xref: /openbmc/linux/drivers/spi/spi-imx.c (revision 359f608f66b4434fb83b74e23ad14631ea3efc4e)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4 
5 #include <linux/clk.h>
6 #include <linux/completion.h>
7 #include <linux/delay.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irq.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/types.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/property.h>
25 
26 #include <linux/dma/imx-dma.h>
27 
28 #define DRIVER_NAME "spi_imx"
29 
30 static bool use_dma = true;
31 module_param(use_dma, bool, 0644);
32 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
33 
34 /* define polling limits */
35 static unsigned int polling_limit_us = 30;
36 module_param(polling_limit_us, uint, 0664);
37 MODULE_PARM_DESC(polling_limit_us,
38 		 "time in us to run a transfer in polling mode\n");
39 
40 #define MXC_RPM_TIMEOUT		2000 /* 2000ms */
41 
42 #define MXC_CSPIRXDATA		0x00
43 #define MXC_CSPITXDATA		0x04
44 #define MXC_CSPICTRL		0x08
45 #define MXC_CSPIINT		0x0c
46 #define MXC_RESET		0x1c
47 
48 /* generic defines to abstract from the different register layouts */
49 #define MXC_INT_RR	(1 << 0) /* Receive data ready interrupt */
50 #define MXC_INT_TE	(1 << 1) /* Transmit FIFO empty interrupt */
51 #define MXC_INT_RDR	BIT(4) /* Receive date threshold interrupt */
52 
53 /* The maximum bytes that a sdma BD can transfer. */
54 #define MAX_SDMA_BD_BYTES (1 << 15)
55 #define MX51_ECSPI_CTRL_MAX_BURST	512
56 /* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/
57 #define MX53_MAX_TRANSFER_BYTES		512
58 
59 enum spi_imx_devtype {
60 	IMX1_CSPI,
61 	IMX21_CSPI,
62 	IMX27_CSPI,
63 	IMX31_CSPI,
64 	IMX35_CSPI,	/* CSPI on all i.mx except above */
65 	IMX51_ECSPI,	/* ECSPI on i.mx51 */
66 	IMX53_ECSPI,	/* ECSPI on i.mx53 and later */
67 };
68 
69 struct spi_imx_data;
70 
71 struct spi_imx_devtype_data {
72 	void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
73 	int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
74 	int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi);
75 	void (*trigger)(struct spi_imx_data *spi_imx);
76 	int (*rx_available)(struct spi_imx_data *spi_imx);
77 	void (*reset)(struct spi_imx_data *spi_imx);
78 	void (*setup_wml)(struct spi_imx_data *spi_imx);
79 	void (*disable)(struct spi_imx_data *spi_imx);
80 	void (*disable_dma)(struct spi_imx_data *spi_imx);
81 	bool has_dmamode;
82 	bool has_slavemode;
83 	unsigned int fifo_size;
84 	bool dynamic_burst;
85 	/*
86 	 * ERR009165 fixed or not:
87 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
88 	 */
89 	bool tx_glitch_fixed;
90 	enum spi_imx_devtype devtype;
91 };
92 
93 struct spi_imx_data {
94 	struct spi_controller *controller;
95 	struct device *dev;
96 
97 	struct completion xfer_done;
98 	void __iomem *base;
99 	unsigned long base_phys;
100 
101 	struct clk *clk_per;
102 	struct clk *clk_ipg;
103 	unsigned long spi_clk;
104 	unsigned int spi_bus_clk;
105 
106 	unsigned int bits_per_word;
107 	unsigned int spi_drctl;
108 
109 	unsigned int count, remainder;
110 	void (*tx)(struct spi_imx_data *spi_imx);
111 	void (*rx)(struct spi_imx_data *spi_imx);
112 	void *rx_buf;
113 	const void *tx_buf;
114 	unsigned int txfifo; /* number of words pushed in tx FIFO */
115 	unsigned int dynamic_burst;
116 	bool rx_only;
117 
118 	/* Slave mode */
119 	bool slave_mode;
120 	bool slave_aborted;
121 	unsigned int slave_burst;
122 
123 	/* DMA */
124 	bool usedma;
125 	u32 wml;
126 	struct completion dma_rx_completion;
127 	struct completion dma_tx_completion;
128 
129 	const struct spi_imx_devtype_data *devtype_data;
130 };
131 
132 static inline int is_imx27_cspi(struct spi_imx_data *d)
133 {
134 	return d->devtype_data->devtype == IMX27_CSPI;
135 }
136 
137 static inline int is_imx35_cspi(struct spi_imx_data *d)
138 {
139 	return d->devtype_data->devtype == IMX35_CSPI;
140 }
141 
142 static inline int is_imx51_ecspi(struct spi_imx_data *d)
143 {
144 	return d->devtype_data->devtype == IMX51_ECSPI;
145 }
146 
147 static inline int is_imx53_ecspi(struct spi_imx_data *d)
148 {
149 	return d->devtype_data->devtype == IMX53_ECSPI;
150 }
151 
152 #define MXC_SPI_BUF_RX(type)						\
153 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx)		\
154 {									\
155 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);	\
156 									\
157 	if (spi_imx->rx_buf) {						\
158 		*(type *)spi_imx->rx_buf = val;				\
159 		spi_imx->rx_buf += sizeof(type);			\
160 	}								\
161 									\
162 	spi_imx->remainder -= sizeof(type);				\
163 }
164 
165 #define MXC_SPI_BUF_TX(type)						\
166 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx)		\
167 {									\
168 	type val = 0;							\
169 									\
170 	if (spi_imx->tx_buf) {						\
171 		val = *(type *)spi_imx->tx_buf;				\
172 		spi_imx->tx_buf += sizeof(type);			\
173 	}								\
174 									\
175 	spi_imx->count -= sizeof(type);					\
176 									\
177 	writel(val, spi_imx->base + MXC_CSPITXDATA);			\
178 }
179 
180 MXC_SPI_BUF_RX(u8)
181 MXC_SPI_BUF_TX(u8)
182 MXC_SPI_BUF_RX(u16)
183 MXC_SPI_BUF_TX(u16)
184 MXC_SPI_BUF_RX(u32)
185 MXC_SPI_BUF_TX(u32)
186 
187 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
188  * (which is currently not the case in this driver)
189  */
190 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
191 	256, 384, 512, 768, 1024};
192 
193 /* MX21, MX27 */
194 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
195 		unsigned int fspi, unsigned int max, unsigned int *fres)
196 {
197 	int i;
198 
199 	for (i = 2; i < max; i++)
200 		if (fspi * mxc_clkdivs[i] >= fin)
201 			break;
202 
203 	*fres = fin / mxc_clkdivs[i];
204 	return i;
205 }
206 
207 /* MX1, MX31, MX35, MX51 CSPI */
208 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
209 		unsigned int fspi, unsigned int *fres)
210 {
211 	int i, div = 4;
212 
213 	for (i = 0; i < 7; i++) {
214 		if (fspi * div >= fin)
215 			goto out;
216 		div <<= 1;
217 	}
218 
219 out:
220 	*fres = fin / div;
221 	return i;
222 }
223 
224 static int spi_imx_bytes_per_word(const int bits_per_word)
225 {
226 	if (bits_per_word <= 8)
227 		return 1;
228 	else if (bits_per_word <= 16)
229 		return 2;
230 	else
231 		return 4;
232 }
233 
234 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
235 			 struct spi_transfer *transfer)
236 {
237 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
238 
239 	if (!use_dma || controller->fallback)
240 		return false;
241 
242 	if (!controller->dma_rx)
243 		return false;
244 
245 	if (spi_imx->slave_mode)
246 		return false;
247 
248 	if (transfer->len < spi_imx->devtype_data->fifo_size)
249 		return false;
250 
251 	spi_imx->dynamic_burst = 0;
252 
253 	return true;
254 }
255 
256 #define MX51_ECSPI_CTRL		0x08
257 #define MX51_ECSPI_CTRL_ENABLE		(1 <<  0)
258 #define MX51_ECSPI_CTRL_XCH		(1 <<  2)
259 #define MX51_ECSPI_CTRL_SMC		(1 << 3)
260 #define MX51_ECSPI_CTRL_MODE_MASK	(0xf << 4)
261 #define MX51_ECSPI_CTRL_DRCTL(drctl)	((drctl) << 16)
262 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET	8
263 #define MX51_ECSPI_CTRL_PREDIV_OFFSET	12
264 #define MX51_ECSPI_CTRL_CS(cs)		((cs) << 18)
265 #define MX51_ECSPI_CTRL_BL_OFFSET	20
266 #define MX51_ECSPI_CTRL_BL_MASK		(0xfff << 20)
