1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. 3 // Copyright (C) 2008 Juergen Beisert 4 5 #include <linux/clk.h> 6 #include <linux/completion.h> 7 #include <linux/delay.h> 8 #include <linux/dmaengine.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/err.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/irq.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/pinctrl/consumer.h> 17 #include <linux/platform_device.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/slab.h> 20 #include <linux/spi/spi.h> 21 #include <linux/spi/spi_bitbang.h> 22 #include <linux/types.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/property.h> 26 27 #include <linux/platform_data/dma-imx.h> 28 29 #define DRIVER_NAME "spi_imx" 30 31 static bool use_dma = true; 32 module_param(use_dma, bool, 0644); 33 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)"); 34 35 #define MXC_RPM_TIMEOUT 2000 /* 2000ms */ 36 37 #define MXC_CSPIRXDATA 0x00 38 #define MXC_CSPITXDATA 0x04 39 #define MXC_CSPICTRL 0x08 40 #define MXC_CSPIINT 0x0c 41 #define MXC_RESET 0x1c 42 43 /* generic defines to abstract from the different register layouts */ 44 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */ 45 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */ 46 #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */ 47 48 /* The maximum bytes that a sdma BD can transfer. */ 49 #define MAX_SDMA_BD_BYTES (1 << 15) 50 #define MX51_ECSPI_CTRL_MAX_BURST 512 51 /* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/ 52 #define MX53_MAX_TRANSFER_BYTES 512 53 54 enum spi_imx_devtype { 55 IMX1_CSPI, 56 IMX21_CSPI, 57 IMX27_CSPI, 58 IMX31_CSPI, 59 IMX35_CSPI, /* CSPI on all i.mx except above */ 60 IMX51_ECSPI, /* ECSPI on i.mx51 */ 61 IMX53_ECSPI, /* ECSPI on i.mx53 and later */ 62 }; 63 64 struct spi_imx_data; 65 66 struct spi_imx_devtype_data { 67 void (*intctrl)(struct spi_imx_data *, int); 68 int (*prepare_message)(struct spi_imx_data *, struct spi_message *); 69 int (*prepare_transfer)(struct spi_imx_data *, struct spi_device *, 70 struct spi_transfer *); 71 void (*trigger)(struct spi_imx_data *); 72 int (*rx_available)(struct spi_imx_data *); 73 void (*reset)(struct spi_imx_data *); 74 void (*setup_wml)(struct spi_imx_data *); 75 void (*disable)(struct spi_imx_data *); 76 void (*disable_dma)(struct spi_imx_data *); 77 bool has_dmamode; 78 bool has_slavemode; 79 unsigned int fifo_size; 80 bool dynamic_burst; 81 enum spi_imx_devtype devtype; 82 }; 83 84 struct spi_imx_data { 85 struct spi_bitbang bitbang; 86 struct device *dev; 87 88 struct completion xfer_done; 89 void __iomem *base; 90 unsigned long base_phys; 91 92 struct clk *clk_per; 93 struct clk *clk_ipg; 94 unsigned long spi_clk; 95 unsigned int spi_bus_clk; 96 97 unsigned int bits_per_word; 98 unsigned int spi_drctl; 99 100 unsigned int count, remainder; 101 void (*tx)(struct spi_imx_data *); 102 void (*rx)(struct spi_imx_data *); 103 void *rx_buf; 104 const void *tx_buf; 105 unsigned int txfifo; /* number of words pushed in tx FIFO */ 106 unsigned int dynamic_burst; 107 108 /* Slave mode */ 109 bool slave_mode; 110 bool slave_aborted; 111 unsigned int slave_burst; 112 113 /* DMA */ 114 bool usedma; 115 u32 wml; 116 struct completion dma_rx_completion; 117 struct completion dma_tx_completion; 118 119 const struct spi_imx_devtype_data *devtype_data; 120 }; 121 122 static inline int is_imx27_cspi(struct spi_imx_data *d) 123 { 124 return d->devtype_data->devtype == IMX27_CSPI; 125 } 126 127 static inline int is_imx35_cspi(struct spi_imx_data *d) 128 { 129 return d->devtype_data->devtype == IMX35_CSPI; 130 } 131 132 static inline int is_imx51_ecspi(struct spi_imx_data *d) 133 { 134 return d->devtype_data->devtype == IMX51_ECSPI; 135 } 136 137 static inline int is_imx53_ecspi(struct spi_imx_data *d) 138 { 139 return d->devtype_data->devtype == IMX53_ECSPI; 140 } 141 142 #define MXC_SPI_BUF_RX(type) \ 143 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \ 144 { \ 145 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \ 146 \ 147 if (spi_imx->rx_buf) { \ 148 *(type *)spi_imx->rx_buf = val; \ 149 spi_imx->rx_buf += sizeof(type); \ 150 } \ 151 \ 152 spi_imx->remainder -= sizeof(type); \ 153 } 154 155 #define MXC_SPI_BUF_TX(type) \ 156 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \ 157 { \ 158 type val = 0; \ 159 \ 160 if (spi_imx->tx_buf) { \ 161 val = *(type *)spi_imx->tx_buf; \ 162 spi_imx->tx_buf += sizeof(type); \ 163 } \ 164 \ 165 spi_imx->count -= sizeof(type); \ 166 \ 167 writel(val, spi_imx->base + MXC_CSPITXDATA); \ 168 } 169 170 MXC_SPI_BUF_RX(u8) 171 MXC_SPI_BUF_TX(u8) 172 MXC_SPI_BUF_RX(u16) 173 MXC_SPI_BUF_TX(u16) 174 MXC_SPI_BUF_RX(u32) 175 MXC_SPI_BUF_TX(u32) 176 177 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set 178 * (which is currently not the case in this driver) 179 */ 180 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 181 256, 384, 512, 768, 1024}; 182 183 /* MX21, MX27 */ 184 static unsigned int spi_imx_clkdiv_1(unsigned int fin, 185 unsigned int fspi, unsigned int max, unsigned int *fres) 186 { 187 int i; 188 189 for (i = 2; i < max; i++) 190 if (fspi * mxc_clkdivs[i] >= fin) 191 break; 192 193 *fres = fin / mxc_clkdivs[i]; 194 return i; 195 } 196 197 /* MX1, MX31, MX35, MX51 CSPI */ 198 static unsigned int spi_imx_clkdiv_2(unsigned int fin, 199 unsigned int fspi, unsigned int *fres) 200 { 201 int i, div = 4; 202 203 for (i = 0; i < 7; i++) { 204 if (fspi * div >= fin) 205 goto out; 206 div <<= 1; 207 } 208 209 out: 210 *fres = fin / div; 211 return i; 212 } 213 214 static int spi_imx_bytes_per_word(const int bits_per_word) 215 { 216 if (bits_per_word <= 8) 217 return 1; 218 else if (bits_per_word <= 16) 219 return 2; 220 else 221 return 4; 222 } 223 224 static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi, 225 struct spi_transfer *transfer) 226 { 227 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 228 229 if (!use_dma || master->fallback) 230 return false; 231 232 if (!master->dma_rx) 233 return false; 234 235 if (spi_imx->slave_mode) 236 return false; 237 238 if (transfer->len < spi_imx->devtype_data->fifo_size) 239 return false; 240 241 spi_imx->dynamic_burst = 0; 242 243 return true; 244 } 245 246 #define MX51_ECSPI_CTRL 0x08 247 #define MX51_ECSPI_CTRL_ENABLE (1 << 0) 248 #define MX51_ECSPI_CTRL_XCH (1 << 2) 249 #define MX51_ECSPI_CTRL_SMC (1 << 3) 250 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4) 251 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16) 252 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8 253 