL_ENABLE	(1 << 0)
724 #define MX31_CSPICTRL_HOST	(1 << 1)
725 #define MX31_CSPICTRL_XCH	(1 << 2)
726 #define MX31_CSPICTRL_SMC	(1 << 3)
727 #define MX31_CSPICTRL_POL	(1 << 4)
728 #define MX31_CSPICTRL_PHA	(1 << 5)
729 #define MX31_CSPICTRL_SSCTL	(1 << 6)
730 #define MX31_CSPICTRL_SSPOL	(1 << 7)
731 #define MX31_CSPICTRL_BC_SHIFT	8
732 #define MX35_CSPICTRL_BL_SHIFT	20
733 #define MX31_CSPICTRL_CS_SHIFT	24
734 #define MX35_CSPICTRL_CS_SHIFT	12
735 #define MX31_CSPICTRL_DR_SHIFT	16
736 
737 #define MX31_CSPI_DMAREG	0x10
738 #define MX31_DMAREG_RH_DEN	(1<<4)
739 #define MX31_DMAREG_TH_DEN	(1<<1)
740 
741 #define MX31_CSPISTATUS		0x14
742 #define MX31_STATUS_RR		(1 << 3)
743 
744 #define MX31_CSPI_TESTREG	0x1C
745 #define MX31_TEST_LBC		(1 << 14)
746 
747 /* These functions also work for the i.MX35, but be aware that
748  * the i.MX35 has a slightly different register layout for bits
749  * we do not use here.
750  */
751 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
752 {
753 	unsigned int val = 0;
754 
755 	if (enable & MXC_INT_TE)
756 		val |= MX31_INTREG_TEEN;
757 	if (enable & MXC_INT_RR)
758 		val |= MX31_INTREG_RREN;
759 
760 	writel(val, spi_imx->base + MXC_CSPIINT);
761 }
762 
763 static void mx31_trigger(struct spi_imx_data *spi_imx)
764 {
765 	unsigned int reg;
766 
767 	reg = readl(spi_imx->base + MXC_CSPICTRL);
768 	reg |= MX31_CSPICTRL_XCH;
769 	writel(reg, spi_imx->base + MXC_CSPICTRL);
770 }
771 
772 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
773 				struct spi_message *msg)
774 {
775 	return 0;
776 }
777 
778 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
779 				 struct spi_device *spi)
780 {
781 	unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_HOST;
782 	unsigned int clk;
783 
784 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
785 		MX31_CSPICTRL_DR_SHIFT;
786 	spi_imx->spi_bus_clk = clk;
787 
788 	if (is_imx35_cspi(spi_imx)) {
789 		reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
790 		reg |= MX31_CSPICTRL_SSCTL;
791 	} else {
792 		reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
793 	}
794 
795 	if (spi->mode & SPI_CPHA)
796 		reg |= MX31_CSPICTRL_PHA;
797 	if (spi->mode & SPI_CPOL)
798 		reg |= MX31_CSPICTRL_POL;
799 	if (spi->mode & SPI_CS_HIGH)
800 		reg |= MX31_CSPICTRL_SSPOL;
801 	if (!spi_get_csgpiod(spi, 0))
802 		reg |= (spi_get_chipselect(spi, 0)) <<
803 			(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
804 						  MX31_CSPICTRL_CS_SHIFT);
805 
806 	if (spi_imx->usedma)
807 		reg |= MX31_CSPICTRL_SMC;
808 
809 	writel(reg, spi_imx->base + MXC_CSPICTRL);
810 
811 	reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
812 	if (spi->mode & SPI_LOOP)
813 		reg |= MX31_TEST_LBC;
814 	else
815 		reg &= ~MX31_TEST_LBC;
816 	writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
817 
818 	if (spi_imx->usedma) {
819 		/*
820 		 * configure DMA requests when RXFIFO is half full and
821 		 * when TXFIFO is half empty
822 		 */
823 		writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
824 			spi_imx->base + MX31_CSPI_DMAREG);
825 	}
826 
827 	return 0;
828 }
829 
830 static int mx31_rx_available(struct spi_imx_data *spi_imx)
831 {
832 	return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
833 }
834 
835 static void mx31_reset(struct spi_imx_data *spi_imx)
836 {
837 	/* drain receive buffer */
838 	while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
839 		readl(spi_imx->base + MXC_CSPIRXDATA);
840 }
841 
842 #define MX21_INTREG_RR		(1 << 4)
843 #define MX21_INTREG_TEEN	(1 << 9)
844 #define MX21_INTREG_RREN	(1 << 13)
845 
846 #define MX21_CSPICTRL_POL	(1 << 5)
847 #define MX21_CSPICTRL_PHA	(1 << 6)
848 #define MX21_CSPICTRL_SSPOL	(1 << 8)
849 #define MX21_CSPICTRL_XCH	(1 << 9)
850 #define MX21_CSPICTRL_ENABLE	(1 << 10)
851 #define MX21_CSPICTRL_HOST	(1 << 11)
852 #define MX21_CSPICTRL_DR_SHIFT	14
853 #define MX21_CSPICTRL_CS_SHIFT	19
854 
855 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
856 {
857 	unsigned int val = 0;
858 
859 	if (enable & MXC_INT_TE)
860 		val |= MX21_INTREG_TEEN;
861 	if (enable & MXC_INT_RR)
862 		val |= MX21_INTREG_RREN;
863 
864 	writel(val, spi_imx->base + MXC_CSPIINT);
865 }
866 
867 static void mx21_trigger(struct spi_imx_data *spi_imx)
868 {
869 	unsigned int reg;
870 
871 	reg = readl(spi_imx->base + MXC_CSPICTRL);
872 	reg |= MX21_CSPICTRL_XCH;
873 	writel(reg, spi_imx->base + MXC_CSPICTRL);
874 }
875 
876 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
877 				struct spi_message *msg)
878 {
879 	return 0;
880 }
881 
882 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
883 				 struct spi_device *spi)
884 {
885 	unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_HOST;
