1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. 3 // Copyright (C) 2008 Juergen Beisert 4 5 #include <linux/clk.h> 6 #include <linux/completion.h> 7 #include <linux/delay.h> 8 #include <linux/dmaengine.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/err.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/irq.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/pinctrl/consumer.h> 17 #include <linux/platform_device.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/slab.h> 20 #include <linux/spi/spi.h> 21 #include <linux/types.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/property.h> 25 26 #include <linux/dma/imx-dma.h> 27 28 #define DRIVER_NAME "spi_imx" 29 30 static bool use_dma = true; 31 module_param(use_dma, bool, 0644); 32 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)"); 33 34 /* define polling limits */ 35 static unsigned int polling_limit_us = 30; 36 module_param(polling_limit_us, uint, 0664); 37 MODULE_PARM_DESC(polling_limit_us, 38 "time in us to run a transfer in polling mode\n"); 39 40 #define MXC_RPM_TIMEOUT 2000 /* 2000ms */ 41 42 #define MXC_CSPIRXDATA 0x00 43 #define MXC_CSPITXDATA 0x04 44 #define MXC_CSPICTRL 0x08 45 #define MXC_CSPIINT 0x0c 46 #define MXC_RESET 0x1c 47 48 /* generic defines to abstract from the different register layouts */ 49 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */ 50 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */ 51 #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */ 52 53 /* The maximum bytes that a sdma BD can transfer. */ 54 #define MAX_SDMA_BD_BYTES (1 << 15) 55 #define MX51_ECSPI_CTRL_MAX_BURST 512 56 /* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/ 57 #define MX53_MAX_TRANSFER_BYTES 512 58 59 enum spi_imx_devtype { 60 IMX1_CSPI, 61 IMX21_CSPI, 62 IMX27_CSPI, 63 IMX31_CSPI, 64 IMX35_CSPI, /* CSPI on all i.mx except above */ 65 IMX51_ECSPI, /* ECSPI on i.mx51 */ 66 IMX53_ECSPI, /* ECSPI on i.mx53 and later */ 67 }; 68 69 struct spi_imx_data; 70 71 struct spi_imx_devtype_data { 72 void (*intctrl)(struct spi_imx_data *spi_imx, int enable); 73 int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg); 74 int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi); 75 void (*trigger)(struct spi_imx_data *spi_imx); 76 int (*rx_available)(struct spi_imx_data *spi_imx); 77 void (*reset)(struct spi_imx_data *spi_imx); 78 void (*setup_wml)(struct spi_imx_data *spi_imx); 79 void (*disable)(struct spi_imx_data *spi_imx); 80 void (*disable_dma)(struct spi_imx_data *spi_imx); 81 bool has_dmamode; 82 bool has_slavemode; 83 unsigned int fifo_size; 84 bool dynamic_burst; 85 /* 86 * ERR009165 fixed or not: 87 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf 88 */ 89 bool tx_glitch_fixed; 90 enum spi_imx_devtype devtype; 91 }; 92 93 struct spi_imx_data { 94 struct spi_controller *controller; 95 struct device *dev; 96 97 struct completion xfer_done; 98 void __iomem *base; 99 unsigned long base_phys; 100 101 struct clk *clk_per; 102 struct clk *clk_ipg; 103 unsigned long spi_clk; 104 unsigned int spi_bus_clk; 105 106 unsigned int bits_per_word; 107 unsigned int spi_drctl; 108 109 unsigned int count, remainder; 110 void (*tx)(struct spi_imx_data *spi_imx); 111 void (*rx)(struct spi_imx_data *spi_imx); 112 void *rx_buf; 113 const void *tx_buf; 114 unsigned int txfifo; /* number of words pushed in tx FIFO */ 115 unsigned int dynamic_burst; 116 bool rx_only; 117 118 /* Slave mode */ 119 bool slave_mode; 120 bool slave_aborted; 121 unsigned int slave_burst; 122 123 /* DMA */ 124 bool usedma; 125 u32 wml; 126 struct completion dma_rx_completion; 127 struct completion dma_tx_completion; 128 129 const struct spi_imx_devtype_data *devtype_data; 130 }; 131 132 static inline int is_imx27_cspi(struct spi_imx_data *d) 133 { 134 return d->devtype_data->devtype == IMX27_CSPI; 135 } 136 137 static inline int is_imx35_cspi(struct spi_imx_data *d) 138 { 139 return d->devtype_data->devtype == IMX35_CSPI; 140 } 141 142 static inline int is_imx51_ecspi(struct spi_imx_data *d) 143 { 144 return d->devtype_data->devtype == IMX51_ECSPI; 145 } 146 147 static inline int is_imx53_ecspi(struct spi_imx_data *d) 148 { 149 return d->devtype_data->devtype == IMX53_ECSPI; 150 } 151 152 #define MXC_SPI_BUF_RX(type) \ 153 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \ 154 { \ 155 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \ 156 \ 157 if (spi_imx->rx_buf) { \ 158 *(type *)spi_imx->rx_buf = val; \ 159 spi_imx->rx_buf += sizeof(type); \ 160 } \ 161 \ 162 spi_imx->remainder -= sizeof(type); \ 163 } 164 165 #define MXC_SPI_BUF_TX(type) \ 166 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \ 167 { \ 168 type val = 0; \ 169 \ 170 if (spi_imx->tx_buf) { \ 171 val = *(type *)spi_imx->tx_buf; \ 172 spi_imx->tx_buf += sizeof(type); \ 173 } \ 174 \ 175 spi_imx->count -= sizeof(type); \ 176 \ 177 writel(val, spi_imx->base + MXC_CSPITXDATA); \ 178 } 179 180 MXC_SPI_BUF_RX(u8) 181 MXC_SPI_BUF_TX(u8) 182 MXC_SPI_BUF_RX(u16) 183 MXC_SPI_BUF_TX(u16) 184 MXC_SPI_BUF_RX(u32) 185 MXC_SPI_BUF_TX(u32) 186 187 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set 188 * (which is currently not the case in this driver) 189 */ 190 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 191 256, 384, 512, 768, 1024}; 192 193 /* MX21, MX27 */ 194 static unsigned int spi_imx_clkdiv_1(unsigned int fin, 195 unsigned int fspi, unsigned int max, unsigned int *fres) 196 { 197 int i; 198 199 for (i = 2; i < max; i++) 200 if (fspi * mxc_clkdivs[i] >= fin) 201 break; 202 203 *fres = fin / mxc_clkdivs[i]; 204 return i; 205 } 206 207 /* MX1, MX31, MX35, MX51 CSPI */ 208 static unsigned int spi_imx_clkdiv_2(unsigned int fin, 209 unsigned int fspi, unsigned int *fres) 210 { 211 int i, div = 4; 212 213 for (i = 0; i < 7; i++) { 214 if (fspi * div >= fin) 215 goto out; 216 div <<= 1; 217 } 218 219 out: 220 *fres = fin / div; 221 return i; 222 } 223 224 static int spi_imx_bytes_per_word(const int bits_per_word) 225 { 226 if (bits_per_word <= 8) 227 return 1; 228 else if (bits_per_word <= 16) 229 return 2; 230 else 231 return 4; 232 } 233 234 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi, 235 struct spi_transfer *transfer) 236 { 237 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 238 239 if (!use_dma || controller->fallback) 240 return false; 241 242 if (!controller->dma_rx) 243 return false; 244 245 if (spi_imx->slave_mode) 246 return false; 247 248 if (transfer->len < spi_imx->devtype_data->fifo_size) 249 return false; 250 251 spi_imx->dynamic_burst = 0; 252 253 return true; 254 } 255 256 #define MX51_ECSPI_CTRL 0x08 257 #define MX51_ECSPI_CTRL_ENABLE (1 << 0) 258 #define MX51_ECSPI_CTRL_XCH (1 << 2) 259 #define MX51_ECSPI_CTRL_SMC (1 << 3) 260 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4) 261 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16) 262 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8 263 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12 264 #define MX51_ECSPI_CTRL_CS(cs) ((cs) << 18) 265 #define MX51_ECSPI_CTRL_BL_OFFSET 20 266 #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20) 