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12 254 #define MX51_ECSPI_CTRL_CS(cs) ((cs) << 18) 255 #define MX51_ECSPI_CTRL_BL_OFFSET 20 256 #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20) 257 258 #define MX51_ECSPI_CONFIG 0x0c 259 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs) + 0)) 260 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs) + 4)) 261 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs) + 8)) 262 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs) + 12)) 263 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs) + 20)) 264 265 #define MX51_ECSPI_INT 0x10 266 #define MX51_ECSPI_INT_TEEN (1 << 0) 267 #define MX51_ECSPI_INT_RREN (1 << 3) 268 #define MX51_ECSPI_INT_RDREN (1 << 4) 269 270 #define MX51_ECSPI_DMA 0x14 271 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f) 272 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16) 273 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24) 274 275 #define MX51_ECSPI_DMA_TEDEN (1 << 7) 276 #define MX51_ECSPI_DMA_RXDEN (1 << 23) 277 #define MX51_ECSPI_DMA_RXTDEN (1 << 31) 278 279 #define MX51_ECSPI_STAT 0x18 280 #define MX51_ECSPI_STAT_RR (1 << 3) 281 282 #define MX51_ECSPI_TESTREG 0x20 283 #define MX51_ECSPI_TESTREG_LBC BIT(31) 284 285 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx) 286 { 287 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); 288 #ifdef __LITTLE_ENDIAN 289 unsigned int bytes_per_word; 290 #endif 291 292 if (spi_imx->rx_buf) { 293 #ifdef __LITTLE_ENDIAN 294 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 295 if (bytes_per_word == 1) 296 val = cpu_to_be32(val); 297 else if (bytes_per_word == 2) 298 val = (val << 16) | (val >> 16); 299 #endif 300 *(u32 *)spi_imx->rx_buf = val; 301 spi_imx->rx_buf += sizeof(u32); 302 } 303 304 spi_imx->remainder -= sizeof(u32); 305 } 306 307 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx) 308 { 309 int unaligned; 310 u32 val; 311 312 unaligned = spi_imx->remainder % 4; 313 314 if (!unaligned) { 315 spi_imx_buf_rx_swap_u32(spi_imx); 316 return; 317 } 318 319 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 320 spi_imx_buf_rx_u16(spi_imx); 321 return; 322 } 323 324 val = readl(spi_imx->base + MXC_CSPIRXDATA); 325 326 while (unaligned--) { 327 if (spi_imx->rx_buf) { 328 *(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff; 329 spi_imx->rx_buf++; 330 } 331 spi_imx->remainder--; 332 } 333 } 334 335 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx) 336 { 337 u32 val = 0; 338 #ifdef __LITTLE_ENDIAN 339 unsigned int bytes_per_word; 340 #endif 341 342 if (spi_imx->tx_buf) { 343 val = *(u32 *)spi_imx->tx_buf; 344 spi_imx->tx_buf += sizeof(u32); 345 } 346 347 spi_imx->count -= sizeof(u32); 348 #ifdef __LITTLE_ENDIAN 349 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 350 351 if (bytes_per_word == 1) 352 val = cpu_to_be32(val); 353 else if (bytes_per_word == 2) 354 val = (val << 16) | (val >> 16); 355 #endif 356 writel(val, spi_imx->base + MXC_CSPITXDATA); 357 } 358 359 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx) 360 { 361 int unaligned; 362 u32 val = 0; 363 364 unaligned = spi_imx->count % 4; 365 366 if (!unaligned) { 367 spi_imx_buf_tx_swap_u32(spi_imx); 368 return; 369 } 370 371 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 372 spi_imx_buf_tx_u16(spi_imx); 373 return; 374 } 375 376 while (unaligned--) { 377 if (spi_imx->tx_buf) { 378 val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned); 379 spi_imx->tx_buf++; 380 } 381 spi_imx->count--; 382 } 383 384 writel(val, spi_imx->base + MXC_CSPITXDATA); 385 } 386 387 static void mx53_ecspi_rx_slave(struct spi_imx_data *spi_imx) 388 { 389 u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA)); 390 391 if (spi_imx->rx_buf) { 392 int n_bytes = spi_imx->slave_burst % sizeof(val); 393 394 if (!n_bytes) 395 n_bytes = sizeof(val); 396 397 memcpy(spi_imx->rx_buf, 398 ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes); 399 400 spi_imx->rx_buf += n_bytes; 401 spi_imx->slave_burst -= n_bytes; 402 } 403 404 spi_imx->remainder -= sizeof(u32); 405 } 406 407 static void mx53_ecspi_tx_slave(struct spi_imx_data *spi_imx) 408 { 409 u32 val = 0; 410 int n_bytes = spi_imx->count % sizeof(val); 411 412 if (!n_bytes) 413 n_bytes = sizeof(val); 414 415 if (spi_imx->tx_buf) { 416 memcpy(((u8 *)&val) + sizeof(val) - n_bytes, 417 spi_imx->tx_buf, n_bytes); 418 val = cpu_to_be32(val); 419 spi_imx->tx_buf += n_bytes; 420 } 421 422 spi_imx->count -= n_bytes; 423 424 writel(val, spi_imx->base + MXC_CSPITXDATA); 425 } 426 427 /* MX51 eCSPI */ 428 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx, 429 unsigned int fspi, unsigned int *fres) 430 { 431 /* 432 * there are two 4-bit dividers, the pre-divider divides by 433 * $pre, the post-divider by 2^$post 434 */ 435 unsigned int pre, post; 436 unsigned int fin = spi_imx->spi_clk; 437 438 if (unlikely(fspi > fin)) 439 return 0; 440 441 post = fls(fin) - fls(fspi); 442 if (fin > fspi << post) 443 post++; 444 445 /* now we have: (fin <= fspi << post) with post being minimal */ 446 447 post = max(4U, post) - 4; 448 if (unlikely(post > 0xf)) { 449 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n", 450 fspi, fin); 451 return 0xff; 452 } 453 454 pre = DIV_ROUND_UP(fin, fspi << post) - 1; 455 456 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n", 457 __func__, fin, fspi, post, pre); 458 459 /* Resulting frequency for the SCLK line. */ 460 *fres = (fin / (pre + 1)) >> post; 461 462 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) | 463 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET); 464 } 465 466 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable) 467 { 468 unsigned val = 0; 469 470 if (enable & MXC_INT_TE) 471 val |= MX51_ECSPI_INT_TEEN; 472 473 if (enable & MXC_INT_RR) 474 val |= MX51_ECSPI_INT_RREN; 475 476 if (enable & MXC_INT_RDR) 477 val |= MX51_ECSPI_INT_RDREN; 478 479 writel(val, spi_imx->base + MX51_ECSPI_INT); 480 } 481 482 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx) 483 { 484 u32 reg; 485 486 reg = readl(spi_imx->base + MX51_ECSPI_CTRL); 487 reg |= MX51_ECSPI_CTRL_XCH; 488 writel(reg, spi_imx->base + MX51_ECSPI_CTRL); 489 } 490 491 static void mx51_disable_dma(struct spi_imx_data *spi_imx) 492 { 493 writel(0, spi_imx->base + MX51_ECSPI_DMA); 494 } 495 496 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx) 497 { 498 u32 ctrl; 499 500 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 501 ctrl &= ~MX51_ECSPI_CTRL_ENABLE; 502 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 503 } 504 505 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx, 506 struct spi_message *msg) 507 { 508 struct spi_device *spi = msg->spi; 509 u32 ctrl = MX51_ECSPI_CTRL_ENABLE; 510 u32 testreg; 511 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 512 513 /* set Master or Slave mode */ 514 if (spi_imx->slave_mode) 515 ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK; 516 else 517 ctrl |= MX51_ECSPI_CTRL_MODE_MASK; 518 519 /* 520 * Enable SPI_RDY handling (falling edge/level triggered). 