267 
268 #define MX51_ECSPI_CONFIG	0x0c
269 #define MX51_ECSPI_CONFIG_SCLKPHA(cs)	(1 << ((cs) +  0))
270 #define MX51_ECSPI_CONFIG_SCLKPOL(cs)	(1 << ((cs) +  4))
271 #define MX51_ECSPI_CONFIG_SBBCTRL(cs)	(1 << ((cs) +  8))
272 #define MX51_ECSPI_CONFIG_SSBPOL(cs)	(1 << ((cs) + 12))
273 #define MX51_ECSPI_CONFIG_SCLKCTL(cs)	(1 << ((cs) + 20))
274 
275 #define MX51_ECSPI_INT		0x10
276 #define MX51_ECSPI_INT_TEEN		(1 <<  0)
277 #define MX51_ECSPI_INT_RREN		(1 <<  3)
278 #define MX51_ECSPI_INT_RDREN		(1 <<  4)
279 
280 #define MX51_ECSPI_DMA		0x14
281 #define MX51_ECSPI_DMA_TX_WML(wml)	((wml) & 0x3f)
282 #define MX51_ECSPI_DMA_RX_WML(wml)	(((wml) & 0x3f) << 16)
283 #define MX51_ECSPI_DMA_RXT_WML(wml)	(((wml) & 0x3f) << 24)
284 
285 #define MX51_ECSPI_DMA_TEDEN		(1 << 7)
286 #define MX51_ECSPI_DMA_RXDEN		(1 << 23)
287 #define MX51_ECSPI_DMA_RXTDEN		(1 << 31)
288 
289 #define MX51_ECSPI_STAT		0x18
290 #define MX51_ECSPI_STAT_RR		(1 <<  3)
291 
292 #define MX51_ECSPI_TESTREG	0x20
293 #define MX51_ECSPI_TESTREG_LBC	BIT(31)
294 
295 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
296 {
297 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
298 
299 	if (spi_imx->rx_buf) {
300 #ifdef __LITTLE_ENDIAN
301 		unsigned int bytes_per_word;
302 
303 		bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
304 		if (bytes_per_word == 1)
305 			swab32s(&val);
306 		else if (bytes_per_word == 2)
307 			swahw32s(&val);
308 #endif
309 		*(u32 *)spi_imx->rx_buf = val;
310 		spi_imx->rx_buf += sizeof(u32);
311 	}
312 
313 	spi_imx->remainder -= sizeof(u32);
314 }
315 
316 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
317 {
318 	int unaligned;
319 	u32 val;
320 
321 	unaligned = spi_imx->remainder % 4;
322 
323 	if (!unaligned) {
324 		spi_imx_buf_rx_swap_u32(spi_imx);
325 		return;
326 	}
327 
328 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
329 		spi_imx_buf_rx_u16(spi_imx);
330 		return;
331 	}
332 
333 	val = readl(spi_imx->base + MXC_CSPIRXDATA);
334 
335 	while (unaligned--) {
336 		if (spi_imx->rx_buf) {
337 			*(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
338 			spi_imx->rx_buf++;
339 		}
340 		spi_imx->remainder--;
341 	}
342 }
343 
344 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
345 {
346 	u32 val = 0;
347 #ifdef __LITTLE_ENDIAN
348 	unsigned int bytes_per_word;
349 #endif
350 
351 	if (spi_imx->tx_buf) {
352 		val = *(u32 *)spi_imx->tx_buf;
353 		spi_imx->tx_buf += sizeof(u32);
354 	}
355 
356 	spi_imx->count -= sizeof(u32);
357 #ifdef __LITTLE_ENDIAN
358 	bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
359 
360 	if (bytes_per_word == 1)
361 		swab32s(&val);
362 	else if (bytes_per_word == 2)
363 		swahw32s(&val);
364 #endif
365 	writel(val, spi_imx->base + MXC_CSPITXDATA);
366 }
367 
368 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
369 {
370 	int unaligned;
371 	u32 val = 0;
372 
373 	unaligned = spi_imx->count % 4;
374 
375 	if (!unaligned) {
376 		spi_imx_buf_tx_swap_u32(spi_imx);
377 		return;
378 	}
379 
380 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
381 		spi_imx_buf_tx_u16(spi_imx);
382 		return;
383 	}
384 
385 	while (unaligned--) {
386 		if (spi_imx->tx_buf) {
387 			val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
388 			spi_imx->tx_buf++;
389 		}
390 		spi_imx->count--;
391 	}
392 
393 	writel(val, spi_imx->base + MXC_CSPITXDATA);
394 }
395 
396 static void mx53_ecspi_rx_slave(struct spi_imx_data *spi_imx)
397 {
398 	u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
399 
400 	if (spi_imx->rx_buf) {
401 		int n_bytes = spi_imx->slave_burst % sizeof(val);
402 
403 		if (!n_bytes)
404 			n_bytes = sizeof(val);
405 
406 		memcpy(spi_imx->rx_buf,
407 		       ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
408 
409 		spi_imx->rx_buf += n_bytes;
410 		spi_imx->slave_burst -= n_bytes;
411 	}
412 
413 	spi_imx->remainder -= sizeof(u32);
414 }
415 
416 static void mx53_ecspi_tx_slave(struct spi_imx_data *spi_imx)
417 {
418 	u32 val = 0;
419 	int n_bytes = spi_imx->count % sizeof(val);
420 
421 	if (!n_bytes)
422 		n_bytes = sizeof(val);
423 
424 	if (spi_imx->tx_buf) {
425 		memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
426 		       spi_imx->tx_buf, n_bytes);
427 		val = cpu_to_be32(val);
428 		spi_imx->tx_buf += n_bytes;
429 	}
430 
431 	spi_imx->count -= n_bytes;
432 
433 	writel(val, spi_imx->base + MXC_CSPITXDATA);
434 }
435 
436 /* MX51 eCSPI */
437 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
438 				      unsigned int fspi, unsigned int *fres)
439 {
440 	/*
441 	 * there are two 4-bit dividers, the pre-divider divides by
442 	 * $pre, the post-divider by 2^$post
443 	 */
444 	unsigned int pre, post;
445 	unsigned int fin = spi_imx->spi_clk;
446 
447 	fspi = min(fspi, fin);
448 
449 	post = fls(fin) - fls(fspi);
450 	if (fin > fspi << post)
451 		post++;
452 
453 	/* now we have: (fin <= fspi << post) with post being minimal */
454 
455 	post = max(4U, post) - 4;
456 	if (unlikely(post > 0xf)) {
457 		dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
458 				fspi, fin);
459 		return 0xff;
460 	}
461 
462 	pre = DIV_ROUND_UP(fin, fspi << post) - 1;
463 
464 	dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
465 			__func__, fin, fspi, post, pre);
466 
467 	/* Resulting frequency for the SCLK line. */
468 	*fres = (fin / (pre + 1)) >> post;
469 
470 	return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
471 		(post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
472 }
473 
474 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
475 {
476 	unsigned int val = 0;
477 
478 	if (enable & MXC_INT_TE)
479 		val |= MX51_ECSPI_INT_TEEN;
480 
481 	if (enable & MXC_INT_RR)
482 		val |= MX51_ECSPI_INT_RREN;
483 
484 	if (enable & MXC_INT_RDR)
485 		val |= MX51_ECSPI_INT_RDREN;
486 
487 	writel(val, spi_imx->base + MX51_ECSPI_INT);
488 }
489 
490 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
491 {
492 	u32 reg;
493 
494 	reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
495 	reg |= MX51_ECSPI_CTRL_XCH;
496 	writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
497 }
498 
499 static void mx51_disable_dma(struct spi_imx_data *spi_imx)
500 {
501 	writel(0, spi_imx->base + MX51_ECSPI_DMA);
502 }
503 
504 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
505 {
506 	u32 ctrl;
507 
508 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
509 	ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
510 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
511 }
512 
513 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
514 				      struct spi_message *msg)
515 {
516 	struct spi_device *spi = msg->spi;
517 	struct spi_transfer *xfer;
518 	u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
519 	u32 min_speed_hz = ~0U;
520 	u32 testreg, delay;
521 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
522 	u32 current_cfg = cfg;
523 
524 	/* set Master or Slave mode */
525 	if (spi_imx->slave_mode)
526 		ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
527 	else
528 		ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
529 
530 	/*
531 	 * Enable SPI_RDY handling (falling edge/level triggered).