267 268 #define MX51_ECSPI_CONFIG 0x0c 269 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs) + 0)) 270 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs) + 4)) 271 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs) + 8)) 272 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs) + 12)) 273 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs) + 20)) 274 275 #define MX51_ECSPI_INT 0x10 276 #define MX51_ECSPI_INT_TEEN (1 << 0) 277 #define MX51_ECSPI_INT_RREN (1 << 3) 278 #define MX51_ECSPI_INT_RDREN (1 << 4) 279 280 #define MX51_ECSPI_DMA 0x14 281 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f) 282 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16) 283 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24) 284 285 #define MX51_ECSPI_DMA_TEDEN (1 << 7) 286 #define MX51_ECSPI_DMA_RXDEN (1 << 23) 287 #define MX51_ECSPI_DMA_RXTDEN (1 << 31) 288 289 #define MX51_ECSPI_STAT 0x18 290 #define MX51_ECSPI_STAT_RR (1 << 3) 291 292 #define MX51_ECSPI_TESTREG 0x20 293 #define MX51_ECSPI_TESTREG_LBC BIT(31) 294 295 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx) 296 { 297 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); 298 299 if (spi_imx->rx_buf) { 300 #ifdef __LITTLE_ENDIAN 301 unsigned int bytes_per_word; 302 303 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 304 if (bytes_per_word == 1) 305 swab32s(&val); 306 else if (bytes_per_word == 2) 307 swahw32s(&val); 308 #endif 309 *(u32 *)spi_imx->rx_buf = val; 310 spi_imx->rx_buf += sizeof(u32); 311 } 312 313 spi_imx->remainder -= sizeof(u32); 314 } 315 316 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx) 317 { 318 int unaligned; 319 u32 val; 320 321 unaligned = spi_imx->remainder % 4; 322 323 if (!unaligned) { 324 spi_imx_buf_rx_swap_u32(spi_imx); 325 return; 326 } 327 328 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 329 spi_imx_buf_rx_u16(spi_imx); 330 return; 331 } 332 333 val = readl(spi_imx->base + MXC_CSPIRXDATA); 334 335 while (unaligned--) { 336 if (spi_imx->rx_buf) { 337 *(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff; 338 spi_imx->rx_buf++; 339 } 340 spi_imx->remainder--; 341 } 342 } 343 344 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx) 345 { 346 u32 val = 0; 347 #ifdef __LITTLE_ENDIAN 348 unsigned int bytes_per_word; 349 #endif 350 351 if (spi_imx->tx_buf) { 352 val = *(u32 *)spi_imx->tx_buf; 353 spi_imx->tx_buf += sizeof(u32); 354 } 355 356 spi_imx->count -= sizeof(u32); 357 #ifdef __LITTLE_ENDIAN 358 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 359 360 if (bytes_per_word == 1) 361 swab32s(&val); 362 else if (bytes_per_word == 2) 363 swahw32s(&val); 364 #endif 365 writel(val, spi_imx->base + MXC_CSPITXDATA); 366 } 367 368 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx) 369 { 370 int unaligned; 371 u32 val = 0; 372 373 unaligned = spi_imx->count % 4; 374 375 if (!unaligned) { 376 spi_imx_buf_tx_swap_u32(spi_imx); 377 return; 378 } 379 380 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 381 spi_imx_buf_tx_u16(spi_imx); 382 return; 383 } 384 385 while (unaligned--) { 386 if (spi_imx->tx_buf) { 387 val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned); 388 spi_imx->tx_buf++; 389 } 390 spi_imx->count--; 391 } 392 393 writel(val, spi_imx->base + MXC_CSPITXDATA); 394 } 395 396 static void mx53_ecspi_rx_slave(struct spi_imx_data *spi_imx) 397 { 398 u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA)); 399 400 if (spi_imx->rx_buf) { 401 int n_bytes = spi_imx->slave_burst % sizeof(val); 402 403 if (!n_bytes) 404 n_bytes = sizeof(val); 405 406 memcpy(spi_imx->rx_buf, 407 ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes); 408 409 spi_imx->rx_buf += n_bytes; 410 spi_imx->slave_burst -= n_bytes; 411 } 412 413 spi_imx->remainder -= sizeof(u32); 414 } 415 416 static void mx53_ecspi_tx_slave(struct spi_imx_data *spi_imx) 417 { 418 u32 val = 0; 419 int n_bytes = spi_imx->count % sizeof(val); 420 421 if (!n_bytes) 422 n_bytes = sizeof(val); 423 424 if (spi_imx->tx_buf) { 425 memcpy(((u8 *)&val) + sizeof(val) - n_bytes, 426 spi_imx->tx_buf, n_bytes); 427 val = cpu_to_be32(val); 428 spi_imx->tx_buf += n_bytes; 429 } 430 431 spi_imx->count -= n_bytes; 432 433 writel(val, spi_imx->base + MXC_CSPITXDATA); 434 } 435 436 /* MX51 eCSPI */ 437 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx, 438 unsigned int fspi, unsigned int *fres) 439 { 440 /* 441 * there are two 4-bit dividers, the pre-divider divides by 442 * $pre, the post-divider by 2^$post 443 */ 444 unsigned int pre, post; 445 unsigned int fin = spi_imx->spi_clk; 446 447 fspi = min(fspi, fin); 448 449 post = fls(fin) - fls(fspi); 450 if (fin > fspi << post) 451 post++; 452 453 /* now we have: (fin <= fspi << post) with post being minimal */ 454 455 post = max(4U, post) - 4; 456 if (unlikely(post > 0xf)) { 457 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n", 458 fspi, fin); 459 return 0xff; 460 } 461 462 pre = DIV_ROUND_UP(fin, fspi << post) - 1; 463 464 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n", 465 __func__, fin, fspi, post, pre); 466 467 /* Resulting frequency for the SCLK line. */ 468 *fres = (fin / (pre + 1)) >> post; 469 470 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) | 471 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET); 472 } 473 474 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable) 475 { 476 unsigned int val = 0; 477 478 if (enable & MXC_INT_TE) 479 val |= MX51_ECSPI_INT_TEEN; 480 481 if (enable & MXC_INT_RR) 482 val |= MX51_ECSPI_INT_RREN; 483 484 if (enable & MXC_INT_RDR) 485 val |= MX51_ECSPI_INT_RDREN; 486 487 writel(val, spi_imx->base + MX51_ECSPI_INT); 488 } 489 490 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx) 491 { 492 u32 reg; 493 494 reg = readl(spi_imx->base + MX51_ECSPI_CTRL); 495 reg |= MX51_ECSPI_CTRL_XCH; 496 writel(reg, spi_imx->base + MX51_ECSPI_CTRL); 497 } 498 499 static void mx51_disable_dma(struct spi_imx_data *spi_imx) 500 { 501 writel(0, spi_imx->base + MX51_ECSPI_DMA); 502 } 503 504 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx) 505 { 506 u32 ctrl; 507 508 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 509 ctrl &= ~MX51_ECSPI_CTRL_ENABLE; 510 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 511 } 512 513 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx, 514 struct spi_message *msg) 515 { 516 struct spi_device *spi = msg->spi; 517 struct spi_transfer *xfer; 518 u32 ctrl = MX51_ECSPI_CTRL_ENABLE; 519 u32 min_speed_hz = ~0U; 520 u32 testreg, delay; 521 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 522 u32 current_cfg = cfg; 523 524 /* set Master or Slave mode */ 525 if (spi_imx->slave_mode) 526 ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK; 527 else 528 ctrl |= MX51_ECSPI_CTRL_MODE_MASK; 529 530 /* 531 * Enable SPI_RDY handling (falling edge/level triggered). 