886 	unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
887 	unsigned int clk;
888 
889 	reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
890 		<< MX21_CSPICTRL_DR_SHIFT;
891 	spi_imx->spi_bus_clk = clk;
892 
893 	reg |= spi_imx->bits_per_word - 1;
894 
895 	if (spi->mode & SPI_CPHA)
896 		reg |= MX21_CSPICTRL_PHA;
897 	if (spi->mode & SPI_CPOL)
898 		reg |= MX21_CSPICTRL_POL;
899 	if (spi->mode & SPI_CS_HIGH)
900 		reg |= MX21_CSPICTRL_SSPOL;
901 	if (!spi_get_csgpiod(spi, 0))
902 		reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT;
903 
904 	writel(reg, spi_imx->base + MXC_CSPICTRL);
905 
906 	return 0;
907 }
908 
909 static int mx21_rx_available(struct spi_imx_data *spi_imx)
910 {
911 	return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
912 }
913 
914 static void mx21_reset(struct spi_imx_data *spi_imx)
915 {
916 	writel(1, spi_imx->base + MXC_RESET);
917 }
918 
919 #define MX1_INTREG_RR		(1 << 3)
920 #define MX1_INTREG_TEEN		(1 << 8)
921 #define MX1_INTREG_RREN		(1 << 11)
922 
923 #define MX1_CSPICTRL_POL	(1 << 4)
924 #define MX1_CSPICTRL_PHA	(1 << 5)
925 #define MX1_CSPICTRL_XCH	(1 << 8)
926 #define MX1_CSPICTRL_ENABLE	(1 << 9)
927 #define MX1_CSPICTRL_HOST	(1 << 10)
928 #define MX1_CSPICTRL_DR_SHIFT	13
929 
930 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
931 {
932 	unsigned int val = 0;
933 
934 	if (enable & MXC_INT_TE)
935 		val |= MX1_INTREG_TEEN;
936 	if (enable & MXC_INT_RR)
937 		val |= MX1_INTREG_RREN;
938 
939 	writel(val, spi_imx->base + MXC_CSPIINT);
940 }
941 
942 static void mx1_trigger(struct spi_imx_data *spi_imx)
943 {
944 	unsigned int reg;
945 
946 	reg = readl(spi_imx->base + MXC_CSPICTRL);
947 	reg |= MX1_CSPICTRL_XCH;
948 	writel(reg, spi_imx->base + MXC_CSPICTRL);
949 }
950 
951 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
952 			       struct spi_message *msg)
953 {
954 	return 0;
955 }
956 
957 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
958 				struct spi_device *spi)
959 {
960 	unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_HOST;
961 	unsigned int clk;
962 
963 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
964 		MX1_CSPICTRL_DR_SHIFT;
965 	spi_imx->spi_bus_clk = clk;
966 
967 	reg |= spi_imx->bits_per_word - 1;
968 
969 	if (spi->mode & SPI_CPHA)
970 		reg |= MX1_CSPICTRL_PHA;
971 	if (spi->mode & SPI_CPOL)
972 		reg |= MX1_CSPICTRL_POL;
973 
974 	writel(reg, spi_imx->base + MXC_CSPICTRL);
975 
976 	return 0;
977 }
978 
979 static int mx1_rx_available(struct spi_imx_data *spi_imx)
980 {
981 	return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
982 }
983 
984 static void mx1_reset(struct spi_imx_data *spi_imx)
985 {
986 	writel(1, spi_imx->base + MXC_RESET);
987 }
988 
989 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
990 	.intctrl = mx1_intctrl,
991 	.prepare_message = mx1_prepare_message,
992 	.prepare_transfer = mx1_prepare_transfer,
993 	.trigger = mx1_trigger,
994 	.rx_available = mx1_rx_available,
995 	.reset = mx1_reset,
996 	.fifo_size = 8,
997 	.has_dmamode = false,
998 	.dynamic_burst = false,
999 	.has_targetmode = false,
1000 	.devtype = IMX1_CSPI,
1001 };
1002 
1003 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
1004 	.intctrl = mx21_intctrl,
1005 	.prepare_message = mx21_prepare_message,
1006 	.prepare_transfer = mx21_prepare_transfer,
1007 	.trigger = mx21_trigger,
1008 	.rx_available = mx21_rx_available,
1009 	.reset = mx21_reset,
1010 	.fifo_size = 8,
1011 	.has_dmamode = false,
1012 	.dynamic_burst = false,
1013 	.has_targetmode = false,
1014 	.devtype = IMX21_CSPI,
1015 };
1016 
1017 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
1018 	/* i.mx27 cspi shares the functions with i.mx21 one */
1019 	.intctrl = mx21_intctrl,
1020 	.prepare_message = mx21_prepare_message,
1021 	.prepare_transfer = mx21_prepare_transfer,
1022 	.trigger = mx21_trigger,
1023 	.rx_available = mx21_rx_available,
1024 	.reset = mx21_reset,
1025 	.fifo_size = 8,
1026 	.has_dmamode = false,
1027 	.dynamic_burst = false,
1028 	.has_targetmode = false,
1029 	.devtype = IMX27_CSPI,
1030 };
1031 
1032 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
1033 	.intctrl = mx31_intctrl,
1034 	.prepare_message = mx31_prepare_message,
1035 	.prepare_transfer = mx31_prepare_transfer,
1036 	.trigger = mx31_trigger,
1037 	.rx_available = mx31_rx_available,
1038 	.reset = mx31_reset,
1039 	.fifo_size = 8,
1040 	.has_dmamode = false,
1041 	.dynamic_burst = false,
1042 	.has_targetmode = false,
1043 	.devtype = IMX31_CSPI,
1044 };
1045 
1046 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1047 	/* i.mx35 and later cspi shares the functions with i.mx31 one */