521 */ 522 if (spi->mode & SPI_READY) 523 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl); 524 525 /* set chip select to use */ 526 ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select); 527 528 /* 529 * The ctrl register must be written first, with the EN bit set other 530 * registers must not be written to. 531 */ 532 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 533 534 testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG); 535 if (spi->mode & SPI_LOOP) 536 testreg |= MX51_ECSPI_TESTREG_LBC; 537 else 538 testreg &= ~MX51_ECSPI_TESTREG_LBC; 539 writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG); 540 541 /* 542 * eCSPI burst completion by Chip Select signal in Slave mode 543 * is not functional for imx53 Soc, config SPI burst completed when 544 * BURST_LENGTH + 1 bits are received 545 */ 546 if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx)) 547 cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select); 548 else 549 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select); 550 551 if (spi->mode & SPI_CPHA) 552 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select); 553 else 554 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select); 555 556 if (spi->mode & SPI_CPOL) { 557 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select); 558 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select); 559 } else { 560 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select); 561 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select); 562 } 563 564 if (spi->mode & SPI_CS_HIGH) 565 cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select); 566 else 567 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select); 568 569 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 570 571 return 0; 572 } 573 574 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx, 575 struct spi_device *spi, 576 struct spi_transfer *t) 577 { 578 u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 579 u32 clk = t->speed_hz, delay; 580 581 /* Clear BL field and set the right value */ 582 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 583 if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx)) 584 ctrl |= (spi_imx->slave_burst * 8 - 1) 585 << MX51_ECSPI_CTRL_BL_OFFSET; 586 else 587 ctrl |= (spi_imx->bits_per_word - 1) 588 << MX51_ECSPI_CTRL_BL_OFFSET; 589 590 /* set clock speed */ 591 ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET | 592 0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET); 593 ctrl |= mx51_ecspi_clkdiv(spi_imx, t->speed_hz, &clk); 594 spi_imx->spi_bus_clk = clk; 595 596 if (spi_imx->usedma) 597 ctrl |= MX51_ECSPI_CTRL_SMC; 598 599 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 600 601 /* 602 * Wait until the changes in the configuration register CONFIGREG 603 * propagate into the hardware. It takes exactly one tick of the 604 * SCLK clock, but we will wait two SCLK clock just to be sure. The 605 * effect of the delay it takes for the hardware to apply changes 606 * is noticable if the SCLK clock run very slow. In such a case, if 607 * the polarity of SCLK should be inverted, the GPIO ChipSelect might 608 * be asserted before the SCLK polarity changes, which would disrupt 609 * the SPI communication as the device on the other end would consider 610 * the change of SCLK polarity as a clock tick already. 611 */ 612 delay = (2 * 1000000) / clk; 613 if (likely(delay < 10)) /* SCLK is faster than 100 kHz */ 614 udelay(delay); 615 else /* SCLK is _very_ slow */ 616 usleep_range(delay, delay + 10); 617 618 return 0; 619 } 620 621 static void mx51_setup_wml(struct spi_imx_data *spi_imx) 622 { 623 /* 624 * Configure the DMA register: setup the watermark 625 * and enable DMA request. 626 */ 627 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) | 628 MX51_ECSPI_DMA_TX_WML(spi_imx->wml) | 629 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) | 630 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN | 631 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA); 632 } 633 634 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx) 635 { 636 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR; 637 } 638 639 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx) 640 { 641 /* drain receive buffer */ 642 while (mx51_ecspi_rx_available(spi_imx)) 643 readl(spi_imx->base + MXC_CSPIRXDATA); 644 } 645 646 #define MX31_INTREG_TEEN (1 << 0) 647 #define MX31_INTREG_RREN (1 << 3) 648 649 #define MX31_CSPICTRL_ENABLE (1 << 0) 650 #define MX31_CSPICTRL_MASTER (1 << 1) 651 #define MX31_CSPICTRL_XCH (1 << 2) 652 #define MX31_CSPICTRL_SMC (1 << 3) 653 #define MX31_CSPICTRL_POL (1 << 4) 654 #define MX31_CSPICTRL_PHA (1 << 5) 655 #define MX31_CSPICTRL_SSCTL (1 << 6) 656 #define MX31_CSPICTRL_SSPOL (1 << 7) 657 #define MX31_CSPICTRL_BC_SHIFT 8 658 #define MX35_CSPICTRL_BL_SHIFT 20 659 #define MX31_CSPICTRL_CS_SHIFT 24 660 #define MX35_CSPICTRL_CS_SHIFT 12 661 #define MX31_CSPICTRL_DR_SHIFT 16 662 663 #define MX31_CSPI_DMAREG 0x10 664 #define MX31_DMAREG_RH_DEN (1<<4) 665 #define MX31_DMAREG_TH_DEN (1<<1) 666 667 #define MX31_CSPISTATUS 0x14 668 #define MX31_STATUS_RR (1 << 3) 669 670 #define MX31_CSPI_TESTREG 0x1C 671 #define MX31_TEST_LBC (1 << 14) 672 673 /* These functions also work for the i.MX35, but be aware that 674 * the i.MX35 has a slightly different register layout for bits 675 * we do not use here. 676 */ 677 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable) 678 { 679 unsigned int val = 0; 680 681 if (enable & MXC_INT_TE) 682 val |= MX31_INTREG_TEEN; 683 if (enable & MXC_INT_RR) 684 val |= MX31_INTREG_RREN; 685 686 writel(val, spi_imx->base + MXC_CSPIINT); 687 } 688 689 static void mx31_trigger(struct spi_imx_data *spi_imx) 690 { 691 unsigned int reg; 692 693 reg = readl(spi_imx->base + MXC_CSPICTRL); 694 reg |= MX31_CSPICTRL_XCH; 695 writel(reg, spi_imx->base + MXC_CSPICTRL); 696 } 697 698 static int mx31_prepare_message(struct spi_imx_data *spi_imx, 699 struct spi_message *msg) 700 { 701 return 0; 702 } 703 704 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx, 705 struct spi_device *spi, 706 struct spi_transfer *t) 