532 */ 533 if (spi->mode & SPI_READY) 534 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl); 535 536 /* set chip select to use */ 537 ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select); 538 539 /* 540 * The ctrl register must be written first, with the EN bit set other 541 * registers must not be written to. 542 */ 543 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 544 545 testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG); 546 if (spi->mode & SPI_LOOP) 547 testreg |= MX51_ECSPI_TESTREG_LBC; 548 else 549 testreg &= ~MX51_ECSPI_TESTREG_LBC; 550 writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG); 551 552 /* 553 * eCSPI burst completion by Chip Select signal in Slave mode 554 * is not functional for imx53 Soc, config SPI burst completed when 555 * BURST_LENGTH + 1 bits are received 556 */ 557 if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx)) 558 cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select); 559 else 560 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select); 561 562 if (spi->mode & SPI_CPOL) { 563 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select); 564 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select); 565 } else { 566 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select); 567 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select); 568 } 569 570 if (spi->mode & SPI_CS_HIGH) 571 cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select); 572 else 573 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select); 574 575 if (cfg == current_cfg) 576 return 0; 577 578 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 579 580 /* 581 * Wait until the changes in the configuration register CONFIGREG 582 * propagate into the hardware. It takes exactly one tick of the 583 * SCLK clock, but we will wait two SCLK clock just to be sure. The 584 * effect of the delay it takes for the hardware to apply changes 585 * is noticable if the SCLK clock run very slow. In such a case, if 586 * the polarity of SCLK should be inverted, the GPIO ChipSelect might 587 * be asserted before the SCLK polarity changes, which would disrupt 588 * the SPI communication as the device on the other end would consider 589 * the change of SCLK polarity as a clock tick already. 590 * 591 * Because spi_imx->spi_bus_clk is only set in prepare_message 592 * callback, iterate over all the transfers in spi_message, find the 593 * one with lowest bus frequency, and use that bus frequency for the 594 * delay calculation. In case all transfers have speed_hz == 0, then 595 * min_speed_hz is ~0 and the resulting delay is zero. 596 */ 597 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 598 if (!xfer->speed_hz) 599 continue; 600 min_speed_hz = min(xfer->speed_hz, min_speed_hz); 601 } 602 603 delay = (2 * 1000000) / min_speed_hz; 604 if (likely(delay < 10)) /* SCLK is faster than 200 kHz */ 605 udelay(delay); 606 else /* SCLK is _very_ slow */ 607 usleep_range(delay, delay + 10); 608 609 return 0; 610 } 611 612 static void mx51_configure_cpha(struct spi_imx_data *spi_imx, 613 struct spi_device *spi) 614 { 615 bool cpha = (spi->mode & SPI_CPHA); 616 bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only; 617 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 618 619 /* Flip cpha logical value iff flip_cpha */ 620 cpha ^= flip_cpha; 621 622 if (cpha) 623 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select); 624 else 625 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select); 626 627 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 628 } 629 630 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx, 631 struct spi_device *spi) 632 { 633 u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 634 u32 clk; 635 636 /* Clear BL field and set the right value */ 637 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 638 if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx)) 639 ctrl |= (spi_imx->slave_burst * 8 - 1) 640 << MX51_ECSPI_CTRL_BL_OFFSET; 641 else 642 ctrl |= (spi_imx->bits_per_word - 1) 643 << MX51_ECSPI_CTRL_BL_OFFSET; 644 645 /* set clock speed */ 646 ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET | 647 0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET); 648 ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk); 649 spi_imx->spi_bus_clk = clk; 650 651 mx51_configure_cpha(spi_imx, spi); 652 653 /* 654 * ERR009165: work in XHC mode instead of SMC as PIO on the chips 655 * before i.mx6ul. 656 */ 657 if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed) 658 ctrl |= MX51_ECSPI_CTRL_SMC; 659 else 660 ctrl &= ~MX51_ECSPI_CTRL_SMC; 661 662 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 663 664 return 0; 665 } 666 667 static void mx51_setup_wml(struct spi_imx_data *spi_imx) 668 { 669 u32 tx_wml = 0; 670 671 if (spi_imx->devtype_data->tx_glitch_fixed) 672 tx_wml = spi_imx->wml; 673 /* 674 * Configure the DMA register: setup the watermark 675 * and enable DMA request. 676 */ 677 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) | 678 MX51_ECSPI_DMA_TX_WML(tx_wml) | 679 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) | 680 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN | 681 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA); 682 } 683 684 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx) 685 { 686 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR; 687 } 688 689 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx) 690 { 691 /* drain receive buffer */ 692 while (mx51_ecspi_rx_available(spi_imx)) 693 readl(spi_imx->base + MXC_CSPIRXDATA); 694 } 695 696 #define MX31_INTREG_TEEN (1 << 0) 697 #define MX31_INTREG_RREN (1 << 3) 698 699 #define MX31_CSPICTRL_ENABLE (1 << 0) 700 #define MX31_CSPICTRL_MASTER (1 << 1) 701 #define MX31_CSPICTRL_XCH (1 << 2) 702 #define MX31_CSPICTRL_SMC (1 << 3) 703 #define MX31_CSPICTRL_POL (1 << 4) 704 #define MX31_CSPICTRL_PHA (1 << 5) 705 #define MX31_CSPICTRL_SSCTL (1 << 6) 706 #define MX31_CSPICTRL_SSPOL (1 << 7) 707 #define MX31_CSPICTRL_BC_SHIFT 8 708 #define MX35_CSPICTRL_BL_SHIFT 20 709 #define MX31_CSPICTRL_CS_SHIFT 24 710 #define MX35_CSPICTRL_CS_SHIFT 12 711 #define MX31_CSPICTRL_DR_SHIFT 16 712 713 #define MX31_CSPI_DMAREG 0x10 714 #define MX31_DMAREG_RH_DEN (1<<4) 715 #define MX31_DMAREG_TH_DEN (1<<1) 716 717 #define MX31_CSPISTATUS 0x14 718 #define MX31_STATUS_RR (1 << 3) 719 720 #define MX31_CSPI_TESTREG 0x1C 721 #define MX31_TEST_LBC (1 << 14) 722 723 /* These functions also work for the i.MX35, but be aware that 724 * the i.MX35 has a slightly different register layout for bits 725 * we do not use here. 726 */ 727 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable) 728 { 729 unsigned int val = 0; 730 731 if (enable & MXC_INT_TE) 732 val |= MX31_INTREG_TEEN; 733 if (enable & MXC_INT_RR) 734 val |= MX31_INTREG_RREN; 735 736 writel(val, spi_imx->base + MXC_CSPIINT); 737 } 738 739 static void mx31_trigger(struct spi_imx_data *spi_imx) 740 { 741 unsigned int reg; 742 743 reg = readl(spi_imx->base + MXC_CSPICTRL); 744 reg |= MX31_CSPICTRL_XCH; 745 writel(reg, spi_imx->base + MXC_CSPICTRL); 746 } 747 748 static int mx31_prepare_message(struct spi_imx_data *spi_imx, 749 struct spi_message *msg) 750 { 751 return 0; 752 } 753 754 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx, 755 struct spi_device *spi) 