1048 	.intctrl = mx31_intctrl,
1049 	.prepare_message = mx31_prepare_message,
1050 	.prepare_transfer = mx31_prepare_transfer,
1051 	.trigger = mx31_trigger,
1052 	.rx_available = mx31_rx_available,
1053 	.reset = mx31_reset,
1054 	.fifo_size = 8,
1055 	.has_dmamode = true,
1056 	.dynamic_burst = false,
1057 	.has_targetmode = false,
1058 	.devtype = IMX35_CSPI,
1059 };
1060 
1061 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1062 	.intctrl = mx51_ecspi_intctrl,
1063 	.prepare_message = mx51_ecspi_prepare_message,
1064 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1065 	.trigger = mx51_ecspi_trigger,
1066 	.rx_available = mx51_ecspi_rx_available,
1067 	.reset = mx51_ecspi_reset,
1068 	.setup_wml = mx51_setup_wml,
1069 	.fifo_size = 64,
1070 	.has_dmamode = true,
1071 	.dynamic_burst = true,
1072 	.has_targetmode = true,
1073 	.disable = mx51_ecspi_disable,
1074 	.devtype = IMX51_ECSPI,
1075 };
1076 
1077 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1078 	.intctrl = mx51_ecspi_intctrl,
1079 	.prepare_message = mx51_ecspi_prepare_message,
1080 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1081 	.trigger = mx51_ecspi_trigger,
1082 	.rx_available = mx51_ecspi_rx_available,
1083 	.reset = mx51_ecspi_reset,
1084 	.fifo_size = 64,
1085 	.has_dmamode = true,
1086 	.has_targetmode = true,
1087 	.disable = mx51_ecspi_disable,
1088 	.devtype = IMX53_ECSPI,
1089 };
1090 
1091 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1092 	.intctrl = mx51_ecspi_intctrl,
1093 	.prepare_message = mx51_ecspi_prepare_message,
1094 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1095 	.trigger = mx51_ecspi_trigger,
1096 	.rx_available = mx51_ecspi_rx_available,
1097 	.reset = mx51_ecspi_reset,
1098 	.setup_wml = mx51_setup_wml,
1099 	.fifo_size = 64,
1100 	.has_dmamode = true,
1101 	.dynamic_burst = true,
1102 	.has_targetmode = true,
1103 	.tx_glitch_fixed = true,
1104 	.disable = mx51_ecspi_disable,
1105 	.devtype = IMX51_ECSPI,
1106 };
1107 
1108 static const struct of_device_id spi_imx_dt_ids[] = {
1109 	{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1110 	{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1111 	{ .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1112 	{ .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1113 	{ .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1114 	{ .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1115 	{ .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1116 	{ .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1117 	{ /* sentinel */ }
1118 };
1119 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1120 
1121 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1122 {
1123 	u32 ctrl;
1124 
1125 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1126 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1127 	ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1128 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1129 }
1130 
1131 static void spi_imx_push(struct spi_imx_data *spi_imx)
1132 {
1133 	unsigned int burst_len;
1134 
1135 	/*
1136 	 * Reload the FIFO when the remaining bytes to be transferred in the
1137 	 * current burst is 0. This only applies when bits_per_word is a
1138 	 * multiple of 8.
1139 	 */
1140 	if (!spi_imx->remainder) {
1141 		if (spi_imx->dynamic_burst) {
1142 
1143 			/* We need to deal unaligned data first */
1144 			burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1145 
1146 			if (!burst_len)
1147 				burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1148 
1149 			spi_imx_set_burst_len(spi_imx, burst_len * 8);
1150 
1151 			spi_imx->remainder = burst_len;
1152 		} else {
1153 			spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1154 		}
1155 	}
1156 
1157 	while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1158 		if (!spi_imx->count)
1159 			break;
1160 		if (spi_imx->dynamic_burst &&
1161 		    spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1162 			break;
1163 		spi_imx->tx(spi_imx);
1164 		spi_imx->txfifo++;
1165 	}
1166 
1167 	if (!spi_imx->target_mode)
1168 		spi_imx->devtype_data->trigger(spi_imx);
1169 }
1170 
1171 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1172 {
1173 	struct spi_imx_data *spi_imx = dev_id;
1174 
1175 	while (spi_imx->txfifo &&
1176 	       spi_imx->devtype_data->rx_available(spi_imx)) {
1177 		spi_imx->rx(spi_imx);
1178 		spi_imx->txfifo--;
1179 	}
1180 
1181 	if (spi_imx->count) {
1182 		spi_imx_push(spi_imx);
1183 		return IRQ_HANDLED;
1184 	}
1185 
1186 	if (spi_imx->txfifo) {
1187 		/* No data left to push, but still waiting for rx data,
1188 		 * enable receive data available interrupt.