532 	 */
533 	if (spi->mode & SPI_READY)
534 		ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
535 
536 	/* set chip select to use */
537 	ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select);
538 
539 	/*
540 	 * The ctrl register must be written first, with the EN bit set other
541 	 * registers must not be written to.
542 	 */
543 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
544 
545 	testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
546 	if (spi->mode & SPI_LOOP)
547 		testreg |= MX51_ECSPI_TESTREG_LBC;
548 	else
549 		testreg &= ~MX51_ECSPI_TESTREG_LBC;
550 	writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
551 
552 	/*
553 	 * eCSPI burst completion by Chip Select signal in Slave mode
554 	 * is not functional for imx53 Soc, config SPI burst completed when
555 	 * BURST_LENGTH + 1 bits are received
556 	 */
557 	if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
558 		cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
559 	else
560 		cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
561 
562 	if (spi->mode & SPI_CPOL) {
563 		cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
564 		cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
565 	} else {
566 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
567 		cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
568 	}
569 
570 	if (spi->mode & SPI_CS_HIGH)
571 		cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
572 	else
573 		cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
574 
575 	if (cfg == current_cfg)
576 		return 0;
577 
578 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
579 
580 	/*
581 	 * Wait until the changes in the configuration register CONFIGREG
582 	 * propagate into the hardware. It takes exactly one tick of the
583 	 * SCLK clock, but we will wait two SCLK clock just to be sure. The
584 	 * effect of the delay it takes for the hardware to apply changes
585 	 * is noticable if the SCLK clock run very slow. In such a case, if
586 	 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
587 	 * be asserted before the SCLK polarity changes, which would disrupt
588 	 * the SPI communication as the device on the other end would consider
589 	 * the change of SCLK polarity as a clock tick already.
590 	 *
591 	 * Because spi_imx->spi_bus_clk is only set in prepare_message
592 	 * callback, iterate over all the transfers in spi_message, find the
593 	 * one with lowest bus frequency, and use that bus frequency for the
594 	 * delay calculation. In case all transfers have speed_hz == 0, then
595 	 * min_speed_hz is ~0 and the resulting delay is zero.
596 	 */
597 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
598 		if (!xfer->speed_hz)
599 			continue;
600 		min_speed_hz = min(xfer->speed_hz, min_speed_hz);
601 	}
602 
603 	delay = (2 * 1000000) / min_speed_hz;
604 	if (likely(delay < 10))	/* SCLK is faster than 200 kHz */
605 		udelay(delay);
606 	else			/* SCLK is _very_ slow */
607 		usleep_range(delay, delay + 10);
608 
609 	return 0;
610 }
611 
612 static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
613 				struct spi_device *spi)
614 {
615 	bool cpha = (spi->mode & SPI_CPHA);
616 	bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
617 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
618 
619 	/* Flip cpha logical value iff flip_cpha */
620 	cpha ^= flip_cpha;
621 
622 	if (cpha)
623 		cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
624 	else
625 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
626 
627 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
628 }
629 
630 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
631 				       struct spi_device *spi)
632 {
633 	u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
634 	u32 clk;
635 
636 	/* Clear BL field and set the right value */
637 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
638 	if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
639 		ctrl |= (spi_imx->slave_burst * 8 - 1)
640 			<< MX51_ECSPI_CTRL_BL_OFFSET;
641 	else
642 		ctrl |= (spi_imx->bits_per_word - 1)
643 			<< MX51_ECSPI_CTRL_BL_OFFSET;
644 
645 	/* set clock speed */
646 	ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
647 		  0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
648 	ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
649 	spi_imx->spi_bus_clk = clk;
650 
651 	mx51_configure_cpha(spi_imx, spi);
652 
653 	/*
654 	 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
655 	 * before i.mx6ul.
656 	 */
657 	if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
658 		ctrl |= MX51_ECSPI_CTRL_SMC;
659 	else
660 		ctrl &= ~MX51_ECSPI_CTRL_SMC;
661 
662 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
663 
664 	return 0;
665 }
666 
667 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
668 {
669 	u32 tx_wml = 0;
670 
671 	if (spi_imx->devtype_data->tx_glitch_fixed)
672 		tx_wml = spi_imx->wml;
673 	/*
674 	 * Configure the DMA register: setup the watermark
675 	 * and enable DMA request.
676 	 */
677 	writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
678 		MX51_ECSPI_DMA_TX_WML(tx_wml) |
679 		MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
680 		MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
681 		MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
682 }
683 
684 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
685 {
686 	return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
687 }
688 
689 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
690 {
691 	/* drain receive buffer */
692 	while (mx51_ecspi_rx_available(spi_imx))
693 		readl(spi_imx->base + MXC_CSPIRXDATA);
694 }
695 
696 #define MX31_INTREG_TEEN	(1 << 0)
697 #define MX31_INTREG_RREN	(1 << 3)
698 
699 #define MX31_CSPICTRL_ENABLE	(1 << 0)
700 #define MX31_CSPICTRL_MASTER	(1 << 1)
701 #define MX31_CSPICTRL_XCH	(1 << 2)
702 #define MX31_CSPICTRL_SMC	(1 << 3)
703 #define MX31_CSPICTRL_POL	(1 << 4)
704 #define MX31_CSPICTRL_PHA	(1 << 5)
705 #define MX31_CSPICTRL_SSCTL	(1 << 6)
706 #define MX31_CSPICTRL_SSPOL	(1 << 7)
707 #define MX31_CSPICTRL_BC_SHIFT	8
708 #define MX35_CSPICTRL_BL_SHIFT	20
709 #define MX31_CSPICTRL_CS_SHIFT	24
710 #define MX35_CSPICTRL_CS_SHIFT	12
711 #define MX31_CSPICTRL_DR_SHIFT	16
712 
713 #define MX31_CSPI_DMAREG	0x10
714 #define MX31_DMAREG_RH_DEN	(1<<4)
715 #define MX31_DMAREG_TH_DEN	(1<<1)
716 
717 #define MX31_CSPISTATUS		0x14
718 #define MX31_STATUS_RR		(1 << 3)
719 
720 #define MX31_CSPI_TESTREG	0x1C
721 #define MX31_TEST_LBC		(1 << 14)
722 
723 /* These functions also work for the i.MX35, but be aware that
724  * the i.MX35 has a slightly different register layout for bits
725  * we do not use here.