707 { 708 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER; 709 unsigned int clk; 710 711 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, t->speed_hz, &clk) << 712 MX31_CSPICTRL_DR_SHIFT; 713 spi_imx->spi_bus_clk = clk; 714 715 if (is_imx35_cspi(spi_imx)) { 716 reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT; 717 reg |= MX31_CSPICTRL_SSCTL; 718 } else { 719 reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT; 720 } 721 722 if (spi->mode & SPI_CPHA) 723 reg |= MX31_CSPICTRL_PHA; 724 if (spi->mode & SPI_CPOL) 725 reg |= MX31_CSPICTRL_POL; 726 if (spi->mode & SPI_CS_HIGH) 727 reg |= MX31_CSPICTRL_SSPOL; 728 if (!spi->cs_gpiod) 729 reg |= (spi->chip_select) << 730 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT : 731 MX31_CSPICTRL_CS_SHIFT); 732 733 if (spi_imx->usedma) 734 reg |= MX31_CSPICTRL_SMC; 735 736 writel(reg, spi_imx->base + MXC_CSPICTRL); 737 738 reg = readl(spi_imx->base + MX31_CSPI_TESTREG); 739 if (spi->mode & SPI_LOOP) 740 reg |= MX31_TEST_LBC; 741 else 742 reg &= ~MX31_TEST_LBC; 743 writel(reg, spi_imx->base + MX31_CSPI_TESTREG); 744 745 if (spi_imx->usedma) { 746 /* 747 * configure DMA requests when RXFIFO is half full and 748 * when TXFIFO is half empty 749 */ 750 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN, 751 spi_imx->base + MX31_CSPI_DMAREG); 752 } 753 754 return 0; 755 } 756 757 static int mx31_rx_available(struct spi_imx_data *spi_imx) 758 { 759 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR; 760 } 761 762 static void mx31_reset(struct spi_imx_data *spi_imx) 763 { 764 /* drain receive buffer */ 765 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR) 766 readl(spi_imx->base + MXC_CSPIRXDATA); 767 } 768 769 #define MX21_INTREG_RR (1 << 4) 770 #define MX21_INTREG_TEEN (1 << 9) 771 #define MX21_INTREG_RREN (1 << 13) 772 773 #define MX21_CSPICTRL_POL (1 << 5) 774 #define MX21_CSPICTRL_PHA (1 << 6) 775 #define MX21_CSPICTRL_SSPOL (1 << 8) 776 #define MX21_CSPICTRL_XCH (1 << 9) 777 #define MX21_CSPICTRL_ENABLE (1 << 10) 778 #define MX21_CSPICTRL_MASTER (1 << 11) 779 #define MX21_CSPICTRL_DR_SHIFT 14 780 #define MX21_CSPICTRL_CS_SHIFT 19 781 782 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable) 783 { 784 unsigned int val = 0; 785 786 if (enable & MXC_INT_TE) 787 val |= MX21_INTREG_TEEN; 788 if (enable & MXC_INT_RR) 789 val |= MX21_INTREG_RREN; 790 791 writel(val, spi_imx->base + MXC_CSPIINT); 792 } 793 794 static void mx21_trigger(struct spi_imx_data *spi_imx) 795 { 796 unsigned int reg; 797 798 reg = readl(spi_imx->base + MXC_CSPICTRL); 799 reg |= MX21_CSPICTRL_XCH; 800 writel(reg, spi_imx->base + MXC_CSPICTRL); 801 } 802 803 static int mx21_prepare_message(struct spi_imx_data *spi_imx, 804 struct spi_message *msg) 805 { 806 return 0; 807 } 808 809 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx, 810 struct spi_device *spi, 811 struct spi_transfer *t) 812 { 813 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER; 814 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18; 815 unsigned int clk; 816 817 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, t->speed_hz, max, &clk) 818 << MX21_CSPICTRL_DR_SHIFT; 819 spi_imx->spi_bus_clk = clk; 820 821 reg |= spi_imx->bits_per_word - 1; 822 823 if (spi->mode & SPI_CPHA) 824 reg |= MX21_CSPICTRL_PHA; 825 if (spi->mode & SPI_CPOL) 826 reg |= MX21_CSPICTRL_POL; 827 if (spi->mode & SPI_CS_HIGH) 828 reg |= MX21_CSPICTRL_SSPOL; 829 if (!spi->cs_gpiod) 830 reg |= spi->chip_select << MX21_CSPICTRL_CS_SHIFT; 831 832 writel(reg, spi_imx->base + MXC_CSPICTRL); 833 834 return 0; 835 } 836 837 static int mx21_rx_available(struct spi_imx_data *spi_imx) 838 { 839 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR; 840 } 841 842 static void mx21_reset(struct spi_imx_data *spi_imx) 843 { 844 writel(1, spi_imx->base + MXC_RESET); 845 } 846 847 #define MX1_INTREG_RR (1 << 3) 848 #define MX1_INTREG_TEEN (1 << 8) 849 #define MX1_INTREG_RREN (1 << 11) 850 851 #define MX1_CSPICTRL_POL (1 << 4) 852 #define MX1_CSPICTRL_PHA (1 << 5) 853 #define MX1_CSPICTRL_XCH (1 << 8) 854 #define MX1_CSPICTRL_ENABLE (1 << 9) 855 #define MX1_CSPICTRL_MASTER (1 << 10) 856 #define MX1_CSPICTRL_DR_SHIFT 13 857 858 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable) 859 { 860 unsigned int val = 0; 861 862 if (enable & MXC_INT_TE) 863 val |= MX1_INTREG_TEEN; 864 if (enable & MXC_INT_RR) 865 val |= MX1_INTREG_RREN; 866 867 writel(val, spi_imx->base + MXC_CSPIINT); 868 } 869 870 static void mx1_trigger(struct spi_imx_data *spi_imx) 871 { 872 unsigned int reg; 873 874 reg = readl(spi_imx->base + MXC_CSPICTRL); 875 reg |= MX1_CSPICTRL_XCH; 876 writel(reg, spi_imx->base + MXC_CSPICTRL); 877 } 878 879 static int mx1_prepare_message(struct spi_imx_data *spi_imx, 880 struct spi_message *msg) 881 { 882 return 0; 883 } 884 885 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx, 886 struct spi_device *spi, 887 struct spi_transfer *t) 888 { 889 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER; 890 unsigned int clk; 891 892 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, t->speed_hz, &clk) << 893 MX1_CSPICTRL_DR_SHIFT; 894 spi_imx->spi_bus_clk = clk; 895 896 reg |= spi_imx->bits_per_word - 1; 897 898 if (spi->mode & SPI_CPHA) 899 reg |= MX1_CSPICTRL_PHA; 900 if (spi->mode & SPI_CPOL) 901 reg |= MX1_CSPICTRL_POL; 902 903 writel(reg, spi_imx->base + MXC_CSPICTRL); 904 905 return 0; 906 } 907 908 static int mx1_rx_available(struct spi_imx_data *spi_imx) 909 { 910 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR; 911 } 912 913 static void mx1_reset(struct spi_imx_data *spi_imx) 914 { 915 writel(1, spi_imx->base + MXC_RESET); 916 } 917 918 static struct spi_imx_devtype_data imx1_cspi_devtype_data = { 919 .intctrl = mx1_intctrl, 920 .prepare_message = mx1_prepare_message, 921 .prepare_transfer = mx1_prepare_transfer, 922 .trigger = mx1_trigger, 923 .rx_available = mx1_rx_available, 924 .reset = mx1_reset, 925 .fifo_size = 8, 926 .has_dmamode = false, 927 .dynamic_burst = false, 928 .has_slavemode = false, 929 .devtype = IMX1_CSPI, 930 }; 931 932 static struct spi_imx_devtype_data imx21_cspi_devtype_data = { 933 .intctrl = mx21_intctrl, 934 .prepare_message = mx21_prepare_message, 935 .prepare_transfer = mx21_prepare_transfer, 936 .trigger = mx21_trigger, 937 .rx_available = mx21_rx_available, 938 .reset = mx21_reset, 939 .fifo_size = 8, 940 .has_dmamode = false, 941 .dynamic_burst = false, 942 .has_slavemode = false, 943 .devtype = IMX21_CSPI, 944 }; 945 946 static struct spi_imx_devtype_data imx27_cspi_devtype_data = { 947 /* i.mx27 cspi shares the