1189 		 */
1190 		spi_imx->devtype_data->intctrl(
1191 				spi_imx, MXC_INT_RR);
1192 		return IRQ_HANDLED;
1193 	}
1194 
1195 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1196 	complete(&spi_imx->xfer_done);
1197 
1198 	return IRQ_HANDLED;
1199 }
1200 
1201 static int spi_imx_dma_configure(struct spi_controller *controller)
1202 {
1203 	int ret;
1204 	enum dma_slave_buswidth buswidth;
1205 	struct dma_slave_config rx = {}, tx = {};
1206 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1207 
1208 	switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1209 	case 4:
1210 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1211 		break;
1212 	case 2:
1213 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1214 		break;
1215 	case 1:
1216 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1217 		break;
1218 	default:
1219 		return -EINVAL;
1220 	}
1221 
1222 	tx.direction = DMA_MEM_TO_DEV;
1223 	tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1224 	tx.dst_addr_width = buswidth;
1225 	tx.dst_maxburst = spi_imx->wml;
1226 	ret = dmaengine_slave_config(controller->dma_tx, &tx);
1227 	if (ret) {
1228 		dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1229 		return ret;
1230 	}
1231 
1232 	rx.direction = DMA_DEV_TO_MEM;
1233 	rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1234 	rx.src_addr_width = buswidth;
1235 	rx.src_maxburst = spi_imx->wml;
1236 	ret = dmaengine_slave_config(controller->dma_rx, &rx);
1237 	if (ret) {
1238 		dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1239 		return ret;
1240 	}
1241 
1242 	return 0;
1243 }
1244 
1245 static int spi_imx_setupxfer(struct spi_device *spi,
1246 				 struct spi_transfer *t)
1247 {
1248 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1249 
1250 	if (!t)
1251 		return 0;
1252 
1253 	if (!t->speed_hz) {
1254 		if (!spi->max_speed_hz) {
1255 			dev_err(&spi->dev, "no speed_hz provided!\n");
1256 			return -EINVAL;
1257 		}
1258 		dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1259 		spi_imx->spi_bus_clk = spi->max_speed_hz;
1260 	} else
1261 		spi_imx->spi_bus_clk = t->speed_hz;
1262 
1263 	spi_imx->bits_per_word = t->bits_per_word;
1264 	spi_imx->count = t->len;
1265 
1266 	/*
1267 	 * Initialize the functions for transfer. To transfer non byte-aligned
1268 	 * words, we have to use multiple word-size bursts, we can't use
1269 	 * dynamic_burst in that case.
1270 	 */
1271 	if (spi_imx->devtype_data->dynamic_burst && !spi_imx->target_mode &&
1272 	    !(spi->mode & SPI_CS_WORD) &&
1273 	    (spi_imx->bits_per_word == 8 ||
1274 	    spi_imx->bits_per_word == 16 ||
1275 	    spi_imx->bits_per_word == 32)) {
1276 
1277 		spi_imx->rx = spi_imx_buf_rx_swap;
1278 		spi_imx->tx = spi_imx_buf_tx_swap;
1279 		spi_imx->dynamic_burst = 1;
1280 
1281 	} else {
1282 		if (spi_imx->bits_per_word <= 8) {
1283 			spi_imx->rx = spi_imx_buf_rx_u8;
1284 			spi_imx->tx = spi_imx_buf_tx_u8;
1285 		} else if (spi_imx->bits_per_word <= 16) {
1286 			spi_imx->rx = spi_imx_buf_rx_u16;
1287 			spi_imx->tx = spi_imx_buf_tx_u16;
1288 		} else {
1289 			spi_imx->rx = spi_imx_buf_rx_u32;
1290 			spi_imx->tx = spi_imx_buf_tx_u32;
1291 		}
1292 		spi_imx->dynamic_burst = 0;
1293 	}
1294 
1295 	if (spi_imx_can_dma(spi_imx->controller, spi, t))
1296 		spi_imx->usedma = true;
1297 	else
1298 		spi_imx->usedma = false;
1299 
1300 	spi_imx->rx_only = ((t->tx_buf == NULL)
1301 			|| (t->tx_buf == spi->controller->dummy_tx));
1302 
1303 	if (is_imx53_ecspi(spi_imx) && spi_imx->target_mode) {
1304 		spi_imx->rx = mx53_ecspi_rx_target;
1305 		spi_imx->tx = mx53_ecspi_tx_target;
1306 		spi_imx->target_burst = t->len;
1307 	}
1308 
1309 	spi_imx->devtype_data->prepare_transfer(spi_imx, spi);
1310 
1311 	return 0;
1312 }
1313 
1314 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1315 {
1316 	struct spi_controller *controller = spi_imx->controller;
1317 
1318 	if (controller->dma_rx) {
1319 		dma_release_channel(controller->dma_rx);
1320 		controller->dma_rx = NULL;
1321 	}
1322 
1323 	if (controller->dma_tx) {
1324 		dma_release_channel(controller->dma_tx);
1325 		controller->dma_tx = NULL;
1326 	}
1327 }
1328 
1329 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1330 			     struct spi_controller *controller)
1331 {
1332 	int ret;
1333 
1334 	spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1335 
1336 	/* Prepare for TX DMA: */
1337 	controller->dma_tx = dma_request_chan(dev, "tx");
1338 	if (IS_ERR(controller->dma_tx)) {
1339 		ret = PTR_ERR(controller->dma_tx);
1340 		dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
1341 		controller->dma_tx = NULL;
1342 		goto err;
1343 	}
1344 
1345 	/* Prepare for RX : */
1346 	controller->dma_rx = dma_request_chan(dev, "rx");