726  */
727 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
728 {
729 	unsigned int val = 0;
730 
731 	if (enable & MXC_INT_TE)
732 		val |= MX31_INTREG_TEEN;
733 	if (enable & MXC_INT_RR)
734 		val |= MX31_INTREG_RREN;
735 
736 	writel(val, spi_imx->base + MXC_CSPIINT);
737 }
738 
739 static void mx31_trigger(struct spi_imx_data *spi_imx)
740 {
741 	unsigned int reg;
742 
743 	reg = readl(spi_imx->base + MXC_CSPICTRL);
744 	reg |= MX31_CSPICTRL_XCH;
745 	writel(reg, spi_imx->base + MXC_CSPICTRL);
746 }
747 
748 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
749 				struct spi_message *msg)
750 {
751 	return 0;
752 }
753 
754 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
755 				 struct spi_device *spi)
756 {
757 	unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
758 	unsigned int clk;
759 
760 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
761 		MX31_CSPICTRL_DR_SHIFT;
762 	spi_imx->spi_bus_clk = clk;
763 
764 	if (is_imx35_cspi(spi_imx)) {
765 		reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
766 		reg |= MX31_CSPICTRL_SSCTL;
767 	} else {
768 		reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
769 	}
770 
771 	if (spi->mode & SPI_CPHA)
772 		reg |= MX31_CSPICTRL_PHA;
773 	if (spi->mode & SPI_CPOL)
774 		reg |= MX31_CSPICTRL_POL;
775 	if (spi->mode & SPI_CS_HIGH)
776 		reg |= MX31_CSPICTRL_SSPOL;
777 	if (!spi->cs_gpiod)
778 		reg |= (spi->chip_select) <<
779 			(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
780 						  MX31_CSPICTRL_CS_SHIFT);
781 
782 	if (spi_imx->usedma)
783 		reg |= MX31_CSPICTRL_SMC;
784 
785 	writel(reg, spi_imx->base + MXC_CSPICTRL);
786 
787 	reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
788 	if (spi->mode & SPI_LOOP)
789 		reg |= MX31_TEST_LBC;
790 	else
791 		reg &= ~MX31_TEST_LBC;
792 	writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
793 
794 	if (spi_imx->usedma) {
795 		/*
796 		 * configure DMA requests when RXFIFO is half full and
797 		 * when TXFIFO is half empty
798 		 */
799 		writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
800 			spi_imx->base + MX31_CSPI_DMAREG);
801 	}
802 
803 	return 0;
804 }
805 
806 static int mx31_rx_available(struct spi_imx_data *spi_imx)
807 {
808 	return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
809 }
810 
811 static void mx31_reset(struct spi_imx_data *spi_imx)
812 {
813 	/* drain receive buffer */
814 	while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
815 		readl(spi_imx->base + MXC_CSPIRXDATA);
816 }
817 
818 #define MX21_INTREG_RR		(1 << 4)
819 #define MX21_INTREG_TEEN	(1 << 9)
820 #define MX21_INTREG_RREN	(1 << 13)
821 
822 #define MX21_CSPICTRL_POL	(1 << 5)
823 #define MX21_CSPICTRL_PHA	(1 << 6)
824 #define MX21_CSPICTRL_SSPOL	(1 << 8)
825 #define MX21_CSPICTRL_XCH	(1 << 9)
826 #define MX21_CSPICTRL_ENABLE	(1 << 10)
827 #define MX21_CSPICTRL_MASTER	(1 << 11)
828 #define MX21_CSPICTRL_DR_SHIFT	14
829 #define MX21_CSPICTRL_CS_SHIFT	19
830 
831 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
832 {
833 	unsigned int val = 0;
834 
835 	if (enable & MXC_INT_TE)
836 		val |= MX21_INTREG_TEEN;
837 	if (enable & MXC_INT_RR)
838 		val |= MX21_INTREG_RREN;
839 
840 	writel(val, spi_imx->base + MXC_CSPIINT);
841 }
842 
843 static void mx21_trigger(struct spi_imx_data *spi_imx)
844 {
845 	unsigned int reg;
846 
847 	reg = readl(spi_imx->base + MXC_CSPICTRL);
848 	reg |= MX21_CSPICTRL_XCH;
849 	writel(reg, spi_imx->base + MXC_CSPICTRL);
850 }
851 
852 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
853 				struct spi_message *msg)
854 {
855 	return 0;
856 }
857 
858 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
859 				 struct spi_device *spi)
860 {
861 	unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
862 	unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
863 	unsigned int clk;
864 
865 	reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
866 		<< MX21_CSPICTRL_DR_SHIFT;
867 	spi_imx->spi_bus_clk = clk;
868 
869 	reg |= spi_imx->bits_per_word - 1;
870 
871 	if (spi->mode & SPI_CPHA)
872 		reg |= MX21_CSPICTRL_PHA;
873 	if (spi->mode & SPI_CPOL)
874 		reg |= MX21_CSPICTRL_POL;
875 	if (spi->mode & SPI_CS_HIGH)
876 		reg |= MX21_CSPICTRL_SSPOL;
877 	if (!spi->cs_gpiod)
878 		reg |= spi->chip_select << MX21_CSPICTRL_CS_SHIFT;
879 
880 	writel(reg, spi_imx->base + MXC_CSPICTRL);
881 
882 	return 0;
883 }
884 
885 static int mx21_rx_available(struct spi_imx_data *spi_imx)
886 {
887 	return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
888 }
889 
890 static void mx21_reset(struct spi_imx_data *spi_imx)
891 {
892 	writel(1, spi_imx->base + MXC_RESET);
893 }
894 
895 #define MX1_INTREG_RR		(1 << 3)
896 #define MX1_INTREG_TEEN		(1 << 8)
897 #define MX1_INTREG_RREN		(1 << 11)
898 
899 #define MX1_CSPICTRL_POL	(1 << 4)
900 #define MX1_CSPICTRL_PHA	(1 << 5)
901 #define MX1_CSPICTRL_XCH	(1 << 8)
902 #define MX1_CSPICTRL_ENABLE	(1 << 9)
903 #define MX1_CSPICTRL_MASTER	(1 << 10)
904 #define MX1_CSPICTRL_DR_SHIFT	13
905 
906 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
907 {
908 	unsigned int val = 0;
909 
910 	if (enable & MXC_INT_TE)
911 		val |= MX1_INTREG_TEEN;
912 	if (enable & MXC_INT_RR)
913 		val |= MX1_INTREG_RREN;
914 
915 	writel(val, spi_imx->base + MXC_CSPIINT);
916 }
917 
918 static void mx1_trigger(struct spi_imx_data *spi_imx)
919 {
920 	unsigned int reg;
921 
922 	reg = readl(spi_imx->base + MXC_CSPICTRL);
923 	reg |= MX1_CSPICTRL_XCH;
924 	writel(reg, spi_imx->base + MXC_CSPICTRL);
925 }
926 
927 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
928 			       struct spi_message *msg)
929 {
930 	return 0;
931 }
932 
933 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
934 				struct spi_device *spi)
935 {
936 	unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER;
937 	unsigned int clk;
938 
939 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
940 		MX1_CSPICTRL_DR_SHIFT;
941 	spi_imx->spi_bus_clk = clk;
942 
943 	reg |= spi_imx->bits_per_word - 1;
944 
945 	if (spi->mode & SPI_CPHA)
946 		reg |= MX1_CSPICTRL_PHA;
947 	if (spi->mode & SPI_CPOL)
948 		reg |= MX1_CSPICTRL_POL;
949 
950 	writel(reg, spi_imx->base + MXC_CSPICTRL);
951 
952 	return 0;
953 }
954 
955 static int mx1_rx_available(struct spi_imx_data *spi_imx)
956 {
957 	return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
958 }
959 
960 static void mx1_reset(struct spi_imx_data *spi_imx)
961 {
962 	writel(1, spi_imx->base + MXC_RESET);
963 }
964 
965 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
966 	.intctrl = mx1_intctrl,
967 	.prepare_message = mx1_prepare_message,
968 	.prepare_transfer = mx1_prepare_transfer,
969 	.trigger = mx1_trigger,
970 	.rx_available = mx1_rx_available,
971 	.reset = mx1_reset,
972 	.fifo_size = 8,
973 	.has_dmamode = false,
974 	.dynamic_burst = false,
975 	.has_slavemode = false,
976 	.devtype = IMX1_CSPI,
977 };
978 
979 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
980 	.intctrl = mx21_intctrl,
981 	.prepare_message = mx21_prepare_message,
982 	.prepare_transfer = mx21_prepare_transfer,
983 	.trigger = mx21_trigger,
984 	.rx_available = mx21_rx_available,
985 	.reset = mx21_reset,
986 	.fifo_size = 8,
987 	.has_dmamode = false,
988 	.dynamic_burst = false,
989 	.has_slavemode = false,
990 	.devtype = IMX21_CSPI,
991 };
992 
993 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
994 	/* i.mx27 cspi shares the functions with i.mx21 one */
995 	.intctrl = mx21_intctrl,
996 	.prepare_message = mx21_prepare_message,
997 	.prepare_transfer = mx21_prepare_transfer,
998 	.trigger = mx21_trigger,
999 	.rx_available = mx21_rx_available,
1000 	.reset = mx21_reset,
1001 	.fifo_size = 8,
1002 	.has_dmamode = false,
1003 	.dynamic_burst = false,