functions with i.mx21 one */ 948 .intctrl = mx21_intctrl, 949 .prepare_message = mx21_prepare_message, 950 .prepare_transfer = mx21_prepare_transfer, 951 .trigger = mx21_trigger, 952 .rx_available = mx21_rx_available, 953 .reset = mx21_reset, 954 .fifo_size = 8, 955 .has_dmamode = false, 956 .dynamic_burst = false, 957 .has_slavemode = false, 958 .devtype = IMX27_CSPI, 959 }; 960 961 static struct spi_imx_devtype_data imx31_cspi_devtype_data = { 962 .intctrl = mx31_intctrl, 963 .prepare_message = mx31_prepare_message, 964 .prepare_transfer = mx31_prepare_transfer, 965 .trigger = mx31_trigger, 966 .rx_available = mx31_rx_available, 967 .reset = mx31_reset, 968 .fifo_size = 8, 969 .has_dmamode = false, 970 .dynamic_burst = false, 971 .has_slavemode = false, 972 .devtype = IMX31_CSPI, 973 }; 974 975 static struct spi_imx_devtype_data imx35_cspi_devtype_data = { 976 /* i.mx35 and later cspi shares the functions with i.mx31 one */ 977 .intctrl = mx31_intctrl, 978 .prepare_message = mx31_prepare_message, 979 .prepare_transfer = mx31_prepare_transfer, 980 .trigger = mx31_trigger, 981 .rx_available = mx31_rx_available, 982 .reset = mx31_reset, 983 .fifo_size = 8, 984 .has_dmamode = true, 985 .dynamic_burst = false, 986 .has_slavemode = false, 987 .devtype = IMX35_CSPI, 988 }; 989 990 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = { 991 .intctrl = mx51_ecspi_intctrl, 992 .prepare_message = mx51_ecspi_prepare_message, 993 .prepare_transfer = mx51_ecspi_prepare_transfer, 994 .trigger = mx51_ecspi_trigger, 995 .rx_available = mx51_ecspi_rx_available, 996 .reset = mx51_ecspi_reset, 997 .setup_wml = mx51_setup_wml, 998 .disable_dma = mx51_disable_dma, 999 .fifo_size = 64, 1000 .has_dmamode = true, 1001 .dynamic_burst = true, 1002 .has_slavemode = true, 1003 .disable = mx51_ecspi_disable, 1004 .devtype = IMX51_ECSPI, 1005 }; 1006 1007 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = { 1008 .intctrl = mx51_ecspi_intctrl, 1009 .prepare_message = mx51_ecspi_prepare_message, 1010 .prepare_transfer = mx51_ecspi_prepare_transfer, 1011 .trigger = mx51_ecspi_trigger, 1012 .rx_available = mx51_ecspi_rx_available, 1013 .disable_dma = mx51_disable_dma, 1014 .reset = mx51_ecspi_reset, 1015 .fifo_size = 64, 1016 .has_dmamode = true, 1017 .has_slavemode = true, 1018 .disable = mx51_ecspi_disable, 1019 .devtype = IMX53_ECSPI, 1020 }; 1021 1022 static const struct platform_device_id spi_imx_devtype[] = { 1023 { 1024 .name = "imx1-cspi", 1025 .driver_data = (kernel_ulong_t) &imx1_cspi_devtype_data, 1026 }, { 1027 .name = "imx21-cspi", 1028 .driver_data = (kernel_ulong_t) &imx21_cspi_devtype_data, 1029 }, { 1030 .name = "imx27-cspi", 1031 .driver_data = (kernel_ulong_t) &imx27_cspi_devtype_data, 1032 }, { 1033 .name = "imx31-cspi", 1034 .driver_data = (kernel_ulong_t) &imx31_cspi_devtype_data, 1035 }, { 1036 .name = "imx35-cspi", 1037 .driver_data = (kernel_ulong_t) &imx35_cspi_devtype_data, 1038 }, { 1039 .name = "imx51-ecspi", 1040 .driver_data = (kernel_ulong_t) &imx51_ecspi_devtype_data, 1041 }, { 1042 .name = "imx53-ecspi", 1043 .driver_data = (kernel_ulong_t) &imx53_ecspi_devtype_data, 1044 }, { 1045 /* sentinel */ 1046 } 1047 }; 1048 1049 static const struct of_device_id spi_imx_dt_ids[] = { 1050 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, }, 1051 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, }, 1052 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, }, 1053 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, }, 1054 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, }, 1055 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, }, 1056 { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, }, 1057 { /* sentinel */ } 1058 }; 1059 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids); 1060 1061 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits) 1062 { 1063 u32 ctrl; 1064 1065 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 1066 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 1067 ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET); 1068 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 1069 } 1070 1071 static void spi_imx_push(struct spi_imx_data *spi_imx) 1072 { 1073 unsigned int burst_len, fifo_words; 1074 1075 if (spi_imx->dynamic_burst) 1076 fifo_words = 4; 1077 else 1078 fifo_words = spi_imx_bytes_per_word(spi_imx->bits_per_word); 1079 /* 1080 * Reload the FIFO when the remaining bytes to be transferred in the 1081 * current burst is 0. This only applies when bits_per_word is a 1082 * multiple of 8. 1083 */ 1084 if (!spi_imx->remainder) { 1085 if (spi_imx->dynamic_burst) { 1086 1087 /* We need to deal unaligned data first */ 1088 burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST; 1089 1090 if (!burst_len) 1091 burst_len = MX51_ECSPI_CTRL_MAX_BURST; 1092 1093 spi_imx_set_burst_len(spi_imx, burst_len * 8); 1094 1095 spi_imx->remainder = burst_len; 1096 } else { 1097 spi_imx->remainder = fifo_words; 1098 } 1099 } 1100 1101 while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) { 1102 if (!spi_imx->count) 1103 break; 1104 if (spi_imx->dynamic_burst && 1105 spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 1106 fifo_words)) 1107 break; 1108 spi_imx->tx(spi_imx); 1109 spi_imx->txfifo++; 1110 } 1111 1112 if (!spi_imx->slave_mode) 1113 spi_imx->devtype_data->trigger(spi_imx); 1114 } 1115 1116 static irqreturn_t spi_imx_isr(int irq, void *dev_id) 1117 { 1118 struct spi_imx_data *spi_imx = dev_id; 1119 1120 while (spi_imx->txfifo && 1121 spi_imx->devtype_data->rx_available(spi_imx)) { 1122 spi_imx->rx(spi_imx); 1123 spi_imx->txfifo--; 1124 } 1125 1126 if (spi_imx->count) { 1127 spi_imx_push(spi_imx); 1128 return IRQ_HANDLED; 1129 } 1130 1131 if (spi_imx->txfifo) { 1132 /* No data left to push, but still waiting for rx data, 1133 * enable receive data available interrupt. 