1347 	if (IS_ERR(controller->dma_rx)) {
1348 		ret = PTR_ERR(controller->dma_rx);
1349 		dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
1350 		controller->dma_rx = NULL;
1351 		goto err;
1352 	}
1353 
1354 	init_completion(&spi_imx->dma_rx_completion);
1355 	init_completion(&spi_imx->dma_tx_completion);
1356 	controller->can_dma = spi_imx_can_dma;
1357 	controller->max_dma_len = MAX_SDMA_BD_BYTES;
1358 	spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
1359 					 SPI_CONTROLLER_MUST_TX;
1360 
1361 	return 0;
1362 err:
1363 	spi_imx_sdma_exit(spi_imx);
1364 	return ret;
1365 }
1366 
1367 static void spi_imx_dma_rx_callback(void *cookie)
1368 {
1369 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1370 
1371 	complete(&spi_imx->dma_rx_completion);
1372 }
1373 
1374 static void spi_imx_dma_tx_callback(void *cookie)
1375 {
1376 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1377 
1378 	complete(&spi_imx->dma_tx_completion);
1379 }
1380 
1381 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1382 {
1383 	unsigned long timeout = 0;
1384 
1385 	/* Time with actual data transfer and CS change delay related to HW */
1386 	timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1387 
1388 	/* Add extra second for scheduler related activities */
1389 	timeout += 1;
1390 
1391 	/* Double calculated timeout */
1392 	return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
1393 }
1394 
1395 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1396 				struct spi_transfer *transfer)
1397 {
1398 	struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1399 	unsigned long transfer_timeout;
1400 	unsigned long timeout;
1401 	struct spi_controller *controller = spi_imx->controller;
1402 	struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1403 	struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1404 	unsigned int bytes_per_word, i;
1405 	int ret;
1406 
1407 	/* Get the right burst length from the last sg to ensure no tail data */
1408 	bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1409 	for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1410 		if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1411 			break;
1412 	}
1413 	/* Use 1 as wml in case no available burst length got */
1414 	if (i == 0)
1415 		i = 1;
1416 
1417 	spi_imx->wml =  i;
1418 
1419 	ret = spi_imx_dma_configure(controller);
1420 	if (ret)
1421 		goto dma_failure_no_start;
1422 
1423 	if (!spi_imx->devtype_data->setup_wml) {
1424 		dev_err(spi_imx->dev, "No setup_wml()?\n");
1425 		ret = -EINVAL;
1426 		goto dma_failure_no_start;
1427 	}
1428 	spi_imx->devtype_data->setup_wml(spi_imx);
1429 
1430 	/*
1431 	 * The TX DMA setup starts the transfer, so make sure RX is configured
1432 	 * before TX.
1433 	 */
1434 	desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
1435 				rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1436 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1437 	if (!desc_rx) {
1438 		ret = -EINVAL;
1439 		goto dma_failure_no_start;
1440 	}
1441 
1442 	desc_rx->callback = spi_imx_dma_rx_callback;
1443 	desc_rx->callback_param = (void *)spi_imx;
1444 	dmaengine_submit(desc_rx);
1445 	reinit_completion(&spi_imx->dma_rx_completion);
1446 	dma_async_issue_pending(controller->dma_rx);
1447 
1448 	desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
1449 				tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1450 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1451 	if (!desc_tx) {
1452 		dmaengine_terminate_all(controller->dma_tx);
1453 		dmaengine_terminate_all(controller->dma_rx);
1454 		return -EINVAL;
1455 	}
1456 
1457 	desc_tx->callback = spi_imx_dma_tx_callback;
1458 	desc_tx->callback_param = (void *)spi_imx;
1459 	dmaengine_submit(desc_tx);
1460 	reinit_completion(&spi_imx->dma_tx_completion);
1461 	dma_async_issue_pending(controller->dma_tx);
1462 
1463 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1464 
1465 	/* Wait SDMA to finish the data transfer.*/
1466 	timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1467 						transfer_timeout);
1468 	if (!timeout) {
1469 		dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1470 		dmaengine_terminate_all(controller->dma_tx);
1471 		dmaengine_terminate_all(controller->dma_rx);
1472 		return -ETIMEDOUT;
1473 	}
1474 
1475 	timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1476 					      transfer_timeout);
1477 	if (!timeout) {
1478 		dev_err(&controller->dev, "I/O Error in DMA RX\n");
1479 		spi_imx->devtype_data->reset(spi_imx);
1480 		dmaengine_terminate_all(controller->dma_rx);
1481 		return -ETIMEDOUT;
1482 	}
1483 
1484 	return 0;
1485 /* fallback to pio */
1486 dma_failure_no_start:
1487 	transfer->error |= SPI_TRANS_FAIL_NO_START;
1488 	return ret;