1004 	.has_slavemode = false,
1005 	.devtype = IMX27_CSPI,
1006 };
1007 
1008 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
1009 	.intctrl = mx31_intctrl,
1010 	.prepare_message = mx31_prepare_message,
1011 	.prepare_transfer = mx31_prepare_transfer,
1012 	.trigger = mx31_trigger,
1013 	.rx_available = mx31_rx_available,
1014 	.reset = mx31_reset,
1015 	.fifo_size = 8,
1016 	.has_dmamode = false,
1017 	.dynamic_burst = false,
1018 	.has_slavemode = false,
1019 	.devtype = IMX31_CSPI,
1020 };
1021 
1022 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1023 	/* i.mx35 and later cspi shares the functions with i.mx31 one */
1024 	.intctrl = mx31_intctrl,
1025 	.prepare_message = mx31_prepare_message,
1026 	.prepare_transfer = mx31_prepare_transfer,
1027 	.trigger = mx31_trigger,
1028 	.rx_available = mx31_rx_available,
1029 	.reset = mx31_reset,
1030 	.fifo_size = 8,
1031 	.has_dmamode = true,
1032 	.dynamic_burst = false,
1033 	.has_slavemode = false,
1034 	.devtype = IMX35_CSPI,
1035 };
1036 
1037 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1038 	.intctrl = mx51_ecspi_intctrl,
1039 	.prepare_message = mx51_ecspi_prepare_message,
1040 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1041 	.trigger = mx51_ecspi_trigger,
1042 	.rx_available = mx51_ecspi_rx_available,
1043 	.reset = mx51_ecspi_reset,
1044 	.setup_wml = mx51_setup_wml,
1045 	.disable_dma = mx51_disable_dma,
1046 	.fifo_size = 64,
1047 	.has_dmamode = true,
1048 	.dynamic_burst = true,
1049 	.has_slavemode = true,
1050 	.disable = mx51_ecspi_disable,
1051 	.devtype = IMX51_ECSPI,
1052 };
1053 
1054 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1055 	.intctrl = mx51_ecspi_intctrl,
1056 	.prepare_message = mx51_ecspi_prepare_message,
1057 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1058 	.trigger = mx51_ecspi_trigger,
1059 	.rx_available = mx51_ecspi_rx_available,
1060 	.disable_dma = mx51_disable_dma,
1061 	.reset = mx51_ecspi_reset,
1062 	.fifo_size = 64,
1063 	.has_dmamode = true,
1064 	.has_slavemode = true,
1065 	.disable = mx51_ecspi_disable,
1066 	.devtype = IMX53_ECSPI,
1067 };
1068 
1069 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1070 	.intctrl = mx51_ecspi_intctrl,
1071 	.prepare_message = mx51_ecspi_prepare_message,
1072 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1073 	.trigger = mx51_ecspi_trigger,
1074 	.rx_available = mx51_ecspi_rx_available,
1075 	.reset = mx51_ecspi_reset,
1076 	.setup_wml = mx51_setup_wml,
1077 	.fifo_size = 64,
1078 	.has_dmamode = true,
1079 	.dynamic_burst = true,
1080 	.has_slavemode = true,
1081 	.tx_glitch_fixed = true,
1082 	.disable = mx51_ecspi_disable,
1083 	.devtype = IMX51_ECSPI,
1084 };
1085 
1086 static const struct of_device_id spi_imx_dt_ids[] = {
1087 	{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1088 	{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1089 	{ .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1090 	{ .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1091 	{ .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1092 	{ .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1093 	{ .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1094 	{ .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1095 	{ /* sentinel */ }
1096 };
1097 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1098 
1099 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1100 {
1101 	u32 ctrl;
1102 
1103 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1104 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1105 	ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1106 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1107 }
1108 
1109 static void spi_imx_push(struct spi_imx_data *spi_imx)
1110 {
1111 	unsigned int burst_len;
1112 
1113 	/*
1114 	 * Reload the FIFO when the remaining bytes to be transferred in the
1115 	 * current burst is 0. This only applies when bits_per_word is a
1116 	 * multiple of 8.
1117 	 */
1118 	if (!spi_imx->remainder) {
1119 		if (spi_imx->dynamic_burst) {
1120 
1121 			/* We need to deal unaligned data first */
1122 			burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1123 
1124 			if (!burst_len)
1125 				burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1126 
1127 			spi_imx_set_burst_len(spi_imx, burst_len * 8);
1128 
1129 			spi_imx->remainder = burst_len;
1130 		} else {
1131 			spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1132 		}
1133 	}
1134 
1135 	while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1136 		if (!spi_imx->count)
1137 			break;
1138 		if (spi_imx->dynamic_burst &&
1139 		    spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1140 			break;
1141 		spi_imx->tx(spi_imx);
1142 		spi_imx->txfifo++;
1143 	}
1144 
1145 	if (!spi_imx->slave_mode)
1146 		spi_imx->devtype_data->trigger(spi_imx);
1147 }
1148 
1149 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1150 {
1151 	struct spi_imx_data *spi_imx = dev_id;
1152 
1153 	while (spi_imx->txfifo &&
1154 	       spi_imx->devtype_data->rx_available(spi_imx)) {
1155 		spi_imx->rx(spi_imx);
1156 		spi_imx->txfifo--;
1157 	}
1158 
1159 	if (spi_imx->count) {
1160 		spi_imx_push(spi_imx);
1161 		return IRQ_HANDLED;
1162 	}
1163 
1164 	if (spi_imx->txfifo) {
1165 		/* No data left to push, but still waiting for rx data,
1166 		 * enable receive data available interrupt.
1167 		 */
1168 		spi_imx->devtype_data->intctrl(
1169 				spi_imx, MXC_INT_RR);
1170 		return IRQ_HANDLED;
1171 	}
1172 
1173 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1174 	complete(&spi_imx->xfer_done);
1175 
1176 	return IRQ_HANDLED;
1177 }
1178 
1179 static int spi_imx_dma_configure(struct spi_controller *controller)
1180 {
1181 	int ret;
1182 	enum dma_slave_buswidth buswidth;
1183 	struct dma_slave_config rx = {}, tx = {};
1184 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1185 
1186 	switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1187 	case 4:
1188 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1189 		break;
1190 	case 2:
1191 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1192 		break;
1193 	case 1:
1194 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1195 		break;
1196 	default:
1197 		return -EINVAL;
1198 	}
1199 
1200 	tx.direction = DMA_MEM_TO_DEV;
1201 	tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1202 	tx.dst_addr_width = buswidth;
1203 	tx.dst_maxburst = spi_imx->wml;
1204 	ret = dmaengine_slave_config(controller->dma_tx, &tx);
1205 	if (ret) {
1206 		dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1207 		return ret;
1208 	}
1209 
1210 	rx.direction = DMA_DEV_TO_MEM;
1211 	rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1212 	rx.src_addr_width = buswidth;
1213 	rx.src_maxburst = spi_imx->wml;
1214 	ret = dmaengine_slave_config(controller->dma_rx, &rx);
1215 	if (ret) {
1216 		dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1217 		return ret;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 static int spi_imx_setupxfer(struct spi_device *spi,
1224 				 struct spi_transfer *t)
1225 {
1226 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1227 
1228 	if (!t)
1229 		return 0;
1230 
1231 	if (!t->speed_hz) {
1232 		if (!spi->max_speed_hz) {
1233 			dev_err(&spi->dev, "no speed_hz provided!\n");
1234 			return -EINVAL;
1235 		}
1236 		dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1237 		spi_imx->spi_bus_clk = spi->max_speed_hz;
1238 	} else
1239 		spi_imx->spi_bus_clk = t->speed_hz;
1240 
1241 	spi_imx->bits_per_word = t->bits_per_word;
1242 
1243 	/*
1244 	 * Initialize the functions for transfer. To transfer non byte-aligned
1245 	 * words, we have to use multiple word-size bursts, we can't use
1246 	 * dynamic_burst in that case.