756 { 757 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER; 758 unsigned int clk; 759 760 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) << 761 MX31_CSPICTRL_DR_SHIFT; 762 spi_imx->spi_bus_clk = clk; 763 764 if (is_imx35_cspi(spi_imx)) { 765 reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT; 766 reg |= MX31_CSPICTRL_SSCTL; 767 } else { 768 reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT; 769 } 770 771 if (spi->mode & SPI_CPHA) 772 reg |= MX31_CSPICTRL_PHA; 773 if (spi->mode & SPI_CPOL) 774 reg |= MX31_CSPICTRL_POL; 775 if (spi->mode & SPI_CS_HIGH) 776 reg |= MX31_CSPICTRL_SSPOL; 777 if (!spi->cs_gpiod) 778 reg |= (spi->chip_select) << 779 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT : 780 MX31_CSPICTRL_CS_SHIFT); 781 782 if (spi_imx->usedma) 783 reg |= MX31_CSPICTRL_SMC; 784 785 writel(reg, spi_imx->base + MXC_CSPICTRL); 786 787 reg = readl(spi_imx->base + MX31_CSPI_TESTREG); 788 if (spi->mode & SPI_LOOP) 789 reg |= MX31_TEST_LBC; 790 else 791 reg &= ~MX31_TEST_LBC; 792 writel(reg, spi_imx->base + MX31_CSPI_TESTREG); 793 794 if (spi_imx->usedma) { 795 /* 796 * configure DMA requests when RXFIFO is half full and 797 * when TXFIFO is half empty 798 */ 799 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN, 800 spi_imx->base + MX31_CSPI_DMAREG); 801 } 802 803 return 0; 804 } 805 806 static int mx31_rx_available(struct spi_imx_data *spi_imx) 807 { 808 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR; 809 } 810 811 static void mx31_reset(struct spi_imx_data *spi_imx) 812 { 813 /* drain receive buffer */ 814 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR) 815 readl(spi_imx->base + MXC_CSPIRXDATA); 816 } 817 818 #define MX21_INTREG_RR (1 << 4) 819 #define MX21_INTREG_TEEN (1 << 9) 820 #define MX21_INTREG_RREN (1 << 13) 821 822 #define MX21_CSPICTRL_POL (1 << 5) 823 #define MX21_CSPICTRL_PHA (1 << 6) 824 #define MX21_CSPICTRL_SSPOL (1 << 8) 825 #define MX21_CSPICTRL_XCH (1 << 9) 826 #define MX21_CSPICTRL_ENABLE (1 << 10) 827 #define MX21_CSPICTRL_MASTER (1 << 11) 828 #define MX21_CSPICTRL_DR_SHIFT 14 829 #define MX21_CSPICTRL_CS_SHIFT 19 830 831 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable) 832 { 833 unsigned int val = 0; 834 835 if (enable & MXC_INT_TE) 836 val |= MX21_INTREG_TEEN; 837 if (enable & MXC_INT_RR) 838 val |= MX21_INTREG_RREN; 839 840 writel(val, spi_imx->base + MXC_CSPIINT); 841 } 842 843 static void mx21_trigger(struct spi_imx_data *spi_imx) 844 { 845 unsigned int reg; 846 847 reg = readl(spi_imx->base + MXC_CSPICTRL); 848 reg |= MX21_CSPICTRL_XCH; 849 writel(reg, spi_imx->base + MXC_CSPICTRL); 850 } 851 852 static int mx21_prepare_message(struct spi_imx_data *spi_imx, 853 struct spi_message *msg) 854 { 855 return 0; 856 } 857 858 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx, 859 struct spi_device *spi) 860 { 861 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER; 862 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18; 863 unsigned int clk; 864 865 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk) 866 << MX21_CSPICTRL_DR_SHIFT; 867 spi_imx->spi_bus_clk = clk; 868 869 reg |= spi_imx->bits_per_word - 1; 870 871 if (spi->mode & SPI_CPHA) 872 reg |= MX21_CSPICTRL_PHA; 873 if (spi->mode & SPI_CPOL) 874 reg |= MX21_CSPICTRL_POL; 875 if (spi->mode & SPI_CS_HIGH) 876 reg |= MX21_CSPICTRL_SSPOL; 877 if (!spi->cs_gpiod) 878 reg |= spi->chip_select << MX21_CSPICTRL_CS_SHIFT; 879 880 writel(reg, spi_imx->base + MXC_CSPICTRL); 881 882 return 0; 883 } 884 885 static int mx21_rx_available(struct spi_imx_data *spi_imx) 886 { 887 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR; 888 } 889 890 static void mx21_reset(struct spi_imx_data *spi_imx) 891 { 892 writel(1, spi_imx->base + MXC_RESET); 893 } 894 895 #define MX1_INTREG_RR (1 << 3) 896 #define MX1_INTREG_TEEN (1 << 8) 897 #define MX1_INTREG_RREN (1 << 11) 898 899 #define MX1_CSPICTRL_POL (1 << 4) 900 #define MX1_CSPICTRL_PHA (1 << 5) 901 #define MX1_CSPICTRL_XCH (1 << 8) 902 #define MX1_CSPICTRL_ENABLE (1 << 9) 903 #define MX1_CSPICTRL_MASTER (1 << 10) 904 #define MX1_CSPICTRL_DR_SHIFT 13 905 906 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable) 907 { 908 unsigned int val = 0; 909 910 if (enable & MXC_INT_TE) 911 val |= MX1_INTREG_TEEN; 912 if (enable & MXC_INT_RR) 913 val |= MX1_INTREG_RREN; 914 915 writel(val, spi_imx->base + MXC_CSPIINT); 916 } 917 918 static void mx1_trigger(struct spi_imx_data *spi_imx) 919 { 920 unsigned int reg; 921 922 reg = readl(spi_imx->base + MXC_CSPICTRL); 923 reg |= MX1_CSPICTRL_XCH; 924 writel(reg, spi_imx->base + MXC_CSPICTRL); 925 } 926 927 static int mx1_prepare_message(struct spi_imx_data *spi_imx, 928 struct spi_message *msg) 929 { 930 return 0; 931 } 932 933 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx, 934 struct spi_device *spi) 935 { 936 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER; 937 unsigned int clk; 938 939 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) << 940 MX1_CSPICTRL_DR_SHIFT; 941 spi_imx->spi_bus_clk = clk; 942 943 reg |= spi_imx->bits_per_word - 1; 944 945 if (spi->mode & SPI_CPHA) 946 reg |= MX1_CSPICTRL_PHA; 947 if (spi->mode & SPI_CPOL) 948 reg |= MX1_CSPICTRL_POL; 949 950 writel(reg, spi_imx->base + MXC_CSPICTRL); 951 952 return 0; 953 } 954 955 static int mx1_rx_available(struct spi_imx_data *spi_imx) 956 { 957 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR; 958 } 959 960 static void mx1_reset(struct spi_imx_data *spi_imx) 961 { 962 writel(1, spi_imx->base + MXC_RESET); 963 } 964 965 static struct spi_imx_devtype_data imx1_cspi_devtype_data = { 966 .intctrl = mx1_intctrl, 967 .prepare_message = mx1_prepare_message, 968 .prepare_transfer = mx1_prepare_transfer, 969 .trigger = mx1_trigger, 970 .rx_available = mx1_rx_available, 971 .reset = mx1_reset, 972 .fifo_size = 8, 973 .has_dmamode = false, 974 .dynamic_burst = false, 975 .has_slavemode = false, 976 .devtype = IMX1_CSPI, 977 }; 978 979 static struct spi_imx_devtype_data imx21_cspi_devtype_data = { 980 .intctrl = mx21_intctrl, 981 .prepare_message = mx21_prepare_message, 982 .prepare_transfer = mx21_prepare_transfer, 983 .trigger = mx21_trigger, 984 .rx_available = mx21_rx_available, 985 .reset = mx21_reset, 986 .fifo_size = 8, 987 .has_dmamode = false, 988 .dynamic_burst = false, 989 .has_slavemode = false, 990 .devtype = IMX21_CSPI, 991 }; 992 993 static struct spi_imx_devtype_data imx27_cspi_devtype_data = { 994 /* i.mx27 cspi shares the functions with i.mx21 one */ 995 .intctrl = mx21_intctrl, 996 .prepare_message = mx21_prepare_message, 997 .prepare_transfer = mx21_prepare_transfer, 998 .trigger = mx21_trigger, 999 .rx_available = mx21_rx_available, 1000 .reset = mx21_reset, 1001 .fifo_size = 8, 1002 .has_dmamode = false, 1003 .dynamic_burst = false, 1004 .has_slavemode = false, 1005 .devtype = IMX27_CSPI, 1006 }; 1007 1008 static struct spi_imx_devtype_data imx31_cspi_devtype_data = { 1009 .intctrl = mx31_intctrl, 1010 .prepare_message = mx31_prepare_message, 1011 .prepare_transfer = mx31_prepare_transfer, 1012 .trigger = mx31_trigger, 1013 .rx_available = mx31_rx_available, 1014 .reset = mx31_reset, 1015 .fifo_size = 8, 1016 .has_dmamode = false, 1017 .dynamic_burst = false, 1018 .has_slavemode = false, 1019 .devtype = IMX31_CSPI, 1020 }; 1021 1022 static struct spi_imx_devtype_data imx35_cspi_devtype_data = { 1023 /* i.mx35 and later cspi shares the functions with i.mx31 one */ 1024 .intctrl = mx31_intctrl, 1025 .prepare_message = mx31_prepare_message, 1026 .prepare_transfer = mx31_prepare_transfer, 1027 .trigger = mx31_trigger, 1028 .rx_available = mx31_rx_available, 1029 .reset = mx31_reset, 1030 .fifo_size = 8, 1031 .has_dmamode = true, 1032 .dynamic_burst = false, 1033 .has_slavemode = false, 1034 .devtype = IMX35_CSPI, 1035 }; 1036 1037 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = { 1038 .intctrl = mx51_ecspi_intctrl, 1039 .prepare_message = mx51_ecspi_prepare_message, 1040 .prepare_transfer = mx51_ecspi_prepare_transfer, 1041 .trigger = mx51_ecspi_trigger, 1042 .rx_available = mx51_ecspi_rx_available, 1043 .reset = mx51_ecspi_reset, 1044 .setup_wml = mx51_setup_wml, 1045 .disable_dma = mx51_disable_dma, 1046 .fifo_size = 64, 1047 .has_dmamode = true, 1048 .dynamic_burst = true, 1049 .has_slavemode = true, 1050 .disable = mx51_ecspi_disable, 1051 .devtype = IMX51_ECSPI, 1052 }; 1053 1054 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = { 1055 .intctrl = mx51_ecspi_intctrl, 1056 .prepare_message = mx51_ecspi_prepare_message, 1057 .prepare_transfer = mx51_ecspi_prepare_transfer, 1058 .trigger = mx51_ecspi_trigger, 1059 .rx_available = mx51_ecspi_rx_available, 1060 .disable_dma = mx51_disable_dma, 1061 .reset = mx51_ecspi_reset, 1062 .fifo_size = 64, 1063 .has_dmamode = true, 1064 .has_slavemode = true, 1065 .disable = mx51_ecspi_disable, 1066 .devtype = IMX53_ECSPI, 1067 }; 1068 1069 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = { 1070 .intctrl = mx51_ecspi_intctrl, 1071 .prepare_message = mx51_ecspi_prepare_message, 1072 .prepare_transfer = mx51_ecspi_prepare_transfer, 1073 .trigger = mx51_ecspi_trigger, 1074 .rx_available = mx51_ecspi_rx_available, 1075 .reset = mx51_ecspi_reset, 1076 .setup_wml = mx51_setup_wml, 1077 .fifo_size = 64, 1078 .has_dmamode = true, 1079 .dynamic_burst = true, 1080 .has_slavemode = true, 1081 .tx_glitch_fixed = true, 1082 .disable = mx51_ecspi_disable, 1083 .devtype = IMX51_ECSPI, 1084 }; 1085 1086 static const struct of_device_id spi_imx_dt_ids[] = { 1087 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, }, 1088 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, }, 1089 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, }, 1090 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, }, 1091 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, }, 1092 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, }, 1093 { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, }, 1094 { .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, }, 1095 { /* sentinel */ } 1096 }; 1097 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids); 1098 1099 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits) 1100 { 1101 u32 ctrl; 1102 1103 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 1104 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 1105 ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET); 1106 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 1107 } 1108 1109 static void spi_imx_push(struct spi_imx_data *spi_imx) 1110 { 1111 unsigned int burst_len; 1112 1113 /* 1114 * Reload the FIFO when the remaining bytes to be transferred in the 1115 * current burst is 0. This only applies when bits_per_word is a 1116 * multiple of 8. 1117 */ 1118 if (!spi_imx->remainder) { 1119 if (spi_imx->dynamic_burst) { 1120 1121 /* We need to deal unaligned data first */ 1122 burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST; 1123 1124 if (!burst_len) 1125 burst_len = MX51_ECSPI_CTRL_MAX_BURST; 1126 1127 spi_imx_set_burst_len(spi_imx, burst_len * 8); 1128 1129 spi_imx->remainder = burst_len; 1130 } else { 1131 spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word); 1132 } 1133 } 1134 1135 while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) { 1136 if (!spi_imx->count) 1137 break; 1138 if (spi_imx->dynamic_burst && 1139 spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4)) 1140 break; 1141 spi_imx->tx(spi_imx); 1142 spi_imx->txfifo++; 1143 } 1144 1145 if (!spi_imx->slave_mode) 1146 spi_imx->devtype_data->trigger(spi_imx); 1147 } 1148 1149 static irqreturn_t spi_imx_isr(int irq, void *dev_id) 1150 { 1151 struct spi_imx_data *spi_imx = dev_id; 1152 1153 while (spi_imx->txfifo && 1154 spi_imx->devtype_data->rx_available(spi_imx)) { 1155 spi_imx->rx(spi_imx); 1156 spi_imx->txfifo--; 1157 } 1158 1159 if (spi_imx->count) { 1160 spi_imx_push(spi_imx); 1161 return IRQ_HANDLED; 1162 } 1163 1164 if (spi_imx->txfifo) { 1165 /* No data left to push, but still waiting for rx data, 1166 * enable receive data available interrupt. 1167 */ 1168 spi_imx->devtype_data->intctrl( 1169 spi_imx, MXC_INT_RR); 1170 return IRQ_HANDLED; 1171 } 1172 1173 spi_imx->devtype_data->intctrl(spi_imx, 0); 1174 complete(&spi_imx->xfer_done); 1175 1176 return IRQ_HANDLED; 1177 } 1178 1179 static int spi_imx_dma_configure(struct spi_controller *controller) 1180 { 1181 int ret; 1182 enum dma_slave_buswidth buswidth; 1183 struct dma_slave_config rx = {}, tx = {}; 1184 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1185 1186 switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) { 1187 case 4: 1188 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1189 break; 1190 case 2: 1191 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1192 break; 1193 case 1: 1194 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1195 break; 1196 default: 1197 return -EINVAL; 1198 } 1199 1200 tx.direction = DMA_MEM_TO_DEV; 1201 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA; 1202 tx.dst_addr_width = buswidth; 1203 tx.dst_maxburst = spi_imx->wml; 1204 ret = dmaengine_slave_config(controller->dma_tx, &tx); 1205 if (ret) { 1206 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret); 1207 return ret; 1208 } 1209 1210 rx.direction = DMA_DEV_TO_MEM; 1211 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA; 1212 rx.src_addr_width = buswidth; 1213 rx.src_maxburst = spi_imx->wml; 1214 ret = dmaengine_slave_config(controller->dma_rx, &rx); 1215 if (ret) { 1216 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret); 1217 return ret; 1218 } 1219 1220 return 0; 1221 } 1222 1223 static int spi_imx_setupxfer(struct spi_device *spi, 1224 struct spi_transfer *t) 1225 { 1226 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1227 1228 if (!t) 1229 return 0; 1230 1231 if (!t->speed_hz) { 1232 if (!spi->max_speed_hz) { 1233 dev_err(&spi->dev, "no speed_hz provided!\n"); 1234 return -EINVAL; 1235 } 1236 dev_dbg(&spi->dev, "using spi->max_speed_hz!\n"); 1237 spi_imx->spi_bus_clk = spi->max_speed_hz; 1238 } else 1239 spi_imx->spi_bus_clk = t->speed_hz; 1240 1241 spi_imx->bits_per_word = t->bits_per_word; 1242 1243 /* 1244 * Initialize the functions for transfer. To transfer non byte-aligned 1245 * words, we have to use multiple word-size bursts, we can't use 1246 * dynamic_burst in that case. 1247 */ 1248 if (spi_imx->devtype_data->dynamic_burst && !spi_imx->slave_mode && 1249 !