1489 }
1490 
1491 static int spi_imx_pio_transfer(struct spi_device *spi,
1492 				struct spi_transfer *transfer)
1493 {
1494 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1495 	unsigned long transfer_timeout;
1496 	unsigned long timeout;
1497 
1498 	spi_imx->tx_buf = transfer->tx_buf;
1499 	spi_imx->rx_buf = transfer->rx_buf;
1500 	spi_imx->count = transfer->len;
1501 	spi_imx->txfifo = 0;
1502 	spi_imx->remainder = 0;
1503 
1504 	reinit_completion(&spi_imx->xfer_done);
1505 
1506 	spi_imx_push(spi_imx);
1507 
1508 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1509 
1510 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1511 
1512 	timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
1513 					      transfer_timeout);
1514 	if (!timeout) {
1515 		dev_err(&spi->dev, "I/O Error in PIO\n");
1516 		spi_imx->devtype_data->reset(spi_imx);
1517 		return -ETIMEDOUT;
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 static int spi_imx_poll_transfer(struct spi_device *spi,
1524 				 struct spi_transfer *transfer)
1525 {
1526 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1527 	unsigned long timeout;
1528 
1529 	spi_imx->tx_buf = transfer->tx_buf;
1530 	spi_imx->rx_buf = transfer->rx_buf;
1531 	spi_imx->count = transfer->len;
1532 	spi_imx->txfifo = 0;
1533 	spi_imx->remainder = 0;
1534 
1535 	/* fill in the fifo before timeout calculations if we are
1536 	 * interrupted here, then the data is getting transferred by
1537 	 * the HW while we are interrupted
1538 	 */
1539 	spi_imx_push(spi_imx);
1540 
1541 	timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
1542 	while (spi_imx->txfifo) {
1543 		/* RX */
1544 		while (spi_imx->txfifo &&
1545 		       spi_imx->devtype_data->rx_available(spi_imx)) {
1546 			spi_imx->rx(spi_imx);
1547 			spi_imx->txfifo--;
1548 		}
1549 
1550 		/* TX */
1551 		if (spi_imx->count) {
1552 			spi_imx_push(spi_imx);
1553 			continue;
1554 		}
1555 
1556 		if (spi_imx->txfifo &&
1557 		    time_after(jiffies, timeout)) {
1558 
1559 			dev_err_ratelimited(&spi->dev,
1560 					    "timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
1561 					    jiffies - timeout);
1562 
1563 			/* fall back to interrupt mode */
1564 			return spi_imx_pio_transfer(spi, transfer);
1565 		}
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 static int spi_imx_pio_transfer_target(struct spi_device *spi,
1572 				       struct spi_transfer *transfer)
1573 {
1574 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1575 	int ret = 0;
1576 
1577 	if (is_imx53_ecspi(spi_imx) &&
1578 	    transfer->len > MX53_MAX_TRANSFER_BYTES) {
1579 		dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1580 			MX53_MAX_TRANSFER_BYTES);
1581 		return -EMSGSIZE;
1582 	}
1583 
1584 	spi_imx->tx_buf = transfer->tx_buf;
1585 	spi_imx->rx_buf = transfer->rx_buf;
1586 	spi_imx->count = transfer->len;
1587 	spi_imx->txfifo = 0;
1588 	spi_imx->remainder = 0;
1589 
1590 	reinit_completion(&spi_imx->xfer_done);
1591 	spi_imx->target_aborted = false;
1592 
1593 	spi_imx_push(spi_imx);
1594 
1595 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1596 
1597 	if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1598 	    spi_imx->target_aborted) {
1599 		dev_dbg(&spi->dev, "interrupted\n");
1600 		ret = -EINTR;
1601 	}
1602 
1603 	/* ecspi has a HW issue when works in Target mode,
1604 	 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1605 	 * ECSPI_TXDATA keeps shift out the last word data,
1606 	 * so we have to disable ECSPI when in target mode after the
1607 	 * transfer completes
1608 	 */
1609 	if (spi_imx->devtype_data->disable)
1610 		spi_imx->devtype_data->disable(spi_imx);
1611 
1612 	return ret;
1613 }
1614 
1615 static int spi_imx_transfer_one(struct spi_controller *controller,
1616 				struct spi_device *spi,
1617 				struct spi_transfer *transfer)
1618 {
1619 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1620 	unsigned long hz_per_byte, byte_limit;
1621 
1622 	spi_imx_setupxfer(spi, transfer);
1623 	transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1624 
1625 	/* flush rxfifo before transfer */
1626 	while (spi_imx->devtype_data->rx_available(spi_imx))
1627 		readl(spi_imx->base + MXC_CSPIRXDATA);
1628 
1629 	if (spi_imx->target_mode)
1630 		return spi_imx_pio_transfer_target(spi, transfer);
1631 
1632 	/*
1633 	 * If we decided in spi_imx_can_dma() that we want to do a DMA
1634 	 * transfer, the SPI transfer has already been mapped, so we
1635 	 * have to do the DMA transfer here.
1636 	 */
1637 	if (spi_imx->usedma)
1638 		return spi_imx_dma_transfer(spi_imx, transfer);
1639 	/*
1640 	 * Calculate the estimated time in us the transfer runs. Find
1641 	 * the number of Hz per byte per polling limit.