1247 	 */
1248 	if (spi_imx->devtype_data->dynamic_burst && !spi_imx->slave_mode &&
1249 	    !(spi->mode & SPI_CS_WORD) &&
1250 	    (spi_imx->bits_per_word == 8 ||
1251 	    spi_imx->bits_per_word == 16 ||
1252 	    spi_imx->bits_per_word == 32)) {
1253 
1254 		spi_imx->rx = spi_imx_buf_rx_swap;
1255 		spi_imx->tx = spi_imx_buf_tx_swap;
1256 		spi_imx->dynamic_burst = 1;
1257 
1258 	} else {
1259 		if (spi_imx->bits_per_word <= 8) {
1260 			spi_imx->rx = spi_imx_buf_rx_u8;
1261 			spi_imx->tx = spi_imx_buf_tx_u8;
1262 		} else if (spi_imx->bits_per_word <= 16) {
1263 			spi_imx->rx = spi_imx_buf_rx_u16;
1264 			spi_imx->tx = spi_imx_buf_tx_u16;
1265 		} else {
1266 			spi_imx->rx = spi_imx_buf_rx_u32;
1267 			spi_imx->tx = spi_imx_buf_tx_u32;
1268 		}
1269 		spi_imx->dynamic_burst = 0;
1270 	}
1271 
1272 	if (spi_imx_can_dma(spi_imx->controller, spi, t))
1273 		spi_imx->usedma = true;
1274 	else
1275 		spi_imx->usedma = false;
1276 
1277 	spi_imx->rx_only = ((t->tx_buf == NULL)
1278 			|| (t->tx_buf == spi->controller->dummy_tx));
1279 
1280 	if (is_imx53_ecspi(spi_imx) && spi_imx->slave_mode) {
1281 		spi_imx->rx = mx53_ecspi_rx_slave;
1282 		spi_imx->tx = mx53_ecspi_tx_slave;
1283 		spi_imx->slave_burst = t->len;
1284 	}
1285 
1286 	spi_imx->devtype_data->prepare_transfer(spi_imx, spi);
1287 
1288 	return 0;
1289 }
1290 
1291 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1292 {
1293 	struct spi_controller *controller = spi_imx->controller;
1294 
1295 	if (controller->dma_rx) {
1296 		dma_release_channel(controller->dma_rx);
1297 		controller->dma_rx = NULL;
1298 	}
1299 
1300 	if (controller->dma_tx) {
1301 		dma_release_channel(controller->dma_tx);
1302 		controller->dma_tx = NULL;
1303 	}
1304 }
1305 
1306 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1307 			     struct spi_controller *controller)
1308 {
1309 	int ret;
1310 
1311 	spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1312 
1313 	/* Prepare for TX DMA: */
1314 	controller->dma_tx = dma_request_chan(dev, "tx");
1315 	if (IS_ERR(controller->dma_tx)) {
1316 		ret = PTR_ERR(controller->dma_tx);
1317 		dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
1318 		controller->dma_tx = NULL;
1319 		goto err;
1320 	}
1321 
1322 	/* Prepare for RX : */
1323 	controller->dma_rx = dma_request_chan(dev, "rx");
1324 	if (IS_ERR(controller->dma_rx)) {
1325 		ret = PTR_ERR(controller->dma_rx);
1326 		dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
1327 		controller->dma_rx = NULL;
1328 		goto err;
1329 	}
1330 
1331 	init_completion(&spi_imx->dma_rx_completion);
1332 	init_completion(&spi_imx->dma_tx_completion);
1333 	controller->can_dma = spi_imx_can_dma;
1334 	controller->max_dma_len = MAX_SDMA_BD_BYTES;
1335 	spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
1336 					 SPI_CONTROLLER_MUST_TX;
1337 
1338 	return 0;
1339 err:
1340 	spi_imx_sdma_exit(spi_imx);
1341 	return ret;
1342 }
1343 
1344 static void spi_imx_dma_rx_callback(void *cookie)
1345 {
1346 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1347 
1348 	complete(&spi_imx->dma_rx_completion);
1349 }
1350 
1351 static void spi_imx_dma_tx_callback(void *cookie)
1352 {
1353 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1354 
1355 	complete(&spi_imx->dma_tx_completion);
1356 }
1357 
1358 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1359 {
1360 	unsigned long timeout = 0;
1361 
1362 	/* Time with actual data transfer and CS change delay related to HW */
1363 	timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1364 
1365 	/* Add extra second for scheduler related activities */
1366 	timeout += 1;
1367 
1368 	/* Double calculated timeout */
1369 	return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
1370 }
1371 
1372 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1373 				struct spi_transfer *transfer)
1374 {
1375 	struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1376 	unsigned long transfer_timeout;
1377 	unsigned long timeout;
1378 	struct spi_controller *controller = spi_imx->controller;
1379 	struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1380 	struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1381 	unsigned int bytes_per_word, i;
1382 	int ret;
1383 
1384 	/* Get the right burst length from the last sg to ensure no tail data */
1385 	bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1386 	for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1387 		if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1388 			break;
1389 	}
1390 	/* Use 1 as wml in case no available burst length got */
1391 	if (i == 0)
1392 		i = 1;
1393 
1394 	spi_imx->wml =  i;
1395 
1396 	ret = spi_imx_dma_configure(controller);
1397 	if (ret)
1398 		goto dma_failure_no_start;
1399 
1400 	if (!spi_imx->devtype_data->setup_wml) {
1401 		dev_err(spi_imx->dev, "No setup_wml()?\n");
1402 		ret = -EINVAL;
1403 		goto dma_failure_no_start;
1404 	}
1405 	spi_imx->devtype_data->setup_wml(spi_imx);
1406 
1407 	/*
1408 	 * The TX DMA setup starts the transfer, so make sure RX is configured
1409 	 * before TX.