(spi->mode & SPI_CS_WORD) && 1250 (spi_imx->bits_per_word == 8 || 1251 spi_imx->bits_per_word == 16 || 1252 spi_imx->bits_per_word == 32)) { 1253 1254 spi_imx->rx = spi_imx_buf_rx_swap; 1255 spi_imx->tx = spi_imx_buf_tx_swap; 1256 spi_imx->dynamic_burst = 1; 1257 1258 } else { 1259 if (spi_imx->bits_per_word <= 8) { 1260 spi_imx->rx = spi_imx_buf_rx_u8; 1261 spi_imx->tx = spi_imx_buf_tx_u8; 1262 } else if (spi_imx->bits_per_word <= 16) { 1263 spi_imx->rx = spi_imx_buf_rx_u16; 1264 spi_imx->tx = spi_imx_buf_tx_u16; 1265 } else { 1266 spi_imx->rx = spi_imx_buf_rx_u32; 1267 spi_imx->tx = spi_imx_buf_tx_u32; 1268 } 1269 spi_imx->dynamic_burst = 0; 1270 } 1271 1272 if (spi_imx_can_dma(spi_imx->controller, spi, t)) 1273 spi_imx->usedma = true; 1274 else 1275 spi_imx->usedma = false; 1276 1277 spi_imx->rx_only = ((t->tx_buf == NULL) 1278 || (t->tx_buf == spi->controller->dummy_tx)); 1279 1280 if (is_imx53_ecspi(spi_imx) && spi_imx->slave_mode) { 1281 spi_imx->rx = mx53_ecspi_rx_slave; 1282 spi_imx->tx = mx53_ecspi_tx_slave; 1283 spi_imx->slave_burst = t->len; 1284 } 1285 1286 spi_imx->devtype_data->prepare_transfer(spi_imx, spi); 1287 1288 return 0; 1289 } 1290 1291 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx) 1292 { 1293 struct spi_controller *controller = spi_imx->controller; 1294 1295 if (controller->dma_rx) { 1296 dma_release_channel(controller->dma_rx); 1297 controller->dma_rx = NULL; 1298 } 1299 1300 if (controller->dma_tx) { 1301 dma_release_channel(controller->dma_tx); 1302 controller->dma_tx = NULL; 1303 } 1304 } 1305 1306 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx, 1307 struct spi_controller *controller) 1308 { 1309 int ret; 1310 1311 spi_imx->wml = spi_imx->devtype_data->fifo_size / 2; 1312 1313 /* Prepare for TX DMA: */ 1314 controller->dma_tx = dma_request_chan(dev, "tx"); 1315 if (IS_ERR(controller->dma_tx)) { 1316 ret = PTR_ERR(controller->dma_tx); 1317 dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret); 1318 controller->dma_tx = NULL; 1319 goto err; 1320 } 1321 1322 /* Prepare for RX : */ 1323 controller->dma_rx = dma_request_chan(dev, "rx"); 1324 if (IS_ERR(controller->dma_rx)) { 1325 ret = PTR_ERR(controller->dma_rx); 1326 dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret); 1327 controller->dma_rx = NULL; 1328 goto err; 1329 } 1330 1331 init_completion(&spi_imx->dma_rx_completion); 1332 init_completion(&spi_imx->dma_tx_completion); 1333 controller->can_dma = spi_imx_can_dma; 1334 controller->max_dma_len = MAX_SDMA_BD_BYTES; 1335 spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX | 1336 SPI_CONTROLLER_MUST_TX; 1337 1338 return 0; 1339 err: 1340 spi_imx_sdma_exit(spi_imx); 1341 return ret; 1342 } 1343 1344 static void spi_imx_dma_rx_callback(void *cookie) 1345 { 1346 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1347 1348 complete(&spi_imx->dma_rx_completion); 1349 } 1350 1351 static void spi_imx_dma_tx_callback(void *cookie) 1352 { 1353 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1354 1355 complete(&spi_imx->dma_tx_completion); 1356 } 1357 1358 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size) 1359 { 1360 unsigned long timeout = 0; 1361 1362 /* Time with actual data transfer and CS change delay related to HW */ 1363 timeout = (8 + 4) * size / spi_imx->spi_bus_clk; 1364 1365 /* Add extra second for scheduler related activities */ 1366 timeout += 1; 1367 1368 /* Double calculated timeout */ 1369 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC); 1370 } 1371 1372 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx, 1373 struct spi_transfer *transfer) 1374 { 1375 struct dma_async_tx_descriptor *desc_tx, *desc_rx; 1376 unsigned long transfer_timeout; 1377 unsigned long timeout; 1378 struct spi_controller *controller = spi_imx->controller; 1379 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg; 1380 struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents); 1381 unsigned int bytes_per_word, i; 1382 int ret; 1383 1384 /* Get the right burst length from the last sg to ensure no tail data */ 1385 bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word); 1386 for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) { 1387 if (!(sg_dma_len(last_sg) % (i * bytes_per_word))) 1388 break; 1389 } 1390 /* Use 1 as wml in case no available burst length got */ 1391 if (i == 0) 1392 i = 1; 1393 1394 spi_imx->wml = i; 1395 1396 ret = spi_imx_dma_configure(controller); 1397 if (ret) 1398 goto dma_failure_no_start; 1399 1400 if (!spi_imx->devtype_data->setup_wml) { 1401 dev_err(spi_imx->dev, "No setup_wml()?\n"); 1402 ret = -EINVAL; 1403 goto dma_failure_no_start; 1404 } 1405 spi_imx->devtype_data->setup_wml(spi_imx); 1406 1407 /* 1408 * The TX DMA setup starts the transfer, so make sure RX is configured 1409 * before TX. 1410 */ 1411 desc_rx = dmaengine_prep_slave_sg(controller->dma_rx, 1412 rx->sgl, rx->nents, DMA_DEV_TO_MEM, 1413 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1414 if (!desc_rx) { 1415 ret = -EINVAL; 1416 goto dma_failure_no_start; 1417 } 1418 1419 desc_rx->callback = spi_imx_dma_rx_callback; 1420 desc_rx->callback_param = (void *)spi_imx; 1421 dmaengine_submit(desc_rx); 1422 reinit_completion(&spi_imx->dma_rx_completion); 1423 dma_async_issue_pending(controller->dma_rx); 1424 1425 desc_tx = dmaengine_prep_slave_sg(controller->dma_tx, 1426 tx->sgl, tx->nents, DMA_MEM_TO_DEV, 1427 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1428 if (!desc_tx) { 1429 dmaengine_terminate_all(controller->dma_tx); 1430 dmaengine_terminate_all(controller->dma_rx); 1431 return -EINVAL; 1432 } 1433 1434 desc_tx->callback = spi_imx_dma_tx_callback; 1435 desc_tx->callback_param = (void *)spi_imx; 1436 dmaengine_submit(desc_tx); 1437 reinit_completion(&spi_imx->dma_tx_completion); 1438 dma_async_issue_pending(controller->dma_tx); 1439 1440 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1441 1442 /* Wait SDMA to finish the data transfer.