1642 	 */
1643 	hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0;
1644 	byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1;
1645 
1646 	/* run in polling mode for short transfers */
1647 	if (transfer->len < byte_limit)
1648 		return spi_imx_poll_transfer(spi, transfer);
1649 
1650 	return spi_imx_pio_transfer(spi, transfer);
1651 }
1652 
1653 static int spi_imx_setup(struct spi_device *spi)
1654 {
1655 	dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1656 		 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1657 
1658 	return 0;
1659 }
1660 
1661 static void spi_imx_cleanup(struct spi_device *spi)
1662 {
1663 }
1664 
1665 static int
1666 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
1667 {
1668 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1669 	int ret;
1670 
1671 	ret = pm_runtime_resume_and_get(spi_imx->dev);
1672 	if (ret < 0) {
1673 		dev_err(spi_imx->dev, "failed to enable clock\n");
1674 		return ret;
1675 	}
1676 
1677 	ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1678 	if (ret) {
1679 		pm_runtime_mark_last_busy(spi_imx->dev);
1680 		pm_runtime_put_autosuspend(spi_imx->dev);
1681 	}
1682 
1683 	return ret;
1684 }
1685 
1686 static int
1687 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
1688 {
1689 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1690 
1691 	pm_runtime_mark_last_busy(spi_imx->dev);
1692 	pm_runtime_put_autosuspend(spi_imx->dev);
1693 	return 0;
1694 }
1695 
1696 static int spi_imx_target_abort(struct spi_controller *controller)
1697 {
1698 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1699 
1700 	spi_imx->target_aborted = true;
1701 	complete(&spi_imx->xfer_done);
1702 
1703 	return 0;
1704 }
1705 
1706 static int spi_imx_probe(struct platform_device *pdev)
1707 {
1708 	struct device_node *np = pdev->dev.of_node;
1709 	struct spi_controller *controller;
1710 	struct spi_imx_data *spi_imx;
1711 	struct resource *res;
1712 	int ret, irq, spi_drctl;
1713 	const struct spi_imx_devtype_data *devtype_data =
1714 			of_device_get_match_data(&pdev->dev);
1715 	bool target_mode;
1716 	u32 val;
1717 
1718 	target_mode = devtype_data->has_targetmode &&
1719 		      of_property_read_bool(np, "spi-slave");
1720 	if (target_mode)
1721 		controller = spi_alloc_target(&pdev->dev,
1722 					      sizeof(struct spi_imx_data));
1723 	else
1724 		controller = spi_alloc_host(&pdev->dev,
1725 					    sizeof(struct spi_imx_data));
1726 	if (!controller)
1727 		return -ENOMEM;
1728 
1729 	ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1730 	if ((ret < 0) || (spi_drctl >= 0x3)) {
1731 		/* '11' is reserved */
1732 		spi_drctl = 0;
1733 	}
1734 
1735 	platform_set_drvdata(pdev, controller);
1736 
1737 	controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1738 	controller->bus_num = np ? -1 : pdev->id;
1739 	controller->use_gpio_descriptors = true;
1740 
1741 	spi_imx = spi_controller_get_devdata(controller);
1742 	spi_imx->controller = controller;
1743 	spi_imx->dev = &pdev->dev;
1744 	spi_imx->target_mode = target_mode;
1745 
1746 	spi_imx->devtype_data = devtype_data;
1747 
1748 	/*
1749 	 * Get number of chip selects from device properties. This can be
1750 	 * coming from device tree or boardfiles, if it is not defined,
1751 	 * a default value of 3 chip selects will be used, as all the legacy
1752 	 * board files have <= 3 chip selects.
1753 	 */
1754 	if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1755 		controller->num_chipselect = val;
1756 	else
1757 		controller->num_chipselect = 3;
1758 
1759 	controller->transfer_one = spi_imx_transfer_one;
1760 	controller->setup = spi_imx_setup;
1761 	controller->cleanup = spi_imx_cleanup;
1762 	controller->prepare_message = spi_imx_prepare_message;
1763 	controller->unprepare_message = spi_imx_unprepare_message;
1764 	controller->target_abort = spi_imx_target_abort;
1765 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS |
1766 				SPI_MOSI_IDLE_LOW;
1767 
1768 	if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1769 	    is_imx53_ecspi(spi_imx))
1770 		controller->mode_bits |= SPI_LOOP | SPI_READY;
1771 
1772 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
1773 		controller->mode_bits |= SPI_RX_CPHA_FLIP;
1774 
1775 	if (is_imx51_ecspi(spi_imx) &&
1776 	    device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1777 		/*
1778 		 * When using HW-CS implementing SPI_CS_WORD can be done by just
1779 		 * setting the burst length to the word size. This is
1780 		 * considerably faster than manually controlling the CS.
1781 		 */
1782 		controller->mode_bits |= SPI_CS_WORD;
1783 
1784 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) {
1785 		controller->max_native_cs = 4;
1786 		controller->flags |= SPI_CONTROLLER_GPIO_SS;
1787 	}
1788 
1789 	spi_imx->spi_drctl = spi_drctl;
1790 
1791 	init_completion(&spi_imx->xfer_done);
1792 
1793 	spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1794 	if (IS_ERR(spi_imx->base)) {
1795 		ret = PTR_ERR(spi_imx->base);
1796 		goto out_controller_put;
1797 	}
1798 	spi_imx->base_phys = res->start;
1799 
1800 	irq = platform_get_irq(pdev, 0);
1801 	if (irq < 0) {
1802 		ret = irq;
1803 		goto out_controller_put;
1804 	}
1805 
1806 	ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1807 			       dev_name(&pdev->dev), spi_imx);
1808 	if (ret) {
1809 		dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1810 		goto out_controller_put;
1811 	}
1812 
1813 	spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1814 	if (IS_ERR(spi_imx->clk_ipg)) {
1815 		ret = PTR_ERR(spi_imx->clk_ipg);
1816 		goto out_controller_put;
1817 	}
1818 
1819 	spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1820 	if (IS_ERR(spi_imx->clk_per)) {
1821 		ret = PTR_ERR(spi_imx->clk_per);
1822 		goto out_controller_put;
1823 	}
1824 
1825 	ret = clk_prepare_enable(spi_imx->clk_per);
1826 	if (ret)
1827 		goto out_controller_put;
1828 
1829 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1830 	if (ret)
1831 		goto out_put_per;
1832 
1833 	pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1834 	pm_runtime_use_autosuspend(spi_imx->dev);
1835 	pm_runtime_get_noresume(spi_imx->dev);
1836 	pm_runtime_set_active(spi_imx->dev);
1837 	pm_runtime_enable(spi_imx->dev);
1838 
1839 	spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1840 	/*
1841 	 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1842 	 * if validated on other chips.