1410 	 */
1411 	desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
1412 				rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1413 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1414 	if (!desc_rx) {
1415 		ret = -EINVAL;
1416 		goto dma_failure_no_start;
1417 	}
1418 
1419 	desc_rx->callback = spi_imx_dma_rx_callback;
1420 	desc_rx->callback_param = (void *)spi_imx;
1421 	dmaengine_submit(desc_rx);
1422 	reinit_completion(&spi_imx->dma_rx_completion);
1423 	dma_async_issue_pending(controller->dma_rx);
1424 
1425 	desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
1426 				tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1427 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1428 	if (!desc_tx) {
1429 		dmaengine_terminate_all(controller->dma_tx);
1430 		dmaengine_terminate_all(controller->dma_rx);
1431 		return -EINVAL;
1432 	}
1433 
1434 	desc_tx->callback = spi_imx_dma_tx_callback;
1435 	desc_tx->callback_param = (void *)spi_imx;
1436 	dmaengine_submit(desc_tx);
1437 	reinit_completion(&spi_imx->dma_tx_completion);
1438 	dma_async_issue_pending(controller->dma_tx);
1439 
1440 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1441 
1442 	/* Wait SDMA to finish the data transfer.*/
1443 	timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1444 						transfer_timeout);
1445 	if (!timeout) {
1446 		dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1447 		dmaengine_terminate_all(controller->dma_tx);
1448 		dmaengine_terminate_all(controller->dma_rx);
1449 		return -ETIMEDOUT;
1450 	}
1451 
1452 	timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1453 					      transfer_timeout);
1454 	if (!timeout) {
1455 		dev_err(&controller->dev, "I/O Error in DMA RX\n");
1456 		spi_imx->devtype_data->reset(spi_imx);
1457 		dmaengine_terminate_all(controller->dma_rx);
1458 		return -ETIMEDOUT;
1459 	}
1460 
1461 	return 0;
1462 /* fallback to pio */
1463 dma_failure_no_start:
1464 	transfer->error |= SPI_TRANS_FAIL_NO_START;
1465 	return ret;
1466 }
1467 
1468 static int spi_imx_pio_transfer(struct spi_device *spi,
1469 				struct spi_transfer *transfer)
1470 {
1471 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1472 	unsigned long transfer_timeout;
1473 	unsigned long timeout;
1474 
1475 	spi_imx->tx_buf = transfer->tx_buf;
1476 	spi_imx->rx_buf = transfer->rx_buf;
1477 	spi_imx->count = transfer->len;
1478 	spi_imx->txfifo = 0;
1479 	spi_imx->remainder = 0;
1480 
1481 	reinit_completion(&spi_imx->xfer_done);
1482 
1483 	spi_imx_push(spi_imx);
1484 
1485 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1486 
1487 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1488 
1489 	timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
1490 					      transfer_timeout);
1491 	if (!timeout) {
1492 		dev_err(&spi->dev, "I/O Error in PIO\n");
1493 		spi_imx->devtype_data->reset(spi_imx);
1494 		return -ETIMEDOUT;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static int spi_imx_poll_transfer(struct spi_device *spi,
1501 				 struct spi_transfer *transfer)
1502 {
1503 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1504 	unsigned long timeout;
1505 
1506 	spi_imx->tx_buf = transfer->tx_buf;
1507 	spi_imx->rx_buf = transfer->rx_buf;
1508 	spi_imx->count = transfer->len;
1509 	spi_imx->txfifo = 0;
1510 	spi_imx->remainder = 0;
1511 
1512 	/* fill in the fifo before timeout calculations if we are
1513 	 * interrupted here, then the data is getting transferred by
1514 	 * the HW while we are interrupted
1515 	 */
1516 	spi_imx_push(spi_imx);
1517 
1518 	timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
1519 	while (spi_imx->txfifo) {
1520 		/* RX */
1521 		while (spi_imx->txfifo &&
1522 		       spi_imx->devtype_data->rx_available(spi_imx)) {
1523 			spi_imx->rx(spi_imx);
1524 			spi_imx->txfifo--;
1525 		}
1526 
1527 		/* TX */
1528 		if (spi_imx->count) {
1529 			spi_imx_push(spi_imx);
1530 			continue;
1531 		}
1532 
1533 		if (spi_imx->txfifo &&
1534 		    time_after(jiffies, timeout)) {
1535 
1536 			dev_err_ratelimited(&spi->dev,
1537 					    "timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
1538 					    jiffies - timeout);
1539 
1540 			/* fall back to interrupt mode */
1541 			return spi_imx_pio_transfer(spi, transfer);
1542 		}
1543 	}
1544 
1545 	return 0;
1546 }
1547 
1548 static int spi_imx_pio_transfer_slave(struct spi_device *spi,
1549 				      struct spi_transfer *transfer)
1550 {
1551 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1552 	int ret = 0;
1553 
1554 	if (is_imx53_ecspi(spi_imx) &&
1555 	    transfer->len > MX53_MAX_TRANSFER_BYTES) {
1556 		dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1557 			MX53_MAX_TRANSFER_BYTES);
1558 		return -EMSGSIZE;
1559 	}
1560 
1561 	spi_imx->tx_buf = transfer->tx_buf;
1562 	spi_imx->rx_buf = transfer->rx_buf;
1563 	spi_imx->count = transfer->len;
1564 	spi_imx->txfifo = 0;
1565 	spi_imx->remainder = 0;
1566 
1567 	reinit_completion(&spi_imx->xfer_done);
1568 	spi_imx->slave_aborted = false;
1569 
1570 	spi_imx_push(spi_imx);
1571 
1572 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1573 
1574 	if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1575 	    spi_imx->slave_aborted) {
1576 		dev_dbg(&spi->dev, "interrupted\n");
1577 		ret = -EINTR;
1578 	}
1579 
1580 	/* ecspi has a HW issue when works in Slave mode,
1581 	 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1582 	 * ECSPI_TXDATA keeps shift out the last word data,
1583 	 * so we have to disable ECSPI when in slave mode after the
1584 	 * transfer completes
1585 	 */
1586 	if (spi_imx->devtype_data->disable)
1587 		spi_imx->devtype_data->disable(spi_imx);
1588 
1589 	return ret;
1590 }
1591 
1592 static int spi_imx_transfer_one(struct spi_controller *controller,
1593 				struct spi_device *spi,
1594 				struct spi_transfer *transfer)
1595 {
1596 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1597 	unsigned long hz_per_byte, byte_limit;
1598 
1599 	spi_imx_setupxfer(spi, transfer);
1600 	transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1601 
1602 	/* flush rxfifo before transfer */
1603 	while (spi_imx->devtype_data->rx_available(spi_imx))
1604 		readl(spi_imx->base + MXC_CSPIRXDATA);
1605 
1606 	if (spi_imx->slave_mode)
1607 		return spi_imx_pio_transfer_slave(spi, transfer);
1608 
1609 	/*
1610 	 * If we decided in spi_imx_can_dma() that we want to do a DMA
1611 	 * transfer, the SPI transfer has already been mapped, so we
1612 	 * have to do the DMA transfer here.
1613 	 */
1614 	if (spi_imx->usedma)
1615 		return spi_imx_dma_transfer(spi_imx, transfer);
1616 	/*
1617 	 * Calculate the estimated time in us the transfer runs. Find
1618 	 * the number of Hz per byte per polling limit.
1619 	 */
1620 	hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0;
1621 	byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1;
1622 
1623 	/* run in polling mode for short transfers */
1624 	if (transfer->len < byte_limit)
1625 		return spi_imx_poll_transfer(spi, transfer);
1626 
1627 	return spi_imx_pio_transfer(spi, transfer);
1628 }
1629 
1630 static int spi_imx_setup(struct spi_device *spi)
1631 {
1632 	dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1633 		 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1634 
1635 	return 0;
1636 }
1637 
1638 static void spi_imx_cleanup(struct spi_device *spi)
1639 {
1640 }
1641 
1642 static int
1643 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
1644 {
1645 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1646 	int ret;
1647 
1648 	ret = pm_runtime_resume_and_get(spi_imx->dev);
1649 	if (ret < 0) {
1650 		dev_err(spi_imx->dev, "failed to enable clock\n");
1651 		return ret;
1652 	}
1653 
1654 	ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1655 	if (ret) {
1656 		pm_runtime_mark_last_busy(spi_imx->dev);
1657 		pm_runtime_put_autosuspend(spi_imx->dev);
1658 	}
1659 
1660 	return ret;
1661 }
1662 
1663 static int
1664 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
1665 {
1666 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1667 
1668 	pm_runtime_mark_last_busy(spi_imx->dev);
1669 	pm_runtime_put_autosuspend(spi_imx->dev);
1670 	return 0;
1671 }
1672 
1673 static int spi_imx_slave_abort(struct spi_controller *controller)
1674 {
1675 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1676 
1677 	spi_imx->slave_aborted = true;
1678 	complete(&spi_imx->xfer_done);
1679 
1680 	return 0;
1681 }
1682 
1683 static int spi_imx_probe(struct platform_device *pdev)
1684 {
1685 	struct device_node *np = pdev->dev.of_node;
1686 	struct spi_controller *controller;
1687 	struct spi_imx_data *spi_imx;
1688 	struct resource *res;
1689 	int ret, irq, spi_drctl;
1690 	const struct spi_imx_devtype_data *devtype_data =
1691 			of_device_get_match_data(&pdev->dev);
1692 	bool slave_mode;
1693 	u32 val;
1694 
1695 	slave_mode = devtype_data->has_slavemode &&
1696 			of_property_read_bool(np, "spi-slave");
1697 	if (slave_mode)
1698 		controller = spi_alloc_slave(&pdev->dev,
1699 					     sizeof(struct spi_imx_data));
1700 	else
1701 		controller = spi_alloc_master(&pdev->dev,
1702 					      sizeof(struct spi_imx_data));
1703 	if (!controller)
1704 		return -ENOMEM;
1705 
1706 	ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1707 	if ((ret < 0) || (spi_drctl >= 0x3)) {
1708 		/* '11' is reserved */
1709 		spi_drctl = 0;
1710 	}
1711 
1712 	platform_set_drvdata(pdev, controller);
1713 
1714 	controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1715 	controller->bus_num = np ? -1 : pdev->id;
1716 	controller->use_gpio_descriptors = true;
1717 
1718 	spi_imx = spi_controller_get_devdata(controller);
1719 	spi_imx->controller = controller;
1720 	spi_imx->dev = &pdev->dev;
1721 	spi_imx->slave_mode = slave_mode;
1722 
1723 	spi_imx->devtype_data = devtype_data;
1724 
1725 	/*
1726 	 * Get number of chip selects from device properties. This can be
1727 	 * coming from device tree or boardfiles, if it is not defined,
1728 	 * a default value of 3 chip selects will be used, as all the legacy
1729 	 * board files have <= 3 chip selects.