*/ 1443 timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion, 1444 transfer_timeout); 1445 if (!timeout) { 1446 dev_err(spi_imx->dev, "I/O Error in DMA TX\n"); 1447 dmaengine_terminate_all(controller->dma_tx); 1448 dmaengine_terminate_all(controller->dma_rx); 1449 return -ETIMEDOUT; 1450 } 1451 1452 timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion, 1453 transfer_timeout); 1454 if (!timeout) { 1455 dev_err(&controller->dev, "I/O Error in DMA RX\n"); 1456 spi_imx->devtype_data->reset(spi_imx); 1457 dmaengine_terminate_all(controller->dma_rx); 1458 return -ETIMEDOUT; 1459 } 1460 1461 return 0; 1462 /* fallback to pio */ 1463 dma_failure_no_start: 1464 transfer->error |= SPI_TRANS_FAIL_NO_START; 1465 return ret; 1466 } 1467 1468 static int spi_imx_pio_transfer(struct spi_device *spi, 1469 struct spi_transfer *transfer) 1470 { 1471 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1472 unsigned long transfer_timeout; 1473 unsigned long timeout; 1474 1475 spi_imx->tx_buf = transfer->tx_buf; 1476 spi_imx->rx_buf = transfer->rx_buf; 1477 spi_imx->count = transfer->len; 1478 spi_imx->txfifo = 0; 1479 spi_imx->remainder = 0; 1480 1481 reinit_completion(&spi_imx->xfer_done); 1482 1483 spi_imx_push(spi_imx); 1484 1485 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE); 1486 1487 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1488 1489 timeout = wait_for_completion_timeout(&spi_imx->xfer_done, 1490 transfer_timeout); 1491 if (!timeout) { 1492 dev_err(&spi->dev, "I/O Error in PIO\n"); 1493 spi_imx->devtype_data->reset(spi_imx); 1494 return -ETIMEDOUT; 1495 } 1496 1497 return 0; 1498 } 1499 1500 static int spi_imx_poll_transfer(struct spi_device *spi, 1501 struct spi_transfer *transfer) 1502 { 1503 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1504 unsigned long timeout; 1505 1506 spi_imx->tx_buf = transfer->tx_buf; 1507 spi_imx->rx_buf = transfer->rx_buf; 1508 spi_imx->count = transfer->len; 1509 spi_imx->txfifo = 0; 1510 spi_imx->remainder = 0; 1511 1512 /* fill in the fifo before timeout calculations if we are 1513 * interrupted here, then the data is getting transferred by 1514 * the HW while we are interrupted 1515 */ 1516 spi_imx_push(spi_imx); 1517 1518 timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies; 1519 while (spi_imx->txfifo) { 1520 /* RX */ 1521 while (spi_imx->txfifo && 1522 spi_imx->devtype_data->rx_available(spi_imx)) { 1523 spi_imx->rx(spi_imx); 1524 spi_imx->txfifo--; 1525 } 1526 1527 /* TX */ 1528 if (spi_imx->count) { 1529 spi_imx_push(spi_imx); 1530 continue; 1531 } 1532 1533 if (spi_imx->txfifo && 1534 time_after(jiffies, timeout)) { 1535 1536 dev_err_ratelimited(&spi->dev, 1537 "timeout period reached: jiffies: %lu- falling back to interrupt mode\n", 1538 jiffies - timeout); 1539 1540 /* fall back to interrupt mode */ 1541 return spi_imx_pio_transfer(spi, transfer); 1542 } 1543 } 1544 1545 return 0; 1546 } 1547 1548 static int spi_imx_pio_transfer_slave(struct spi_device *spi, 1549 struct spi_transfer *transfer) 1550 { 1551 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1552 int ret = 0; 1553 1554 if (is_imx53_ecspi(spi_imx) && 1555 transfer->len > MX53_MAX_TRANSFER_BYTES) { 1556 dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n", 1557 MX53_MAX_TRANSFER_BYTES); 1558 return -EMSGSIZE; 1559 } 1560 1561 spi_imx->tx_buf = transfer->tx_buf; 1562 spi_imx->rx_buf = transfer->rx_buf; 1563 spi_imx->count = transfer->len; 1564 spi_imx->txfifo = 0; 1565 spi_imx->remainder = 0; 1566 1567 reinit_completion(&spi_imx->xfer_done); 1568 spi_imx->slave_aborted = false; 1569 1570 spi_imx_push(spi_imx); 1571 1572 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR); 1573 1574 if (wait_for_completion_interruptible(&spi_imx->xfer_done) || 1575 spi_imx->slave_aborted) { 1576 dev_dbg(&spi->dev, "interrupted\n"); 1577 ret = -EINTR; 1578 } 1579 1580 /* ecspi has a HW issue when works in Slave mode, 1581 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty, 1582 * ECSPI_TXDATA keeps shift out the last word data, 1583 * so we have to disable ECSPI when in slave mode after the 1584 * transfer completes 1585 */ 1586 if (spi_imx->devtype_data->disable) 1587 spi_imx->devtype_data->disable(spi_imx); 1588 1589 return ret; 1590 } 1591 1592 static int spi_imx_transfer_one(struct spi_controller *controller, 1593 struct spi_device *spi, 1594 struct spi_transfer *transfer) 1595 { 1596 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1597 unsigned long hz_per_byte, byte_limit; 1598 1599 spi_imx_setupxfer(spi, transfer); 1600 transfer->effective_speed_hz = spi_imx->spi_bus_clk; 1601 1602 /* flush rxfifo before transfer */ 1603 while (spi_imx->devtype_data->rx_available(spi_imx)) 1604 readl(spi_imx->base + MXC_CSPIRXDATA); 1605 1606 if (spi_imx->slave_mode) 1607 return spi_imx_pio_transfer_slave(spi, transfer); 1608 1609 /* 1610 * If we decided in spi_imx_can_dma() that we want to do a DMA 1611 * transfer, the SPI transfer has already been mapped, so we 1612 * have to do the DMA transfer here. 1613 */ 1614 if (spi_imx->usedma) 1615 return spi_imx_dma_transfer(spi_imx, transfer); 1616 /* 1617 * Calculate the estimated time in us the transfer runs. Find 1618 * the number of Hz per byte per polling limit. 1619 */ 1620 hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0; 1621 byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1; 1622 1623 /* run in polling mode for short transfers */ 1624 if (transfer->len < byte_limit) 1625 return spi_imx_poll_transfer(spi, transfer); 1626 1627 return spi_imx_pio_transfer(spi, transfer); 1628 } 1629 1630 static int spi_imx_setup(struct spi_device *spi) 1631 { 1632 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__, 1633 spi->mode, spi->bits_per_word, spi->max_speed_hz); 1634 1635 return 0; 1636 } 1637 1638 static void spi_imx_cleanup(struct spi_device *spi) 1639 { 1640 } 1641 1642 static int 1643 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg) 1644 { 1645 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1646 int ret; 1647 1648 ret = pm_runtime_resume_and_get(spi_imx->dev); 1649 if (ret < 0) { 1650 dev_err(spi_imx->dev, "failed to enable clock\n"); 1651 return ret; 1652 } 1653 1654 ret = spi_imx->devtype_data->prepare_message(spi_imx, msg); 1655 if (ret) { 1656 pm_runtime_mark_last_busy(spi_imx->dev); 1657 pm_runtime_put_autosuspend(spi_imx->dev); 1658 } 1659 1660 return ret; 1661 } 1662 1663 static int 1664 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg) 1665 { 1666 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1667 1668 pm_runtime_mark_last_busy(spi_imx->dev); 1669 pm_runtime_put_autosuspend(spi_imx->dev); 1670 return 0; 1671 } 1672 1673 static int spi_imx_slave_abort(struct spi_controller *controller) 1674 { 1675 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1676 1677 spi_imx->slave_aborted = true; 1678 complete(&spi_imx->xfer_done); 1679 1680 return 0; 1681 } 1682 1683 static int spi_imx_probe(struct platform_device *pdev) 1684 { 1685 struct device_node *np = pdev->dev.of_node; 1686 struct spi_controller *controller; 1687 struct spi_imx_data *spi_imx; 1688 struct resource *res; 1689 int ret, irq, spi_drctl; 1690 const struct spi_imx_devtype_data *devtype_data = 1691 of_device_get_match_data(&pdev->dev); 1692 bool slave_mode; 1693 u32 val; 1694 1695 slave_mode = devtype_data->has_slavemode && 1696 of_property_read_bool(np, "spi-slave"); 1697 if (slave_mode) 1698 controller = spi_alloc_slave(&pdev->dev, 1699 sizeof(struct spi_imx_data)); 1700 else 1701 controller = spi_alloc_master(&pdev->dev, 1702 sizeof(struct spi_imx_data)); 1703 if (!controller) 1704 return -ENOMEM; 1705 1706 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl); 1707 if ((ret < 0) || (spi_drctl >= 0x3)) { 1708 /* '11' is reserved */ 1709 spi_drctl = 0; 1710 } 1711 1712 platform_set_drvdata(pdev, controller); 1713 1714 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32); 1715 controller->bus_num = np ? -1 : pdev->id; 1716 controller->use_gpio_descriptors = true; 1717 1718 spi_imx = spi_controller_get_devdata(controller); 1719 spi_imx->controller = controller; 1720 spi_imx->dev = &pdev->dev; 1721 spi_imx->slave_mode = slave_mode; 1722 1723 spi_imx->devtype_data = devtype_data; 1724 1725 /* 1726 * Get number of chip selects from device properties. This can be 1727 * coming from device tree or boardfiles, if it is not defined, 1728 * a default value of 3 chip selects will be used, as all the legacy 1729 * board files have <= 3 chip selects. 