1843 	 */
1844 	if (spi_imx->devtype_data->has_dmamode) {
1845 		ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
1846 		if (ret == -EPROBE_DEFER)
1847 			goto out_runtime_pm_put;
1848 
1849 		if (ret < 0)
1850 			dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1851 				ret);
1852 	}
1853 
1854 	spi_imx->devtype_data->reset(spi_imx);
1855 
1856 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1857 
1858 	controller->dev.of_node = pdev->dev.of_node;
1859 	ret = spi_register_controller(controller);
1860 	if (ret) {
1861 		dev_err_probe(&pdev->dev, ret, "register controller failed\n");
1862 		goto out_register_controller;
1863 	}
1864 
1865 	pm_runtime_mark_last_busy(spi_imx->dev);
1866 	pm_runtime_put_autosuspend(spi_imx->dev);
1867 
1868 	return ret;
1869 
1870 out_register_controller:
1871 	if (spi_imx->devtype_data->has_dmamode)
1872 		spi_imx_sdma_exit(spi_imx);
1873 out_runtime_pm_put:
1874 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1875 	pm_runtime_set_suspended(&pdev->dev);
1876 	pm_runtime_disable(spi_imx->dev);
1877 
1878 	clk_disable_unprepare(spi_imx->clk_ipg);
1879 out_put_per:
1880 	clk_disable_unprepare(spi_imx->clk_per);
1881 out_controller_put:
1882 	spi_controller_put(controller);
1883 
1884 	return ret;
1885 }
1886 
1887 static void spi_imx_remove(struct platform_device *pdev)
1888 {
1889 	struct spi_controller *controller = platform_get_drvdata(pdev);
1890 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1891 	int ret;
1892 
1893 	spi_unregister_controller(controller);
1894 
1895 	ret = pm_runtime_get_sync(spi_imx->dev);
1896 	if (ret >= 0)
1897 		writel(0, spi_imx->base + MXC_CSPICTRL);
1898 	else
1899 		dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n");
1900 
1901 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1902 	pm_runtime_put_sync(spi_imx->dev);
1903 	pm_runtime_disable(spi_imx->dev);
1904 
1905 	spi_imx_sdma_exit(spi_imx);
1906 }
1907 
1908 static int __maybe_unused spi_imx_runtime_resume(struct device *dev)
1909 {
1910 	struct spi_controller *controller = dev_get_drvdata(dev);
1911 	struct spi_imx_data *spi_imx;
1912 	int ret;
1913 
1914 	spi_imx = spi_controller_get_devdata(controller);
1915 
1916 	ret = clk_prepare_enable(spi_imx->clk_per);
1917 	if (ret)
1918 		return ret;
1919 
1920 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1921 	if (ret) {
1922 		clk_disable_unprepare(spi_imx->clk_per);
1923 		return ret;
1924 	}
1925 
1926 	return 0;
1927 }
1928 
1929 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev)
1930 {
1931 	struct spi_controller *controller = dev_get_drvdata(dev);
1932 	struct spi_imx_data *spi_imx;
1933 
1934 	spi_imx = spi_controller_get_devdata(controller);
1935 
1936 	clk_disable_unprepare(spi_imx->clk_per);
1937 	clk_disable_unprepare(spi_imx->clk_ipg);
1938 
1939 	return 0;
1940 }
1941 
1942 static int __maybe_unused spi_imx_suspend(struct device *dev)
1943 {
1944 	pinctrl_pm_select_sleep_state(dev);
1945 	return 0;
1946 }
1947 
1948 static int __maybe_unused spi_imx_resume(struct device *dev)
1949 {
1950 	pinctrl_pm_select_default_state(dev);
1951 	return 0;
1952 }
1953 
1954 static const struct dev_pm_ops imx_spi_pm = {
1955 	SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend,
1956 				spi_imx_runtime_resume, NULL)
1957 	SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
1958 };
1959 
1960 static struct platform_driver spi_imx_driver = {
1961 	.driver = {
1962 		   .name = DRIVER_NAME,
1963 		   .of_match_table = spi_imx_dt_ids,
1964 		   .pm = &imx_spi_pm,
1965 	},
1966 	.probe = spi_imx_probe,
1967 	.remove_new = spi_imx_remove,
1968 };
1969 module_platform_driver(spi_imx_driver);
1970 
1971 MODULE_DESCRIPTION("i.MX SPI Controller driver");
1972 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
1973 MODULE_LICENSE("GPL");
1974 MODULE_ALIAS("platform:" DRIVER_NAME);
1975