1134 */ 1135 spi_imx->devtype_data->intctrl( 1136 spi_imx, MXC_INT_RR); 1137 return IRQ_HANDLED; 1138 } 1139 1140 spi_imx->devtype_data->intctrl(spi_imx, 0); 1141 complete(&spi_imx->xfer_done); 1142 1143 return IRQ_HANDLED; 1144 } 1145 1146 static int spi_imx_dma_configure(struct spi_master *master) 1147 { 1148 int ret; 1149 enum dma_slave_buswidth buswidth; 1150 struct dma_slave_config rx = {}, tx = {}; 1151 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 1152 1153 switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) { 1154 case 4: 1155 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1156 break; 1157 case 2: 1158 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1159 break; 1160 case 1: 1161 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1162 break; 1163 default: 1164 return -EINVAL; 1165 } 1166 1167 tx.direction = DMA_MEM_TO_DEV; 1168 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA; 1169 tx.dst_addr_width = buswidth; 1170 tx.dst_maxburst = spi_imx->wml; 1171 ret = dmaengine_slave_config(master->dma_tx, &tx); 1172 if (ret) { 1173 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret); 1174 return ret; 1175 } 1176 1177 rx.direction = DMA_DEV_TO_MEM; 1178 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA; 1179 rx.src_addr_width = buswidth; 1180 rx.src_maxburst = spi_imx->wml; 1181 ret = dmaengine_slave_config(master->dma_rx, &rx); 1182 if (ret) { 1183 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret); 1184 return ret; 1185 } 1186 1187 return 0; 1188 } 1189 1190 static int spi_imx_setupxfer(struct spi_device *spi, 1191 struct spi_transfer *t) 1192 { 1193 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 1194 1195 if (!t) 1196 return 0; 1197 1198 spi_imx->bits_per_word = t->bits_per_word; 1199 1200 /* 1201 * Initialize the functions for transfer. To transfer non byte-aligned 1202 * words, we have to use multiple word-size bursts, we can't use 1203 * dynamic_burst in that case. 1204 */ 1205 if (spi_imx->devtype_data->dynamic_burst && !spi_imx->slave_mode && 1206 (spi_imx->bits_per_word == 8 || 1207 spi_imx->bits_per_word == 16 || 1208 spi_imx->bits_per_word == 32)) { 1209 1210 spi_imx->rx = spi_imx_buf_rx_swap; 1211 spi_imx->tx = spi_imx_buf_tx_swap; 1212 spi_imx->dynamic_burst = 1; 1213 1214 } else { 1215 if (spi_imx->bits_per_word <= 8) { 1216 spi_imx->rx = spi_imx_buf_rx_u8; 1217 spi_imx->tx = spi_imx_buf_tx_u8; 1218 } else if (spi_imx->bits_per_word <= 16) { 1219 spi_imx->rx = spi_imx_buf_rx_u16; 1220 spi_imx->tx = spi_imx_buf_tx_u16; 1221 } else { 1222 spi_imx->rx = spi_imx_buf_rx_u32; 1223 spi_imx->tx = spi_imx_buf_tx_u32; 1224 } 1225 spi_imx->dynamic_burst = 0; 1226 } 1227 1228 if (spi_imx_can_dma(spi_imx->bitbang.master, spi, t)) 1229 spi_imx->usedma = true; 1230 else 1231 spi_imx->usedma = false; 1232 1233 if (is_imx53_ecspi(spi_imx) && spi_imx->slave_mode) { 1234 spi_imx->rx = mx53_ecspi_rx_slave; 1235 spi_imx->tx = mx53_ecspi_tx_slave; 1236 spi_imx->slave_burst = t->len; 1237 } 1238 1239 spi_imx->devtype_data->prepare_transfer(spi_imx, spi, t); 1240 1241 return 0; 1242 } 1243 1244 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx) 1245 { 1246 struct spi_master *master = spi_imx->bitbang.master; 1247 1248 if (master->dma_rx) { 1249 dma_release_channel(master->dma_rx); 1250 master->dma_rx = NULL; 1251 } 1252 1253 if (master->dma_tx) { 1254 dma_release_channel(master->dma_tx); 1255 master->dma_tx = NULL; 1256 } 1257 } 1258 1259 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx, 1260 struct spi_master *master) 1261 { 1262 int ret; 1263 1264 /* use pio mode for i.mx6dl chip TKT238285 */ 1265 if (of_machine_is_compatible("fsl,imx6dl")) 1266 return 0; 1267 1268 spi_imx->wml = spi_imx->devtype_data->fifo_size / 2; 1269 1270 /* Prepare for TX DMA: */ 1271 master->dma_tx = dma_request_chan(dev, "tx"); 1272 if (IS_ERR(master->dma_tx)) { 1273 ret = PTR_ERR(master->dma_tx); 1274 dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret); 1275 master->dma_tx = NULL; 1276 goto err; 1277 } 1278 1279 /* Prepare for RX : */ 1280 master->dma_rx = dma_request_chan(dev, "rx"); 1281 if (IS_ERR(master->dma_rx)) { 1282 ret = PTR_ERR(master->dma_rx); 1283 dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret); 1284 master->dma_rx = NULL; 1285 goto err; 1286 } 1287 1288 init_completion(&spi_imx->dma_rx_completion); 1289 init_completion(&spi_imx->dma_tx_completion); 1290 master->can_dma = spi_imx_can_dma; 1291 master->max_dma_len = MAX_SDMA_BD_BYTES; 1292 spi_imx->bitbang.master->flags = SPI_MASTER_MUST_RX | 1293 SPI_MASTER_MUST_TX; 1294 1295 return 0; 1296 err: 1297 spi_imx_sdma_exit(spi_imx); 1298 return ret; 1299 } 1300 1301 static void spi_imx_dma_rx_callback(void *cookie) 1302 { 1303 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1304 1305 complete(&spi_imx->dma_rx_completion); 1306 } 1307 1308 static void spi_imx_dma_tx_callback(void *cookie) 1309 { 1310 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1311 1312 complete(&spi_imx->dma_tx_completion); 1313 } 1314 1315 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size) 1316 { 1317 unsigned long timeout = 0; 1318 1319 /* Time with actual data transfer and CS change delay related to HW */ 1320 timeout = (8 + 4) * size / spi_imx->spi_bus_clk; 1321 1322 /* Add extra second for scheduler related activities */ 1323 timeout += 1; 1324 1325 /* Double calculated timeout */ 1326 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC); 1327 } 1328 1329 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx, 1330 struct spi_transfer *transfer) 1331 { 1332 struct dma_async_tx_descriptor *desc_tx, *desc_rx; 1333 unsigned long transfer_timeout; 1334 unsigned long timeout; 1335 struct spi_master *master = spi_imx->bitbang.master; 1336 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg; 1337 struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents); 1338 unsigned int bytes_per_word, i; 1339 int ret; 1340 1341 /* Get the right burst length from the last sg to ensure no tail data */ 1342 bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word); 1343 for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) { 1344 if (!(sg_dma_len(last_sg) % (i * bytes_per_word))) 1345 break; 1346 } 1347 /* Use 1 as wml in case no available burst length got */ 1348 if (i == 0) 1349 i = 1; 1350 1351 spi_imx->wml = i; 1352 1353 ret = spi_imx_dma_configure(master); 1354 if (ret) 1355 goto dma_failure_no_start; 1356 1357 if (!spi_imx->devtype_data->setup_wml) { 1358 dev_err(spi_imx->dev, "No setup_wml()?\n"); 1359 ret = -EINVAL; 1360 goto dma_failure_no_start; 1361 } 1362 spi_imx->devtype_data->setup_wml(spi_imx); 1363 1364 /* 1365 * The TX DMA setup starts the transfer, so make sure RX is configured 1366 * before TX. 1367 */ 1368 desc_rx = dmaengine_prep_slave_sg(master->dma_rx, 1369 rx->sgl, rx->nents, DMA_DEV_TO_MEM, 1370 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1371 if (!desc_rx) { 1372 ret = -EINVAL; 1373 goto dma_failure_no_start; 1374 } 1375 1376 desc_rx->callback = spi_imx_dma_rx_callback; 1377 desc_rx->callback_param = (void *)spi_imx; 1378 dmaengine_submit(desc_rx); 1379 reinit_completion(&spi_imx->dma_rx_completion); 1380 dma_async_issue_pending(master->dma_rx); 1381 1382 desc_tx = dmaengine_prep_slave_sg(master->dma_tx, 1383 tx->sgl, tx->nents, DMA_MEM_TO_DEV, 1384 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1385 if (!desc_tx) { 1386 dmaengine_terminate_all(master->dma_tx); 1387 dmaengine_terminate_all(master->dma_rx); 1388 return -EINVAL; 1389 } 1390 1391 desc_tx->callback = spi_imx_dma_tx_callback; 1392 desc_tx->callback_param = (void *)spi_imx; 1393 dmaengine_submit(desc_tx); 1394 reinit_completion(&spi_imx->dma_tx_completion); 1395 dma_async_issue_pending(master->dma_tx); 1396 1397 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1398 1399 /* Wait SDMA to finish the data transfer.