1730 */ 1731 if (!device_property_read_u32(&pdev->dev, "num-cs", &val)) 1732 controller->num_chipselect = val; 1733 else 1734 controller->num_chipselect = 3; 1735 1736 spi_imx->controller->transfer_one = spi_imx_transfer_one; 1737 spi_imx->controller->setup = spi_imx_setup; 1738 spi_imx->controller->cleanup = spi_imx_cleanup; 1739 spi_imx->controller->prepare_message = spi_imx_prepare_message; 1740 spi_imx->controller->unprepare_message = spi_imx_unprepare_message; 1741 spi_imx->controller->slave_abort = spi_imx_slave_abort; 1742 spi_imx->controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS; 1743 1744 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) || 1745 is_imx53_ecspi(spi_imx)) 1746 spi_imx->controller->mode_bits |= SPI_LOOP | SPI_READY; 1747 1748 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) 1749 spi_imx->controller->mode_bits |= SPI_RX_CPHA_FLIP; 1750 1751 if (is_imx51_ecspi(spi_imx) && 1752 device_property_read_u32(&pdev->dev, "cs-gpios", NULL)) 1753 /* 1754 * When using HW-CS implementing SPI_CS_WORD can be done by just 1755 * setting the burst length to the word size. This is 1756 * considerably faster than manually controlling the CS. 1757 */ 1758 spi_imx->controller->mode_bits |= SPI_CS_WORD; 1759 1760 spi_imx->spi_drctl = spi_drctl; 1761 1762 init_completion(&spi_imx->xfer_done); 1763 1764 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1765 spi_imx->base = devm_ioremap_resource(&pdev->dev, res); 1766 if (IS_ERR(spi_imx->base)) { 1767 ret = PTR_ERR(spi_imx->base); 1768 goto out_controller_put; 1769 } 1770 spi_imx->base_phys = res->start; 1771 1772 irq = platform_get_irq(pdev, 0); 1773 if (irq < 0) { 1774 ret = irq; 1775 goto out_controller_put; 1776 } 1777 1778 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0, 1779 dev_name(&pdev->dev), spi_imx); 1780 if (ret) { 1781 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret); 1782 goto out_controller_put; 1783 } 1784 1785 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 1786 if (IS_ERR(spi_imx->clk_ipg)) { 1787 ret = PTR_ERR(spi_imx->clk_ipg); 1788 goto out_controller_put; 1789 } 1790 1791 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per"); 1792 if (IS_ERR(spi_imx->clk_per)) { 1793 ret = PTR_ERR(spi_imx->clk_per); 1794 goto out_controller_put; 1795 } 1796 1797 ret = clk_prepare_enable(spi_imx->clk_per); 1798 if (ret) 1799 goto out_controller_put; 1800 1801 ret = clk_prepare_enable(spi_imx->clk_ipg); 1802 if (ret) 1803 goto out_put_per; 1804 1805 pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT); 1806 pm_runtime_use_autosuspend(spi_imx->dev); 1807 pm_runtime_get_noresume(spi_imx->dev); 1808 pm_runtime_set_active(spi_imx->dev); 1809 pm_runtime_enable(spi_imx->dev); 1810 1811 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per); 1812 /* 1813 * Only validated on i.mx35 and i.mx6 now, can remove the constraint 1814 * if validated on other chips. 1815 */ 1816 if (spi_imx->devtype_data->has_dmamode) { 1817 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller); 1818 if (ret == -EPROBE_DEFER) 1819 goto out_runtime_pm_put; 1820 1821 if (ret < 0) 1822 dev_dbg(&pdev->dev, "dma setup error %d, use pio\n", 1823 ret); 1824 } 1825 1826 spi_imx->devtype_data->reset(spi_imx); 1827 1828 spi_imx->devtype_data->intctrl(spi_imx, 0); 1829 1830 controller->dev.of_node = pdev->dev.of_node; 1831 ret = spi_register_controller(controller); 1832 if (ret) { 1833 dev_err_probe(&pdev->dev, ret, "register controller failed\n"); 1834 goto out_register_controller; 1835 } 1836 1837 pm_runtime_mark_last_busy(spi_imx->dev); 1838 pm_runtime_put_autosuspend(spi_imx->dev); 1839 1840 return ret; 1841 1842 out_register_controller: 1843 if (spi_imx->devtype_data->has_dmamode) 1844 spi_imx_sdma_exit(spi_imx); 1845 out_runtime_pm_put: 1846 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1847 pm_runtime_set_suspended(&pdev->dev); 1848 pm_runtime_disable(spi_imx->dev); 1849 1850 clk_disable_unprepare(spi_imx->clk_ipg); 1851 out_put_per: 1852 clk_disable_unprepare(spi_imx->clk_per); 1853 out_controller_put: 1854 spi_controller_put(controller); 1855 1856 return ret; 1857 } 1858 1859 static int spi_imx_remove(struct platform_device *pdev) 1860 { 1861 struct spi_controller *controller = platform_get_drvdata(pdev); 1862 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1863 int ret; 1864 1865 spi_unregister_controller(controller); 1866 1867 ret = pm_runtime_resume_and_get(spi_imx->dev); 1868 if (ret < 0) { 1869 dev_err(spi_imx->dev, "failed to enable clock\n"); 1870 return ret; 1871 } 1872 1873 writel(0, spi_imx->base + MXC_CSPICTRL); 1874 1875 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1876 pm_runtime_put_sync(spi_imx->dev); 1877 pm_runtime_disable(spi_imx->dev); 1878 1879 spi_imx_sdma_exit(spi_imx); 1880 1881 return 0; 1882 } 1883 1884 static int __maybe_unused spi_imx_runtime_resume(struct device *dev) 1885 { 1886 struct spi_controller *controller = dev_get_drvdata(dev); 1887 struct spi_imx_data *spi_imx; 1888 int ret; 1889 1890 spi_imx = spi_controller_get_devdata(controller); 1891 1892 ret = clk_prepare_enable(spi_imx->clk_per); 1893 if (ret) 1894 return ret; 1895 1896 ret = clk_prepare_enable(spi_imx->clk_ipg); 1897 if (ret) { 1898 clk_disable_unprepare(spi_imx->clk_per); 1899 return ret; 1900 } 1901 1902 return 0; 1903 } 1904 1905 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev) 1906 { 1907 struct spi_controller *controller = dev_get_drvdata(dev); 1908 struct spi_imx_data *spi_imx; 1909 1910 spi_imx = spi_controller_get_devdata(controller); 1911 1912 clk_disable_unprepare(spi_imx->clk_per); 1913 clk_disable_unprepare(spi_imx->clk_ipg); 1914 1915 return 0; 1916 } 1917 1918 static int __maybe_unused spi_imx_suspend(struct device *dev) 1919 { 1920 pinctrl_pm_select_sleep_state(dev); 1921 return 0; 1922 } 1923 1924 static int __maybe_unused spi_imx_resume(struct device *dev) 1925 { 1926 pinctrl_pm_select_default_state(dev); 1927 return 0; 1928 } 1929 1930 static const struct dev_pm_ops imx_spi_pm = { 1931 SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend, 1932 spi_imx_runtime_resume, NULL) 1933 SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume) 1934 }; 1935 1936 static struct platform_driver spi_imx_driver = { 1937 .driver = { 1938 .name = DRIVER_NAME, 1939 .of_match_table = spi_imx_dt_ids, 1940 .pm = &imx_spi_pm, 1941 }, 1942 .probe = spi_imx_probe, 1943 .remove = spi_imx_remove, 1944 }; 1945 module_platform_driver(spi_imx_driver); 1946 1947 MODULE_DESCRIPTION("i.MX SPI Controller driver"); 1948 MODULE_AUTHOR("Sascha Hauer, Pengutronix"); 1949 MODULE_LICENSE("GPL"); 1950 MODULE_ALIAS("platform:" DRIVER_NAME); 1951