1730 	 */
1731 	if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1732 		controller->num_chipselect = val;
1733 	else
1734 		controller->num_chipselect = 3;
1735 
1736 	spi_imx->controller->transfer_one = spi_imx_transfer_one;
1737 	spi_imx->controller->setup = spi_imx_setup;
1738 	spi_imx->controller->cleanup = spi_imx_cleanup;
1739 	spi_imx->controller->prepare_message = spi_imx_prepare_message;
1740 	spi_imx->controller->unprepare_message = spi_imx_unprepare_message;
1741 	spi_imx->controller->slave_abort = spi_imx_slave_abort;
1742 	spi_imx->controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS;
1743 
1744 	if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1745 	    is_imx53_ecspi(spi_imx))
1746 		spi_imx->controller->mode_bits |= SPI_LOOP | SPI_READY;
1747 
1748 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
1749 		spi_imx->controller->mode_bits |= SPI_RX_CPHA_FLIP;
1750 
1751 	if (is_imx51_ecspi(spi_imx) &&
1752 	    device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1753 		/*
1754 		 * When using HW-CS implementing SPI_CS_WORD can be done by just
1755 		 * setting the burst length to the word size. This is
1756 		 * considerably faster than manually controlling the CS.
1757 		 */
1758 		spi_imx->controller->mode_bits |= SPI_CS_WORD;
1759 
1760 	spi_imx->spi_drctl = spi_drctl;
1761 
1762 	init_completion(&spi_imx->xfer_done);
1763 
1764 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1765 	spi_imx->base = devm_ioremap_resource(&pdev->dev, res);
1766 	if (IS_ERR(spi_imx->base)) {
1767 		ret = PTR_ERR(spi_imx->base);
1768 		goto out_controller_put;
1769 	}
1770 	spi_imx->base_phys = res->start;
1771 
1772 	irq = platform_get_irq(pdev, 0);
1773 	if (irq < 0) {
1774 		ret = irq;
1775 		goto out_controller_put;
1776 	}
1777 
1778 	ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1779 			       dev_name(&pdev->dev), spi_imx);
1780 	if (ret) {
1781 		dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1782 		goto out_controller_put;
1783 	}
1784 
1785 	spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1786 	if (IS_ERR(spi_imx->clk_ipg)) {
1787 		ret = PTR_ERR(spi_imx->clk_ipg);
1788 		goto out_controller_put;
1789 	}
1790 
1791 	spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1792 	if (IS_ERR(spi_imx->clk_per)) {
1793 		ret = PTR_ERR(spi_imx->clk_per);
1794 		goto out_controller_put;
1795 	}
1796 
1797 	ret = clk_prepare_enable(spi_imx->clk_per);
1798 	if (ret)
1799 		goto out_controller_put;
1800 
1801 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1802 	if (ret)
1803 		goto out_put_per;
1804 
1805 	pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1806 	pm_runtime_use_autosuspend(spi_imx->dev);
1807 	pm_runtime_get_noresume(spi_imx->dev);
1808 	pm_runtime_set_active(spi_imx->dev);
1809 	pm_runtime_enable(spi_imx->dev);
1810 
1811 	spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1812 	/*
1813 	 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1814 	 * if validated on other chips.
1815 	 */
1816 	if (spi_imx->devtype_data->has_dmamode) {
1817 		ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
1818 		if (ret == -EPROBE_DEFER)
1819 			goto out_runtime_pm_put;
1820 
1821 		if (ret < 0)
1822 			dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1823 				ret);
1824 	}
1825 
1826 	spi_imx->devtype_data->reset(spi_imx);
1827 
1828 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1829 
1830 	controller->dev.of_node = pdev->dev.of_node;
1831 	ret = spi_register_controller(controller);
1832 	if (ret) {
1833 		dev_err_probe(&pdev->dev, ret, "register controller failed\n");
1834 		goto out_register_controller;
1835 	}
1836 
1837 	pm_runtime_mark_last_busy(spi_imx->dev);
1838 	pm_runtime_put_autosuspend(spi_imx->dev);
1839 
1840 	return ret;
1841 
1842 out_register_controller:
1843 	if (spi_imx->devtype_data->has_dmamode)
1844 		spi_imx_sdma_exit(spi_imx);
1845 out_runtime_pm_put:
1846 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1847 	pm_runtime_set_suspended(&pdev->dev);
1848 	pm_runtime_disable(spi_imx->dev);
1849 
1850 	clk_disable_unprepare(spi_imx->clk_ipg);
1851 out_put_per:
1852 	clk_disable_unprepare(spi_imx->clk_per);
1853 out_controller_put:
1854 	spi_controller_put(controller);
1855 
1856 	return ret;
1857 }
1858 
1859 static int spi_imx_remove(struct platform_device *pdev)
1860 {
1861 	struct spi_controller *controller = platform_get_drvdata(pdev);
1862 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1863 	int ret;
1864 
1865 	spi_unregister_controller(controller);
1866 
1867 	ret = pm_runtime_resume_and_get(spi_imx->dev);
1868 	if (ret < 0) {
1869 		dev_err(spi_imx->dev, "failed to enable clock\n");
1870 		return ret;
1871 	}
1872 
1873 	writel(0, spi_imx->base + MXC_CSPICTRL);
1874 
1875 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1876 	pm_runtime_put_sync(spi_imx->dev);
1877 	pm_runtime_disable(spi_imx->dev);
1878 
1879 	spi_imx_sdma_exit(spi_imx);
1880 
1881 	return 0;
1882 }
1883 
1884 static int __maybe_unused spi_imx_runtime_resume(struct device *dev)
1885 {
1886 	struct spi_controller *controller = dev_get_drvdata(dev);
1887 	struct spi_imx_data *spi_imx;
1888 	int ret;
1889 
1890 	spi_imx = spi_controller_get_devdata(controller);
1891 
1892 	ret = clk_prepare_enable(spi_imx->clk_per);
1893 	if (ret)
1894 		return ret;
1895 
1896 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1897 	if (ret) {
1898 		clk_disable_unprepare(spi_imx->clk_per);
1899 		return ret;
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev)
1906 {
1907 	struct spi_controller *controller = dev_get_drvdata(dev);
1908 	struct spi_imx_data *spi_imx;
1909 
1910 	spi_imx = spi_controller_get_devdata(controller);
1911 
1912 	clk_disable_unprepare(spi_imx->clk_per);
1913 	clk_disable_unprepare(spi_imx->clk_ipg);
1914 
1915 	return 0;
1916 }
1917 
1918 static int __maybe_unused spi_imx_suspend(struct device *dev)
1919 {
1920 	pinctrl_pm_select_sleep_state(dev);
1921 	return 0;
1922 }
1923 
1924 static int __maybe_unused spi_imx_resume(struct device *dev)
1925 {
1926 	pinctrl_pm_select_default_state(dev);
1927 	return 0;
1928 }
1929 
1930 static const struct dev_pm_ops imx_spi_pm = {
1931 	SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend,
1932 				spi_imx_runtime_resume, NULL)
1933 	SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
1934 };
1935 
1936 static struct platform_driver spi_imx_driver = {
1937 	.driver = {
1938 		   .name = DRIVER_NAME,
1939 		   .of_match_table = spi_imx_dt_ids,
1940 		   .pm = &imx_spi_pm,
1941 	},
1942 	.probe = spi_imx_probe,
1943 	.remove = spi_imx_remove,
1944 };
1945 module_platform_driver(spi_imx_driver);
1946 
1947 MODULE_DESCRIPTION("i.MX SPI Controller driver");
1948 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
1949 MODULE_LICENSE("GPL");
1950 MODULE_ALIAS("platform:" DRIVER_NAME);
1951