*/ 1400 timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion, 1401 transfer_timeout); 1402 if (!timeout) { 1403 dev_err(spi_imx->dev, "I/O Error in DMA TX\n"); 1404 dmaengine_terminate_all(master->dma_tx); 1405 dmaengine_terminate_all(master->dma_rx); 1406 return -ETIMEDOUT; 1407 } 1408 1409 timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion, 1410 transfer_timeout); 1411 if (!timeout) { 1412 dev_err(&master->dev, "I/O Error in DMA RX\n"); 1413 spi_imx->devtype_data->reset(spi_imx); 1414 dmaengine_terminate_all(master->dma_rx); 1415 return -ETIMEDOUT; 1416 } 1417 1418 return transfer->len; 1419 /* fallback to pio */ 1420 dma_failure_no_start: 1421 transfer->error |= SPI_TRANS_FAIL_NO_START; 1422 return ret; 1423 } 1424 1425 static int spi_imx_pio_transfer(struct spi_device *spi, 1426 struct spi_transfer *transfer) 1427 { 1428 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 1429 unsigned long transfer_timeout; 1430 unsigned long timeout; 1431 1432 spi_imx->tx_buf = transfer->tx_buf; 1433 spi_imx->rx_buf = transfer->rx_buf; 1434 spi_imx->count = transfer->len; 1435 spi_imx->txfifo = 0; 1436 spi_imx->remainder = 0; 1437 1438 reinit_completion(&spi_imx->xfer_done); 1439 1440 spi_imx_push(spi_imx); 1441 1442 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE); 1443 1444 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1445 1446 timeout = wait_for_completion_timeout(&spi_imx->xfer_done, 1447 transfer_timeout); 1448 if (!timeout) { 1449 dev_err(&spi->dev, "I/O Error in PIO\n"); 1450 spi_imx->devtype_data->reset(spi_imx); 1451 return -ETIMEDOUT; 1452 } 1453 1454 return transfer->len; 1455 } 1456 1457 static int spi_imx_pio_transfer_slave(struct spi_device *spi, 1458 struct spi_transfer *transfer) 1459 { 1460 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 1461 int ret = transfer->len; 1462 1463 if (is_imx53_ecspi(spi_imx) && 1464 transfer->len > MX53_MAX_TRANSFER_BYTES) { 1465 dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n", 1466 MX53_MAX_TRANSFER_BYTES); 1467 return -EMSGSIZE; 1468 } 1469 1470 spi_imx->tx_buf = transfer->tx_buf; 1471 spi_imx->rx_buf = transfer->rx_buf; 1472 spi_imx->count = transfer->len; 1473 spi_imx->txfifo = 0; 1474 spi_imx->remainder = 0; 1475 1476 reinit_completion(&spi_imx->xfer_done); 1477 spi_imx->slave_aborted = false; 1478 1479 spi_imx_push(spi_imx); 1480 1481 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR); 1482 1483 if (wait_for_completion_interruptible(&spi_imx->xfer_done) || 1484 spi_imx->slave_aborted) { 1485 dev_dbg(&spi->dev, "interrupted\n"); 1486 ret = -EINTR; 1487 } 1488 1489 /* ecspi has a HW issue when works in Slave mode, 1490 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty, 1491 * ECSPI_TXDATA keeps shift out the last word data, 1492 * so we have to disable ECSPI when in slave mode after the 1493 * transfer completes 1494 */ 1495 if (spi_imx->devtype_data->disable) 1496 spi_imx->devtype_data->disable(spi_imx); 1497 1498 return ret; 1499 } 1500 1501 static int spi_imx_transfer(struct spi_device *spi, 1502 struct spi_transfer *transfer) 1503 { 1504 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); 1505 1506 transfer->effective_speed_hz = spi_imx->spi_bus_clk; 1507 1508 /* flush rxfifo before transfer */ 1509 while (spi_imx->devtype_data->rx_available(spi_imx)) 1510 readl(spi_imx->base + MXC_CSPIRXDATA); 1511 1512 if (spi_imx->slave_mode) 1513 return spi_imx_pio_transfer_slave(spi, transfer); 1514 1515 if (spi_imx->usedma) 1516 return spi_imx_dma_transfer(spi_imx, transfer); 1517 1518 return spi_imx_pio_transfer(spi, transfer); 1519 } 1520 1521 static int spi_imx_setup(struct spi_device *spi) 1522 { 1523 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__, 1524 spi->mode, spi->bits_per_word, spi->max_speed_hz); 1525 1526 return 0; 1527 } 1528 1529 static void spi_imx_cleanup(struct spi_device *spi) 1530 { 1531 } 1532 1533 static int 1534 spi_imx_prepare_message(struct spi_master *master, struct spi_message *msg) 1535 { 1536 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 1537 int ret; 1538 1539 ret = pm_runtime_get_sync(spi_imx->dev); 1540 if (ret < 0) { 1541 dev_err(spi_imx->dev, "failed to enable clock\n"); 1542 return ret; 1543 } 1544 1545 ret = spi_imx->devtype_data->prepare_message(spi_imx, msg); 1546 if (ret) { 1547 pm_runtime_mark_last_busy(spi_imx->dev); 1548 pm_runtime_put_autosuspend(spi_imx->dev); 1549 } 1550 1551 return ret; 1552 } 1553 1554 static int 1555 spi_imx_unprepare_message(struct spi_master *master, struct spi_message *msg) 1556 { 1557 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 1558 1559 pm_runtime_mark_last_busy(spi_imx->dev); 1560 pm_runtime_put_autosuspend(spi_imx->dev); 1561 return 0; 1562 } 1563 1564 static int spi_imx_slave_abort(struct spi_master *master) 1565 { 1566 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 1567 1568 spi_imx->slave_aborted = true; 1569 complete(&spi_imx->xfer_done); 1570 1571 return 0; 1572 } 1573 1574 static int spi_imx_probe(struct platform_device *pdev) 1575 { 1576 struct device_node *np = pdev->dev.of_node; 1577 const struct of_device_id *of_id = 1578 of_match_device(spi_imx_dt_ids, &pdev->dev); 1579 struct spi_master *master; 1580 struct spi_imx_data *spi_imx; 1581 struct resource *res; 1582 int ret, irq, spi_drctl; 1583 const struct spi_imx_devtype_data *devtype_data = of_id ? of_id->data : 1584 (struct spi_imx_devtype_data *)pdev->id_entry->driver_data; 1585 bool slave_mode; 1586 u32 val; 1587 1588 slave_mode = devtype_data->has_slavemode && 1589 of_property_read_bool(np, "spi-slave"); 1590 if (slave_mode) 1591 master = spi_alloc_slave(&pdev->dev, 1592 sizeof(struct spi_imx_data)); 1593 else 1594 master = spi_alloc_master(&pdev->dev, 1595 sizeof(struct spi_imx_data)); 1596 if (!master) 1597 return -ENOMEM; 1598 1599 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl); 1600 if ((ret < 0) || (spi_drctl >= 0x3)) { 1601 /* '11' is reserved */ 1602 spi_drctl = 0; 1603 } 1604 1605 platform_set_drvdata(pdev, master); 1606 1607 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32); 1608 master->bus_num = np ? -1 : pdev->id; 1609 master->use_gpio_descriptors = true; 1610 1611 spi_imx = spi_master_get_devdata(master); 1612 spi_imx->bitbang.master = master; 1613 spi_imx->dev = &pdev->dev; 1614 spi_imx->slave_mode = slave_mode; 1615 1616 spi_imx->devtype_data = devtype_data; 1617 1618 /* 1619 * Get number of chip selects from device properties. This can be 1620 * coming from device tree or boardfiles, if it is not defined, 1621 * a default value of 3 chip selects will be used, as all the legacy 1622 * board files have <= 3 chip selects. 1623 */ 1624 if (!device_property_read_u32(&pdev->dev, "num-cs", &val)) 1625 master->num_chipselect = val; 1626 else 1627 master->num_chipselect = 3; 1628 1629 spi_imx->bitbang.setup_transfer = spi_imx_setupxfer; 1630 spi_imx->bitbang.txrx_bufs = spi_imx_transfer; 1631 spi_imx->bitbang.master->setup = spi_imx_setup; 1632 spi_imx->bitbang.master->cleanup = spi_imx_cleanup; 1633 spi_imx->bitbang.master->prepare_message = spi_imx_prepare_message; 1634 spi_imx->bitbang.master->unprepare_message = spi_imx_unprepare_message; 1635 spi_imx->bitbang.master->slave_abort = spi_imx_slave_abort; 1636 spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \ 1637 | SPI_NO_CS; 1638 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) || 1639 is_imx53_ecspi(spi_imx)) 1640 spi_imx->bitbang.master->mode_bits |= SPI_LOOP | SPI_READY; 1641 1642 spi_imx->spi_drctl = spi_drctl; 1643 1644 init_completion(&spi_imx->xfer_done); 1645 1646 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1647 spi_imx->base = devm_ioremap_resource(&pdev->dev, res); 1648 if (IS_ERR(spi_imx->base)) { 1649 ret = PTR_ERR(spi_imx->base); 1650 goto out_master_put; 1651 } 1652 spi_imx->base_phys = res->start; 1653 1654 irq = platform_get_irq(pdev, 0); 1655 if (irq < 0) { 1656 ret = irq; 1657 goto out_master_put; 1658 } 1659 1660 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0, 1661 dev_name(&pdev->dev), spi_imx); 1662 if (ret) { 1663 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret); 1664 goto out_master_put; 1665 } 1666 1667 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 1668 if (IS_ERR(spi_imx->clk_ipg)) { 1669 ret = PTR_ERR(spi_imx->clk_ipg); 1670 goto out_master_put; 1671 } 1672 1673 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per"); 1674 if (IS_ERR(spi_imx->clk_per)) { 1675 ret = PTR_ERR(spi_imx->clk_per); 1676 goto out_master_put; 1677 } 1678 1679 pm_runtime_enable(spi_imx->dev); 1680 pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT); 1681 pm_runtime_use_autosuspend(spi_imx->dev); 1682 1683 ret = pm_runtime_get_sync(spi_imx->dev); 1684 if (ret < 0) { 1685 dev_err(spi_imx->dev, "failed to enable clock\n"); 1686 goto out_runtime_pm_put; 1687 } 1688 1689 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per); 1690 /* 1691 * Only validated on i.mx35 and i.mx6 now, can remove the constraint 1692 * if validated on other chips. 1693 */ 1694 if (spi_imx->devtype_data->has_dmamode) { 1695 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, master); 1696 if (ret == -EPROBE_DEFER) 1697 goto out_runtime_pm_put; 1698 1699 if (ret < 0) 1700 dev_dbg(&pdev->dev, "dma setup error %d, use pio\n", 1701 ret); 1702 } 1703 1704 spi_imx->devtype_data->reset(spi_imx); 1705 1706 spi_imx->devtype_data->intctrl(spi_imx, 0); 1707 1708 master->dev.of_node = pdev->dev.of_node; 1709 ret = spi_bitbang_start(&spi_imx->bitbang); 1710 if (ret) { 1711 dev_err(&pdev->dev, "bitbang start failed with %d\n", ret); 1712 goto out_bitbang_start; 1713 } 1714 1715 pm_runtime_mark_last_busy(spi_imx->dev); 1716 pm_runtime_put_autosuspend(spi_imx->dev); 1717 1718 return ret; 1719 1720 out_bitbang_start: 1721 if (spi_imx->devtype_data->has_dmamode) 1722 spi_imx_sdma_exit(spi_imx); 1723 out_runtime_pm_put: 1724 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1725 pm_runtime_put_sync(spi_imx->dev); 1726 pm_runtime_disable(spi_imx->dev); 1727 out_master_put: 1728 spi_master_put(master); 1729 1730 return ret; 1731 } 1732 1733 static int spi_imx_remove(struct platform_device *pdev) 1734 { 1735 struct spi_master *master = platform_get_drvdata(pdev); 1736 struct spi_imx_data *spi_imx = spi_master_get_devdata(master); 1737 int ret; 1738 1739 spi_bitbang_stop(&spi_imx->bitbang); 1740 1741 ret = pm_runtime_get_sync(spi_imx->dev); 1742 if (ret < 0) { 1743 dev_err(spi_imx->dev, "failed to enable clock\n"); 1744 return ret; 1745 } 1746 1747 writel(0, spi_imx->base + MXC_CSPICTRL); 1748 1749 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1750 pm_runtime_put_sync(spi_imx->dev); 1751 pm_runtime_disable(spi_imx->dev); 1752 1753 spi_imx_sdma_exit(spi_imx); 1754 spi_master_put(master); 1755 1756 return 0; 1757 } 1758 1759 static int __maybe_unused spi_imx_runtime_resume(struct device *dev) 1760 { 1761 struct spi_master *master = dev_get_drvdata(dev); 1762 struct spi_imx_data *spi_imx; 1763 int ret; 1764 1765 spi_imx = spi_master_get_devdata(master); 1766 1767 ret = clk_prepare_enable(spi_imx->clk_per); 1768 if (ret) 1769 return ret; 1770 1771 ret = clk_prepare_enable(spi_imx->clk_ipg); 1772 if (ret) { 1773 clk_disable_unprepare(spi_imx->clk_per); 1774 return ret; 1775 } 1776 1777 return 0; 1778 } 1779 1780 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev) 1781 { 1782 struct spi_master *master = dev_get_drvdata(dev); 1783 struct spi_imx_data *spi_imx; 1784 1785 spi_imx = spi_master_get_devdata(master); 1786 1787 clk_disable_unprepare(spi_imx->clk_per); 1788 clk_disable_unprepare(spi_imx->clk_ipg); 1789 1790 return 0; 1791 } 1792 1793 static int __maybe_unused spi_imx_suspend(struct device *dev) 1794 { 1795 pinctrl_pm_select_sleep_state(dev); 1796 return 0; 1797 } 1798 1799 static int __maybe_unused spi_imx_resume(struct device *dev) 1800 { 1801 pinctrl_pm_select_default_state(dev); 1802 return 0; 1803 } 1804 1805 static const struct dev_pm_ops imx_spi_pm = { 1806 SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend, 1807 spi_imx_runtime_resume, NULL) 1808 SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume) 1809 }; 1810 1811 static struct platform_driver spi_imx_driver = { 1812 .driver = { 1813 .name = DRIVER_NAME, 1814 .of_match_table = spi_imx_dt_ids, 1815 .pm = &imx_spi_pm, 1816 }, 1817 .id_table = spi_imx_devtype, 1818 .probe = spi_imx_probe, 1819 .remove = spi_imx_remove, 1820 }; 1821 module_platform_driver(spi_imx_driver); 1822 1823 MODULE_DESCRIPTION("SPI Controller driver"); 1824 MODULE_AUTHOR("Sascha Hauer, Pengutronix"); 1825 MODULE_LICENSE("GPL"); 1826 MODULE_ALIAS("platform:" DRIVER_NAME); 1827