1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. 3 // Copyright (C) 2008 Juergen Beisert 4 5 #include <linux/bits.h> 6 #include <linux/clk.h> 7 #include <linux/completion.h> 8 #include <linux/delay.h> 9 #include <linux/dmaengine.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/err.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/irq.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/pinctrl/consumer.h> 18 #include <linux/platform_device.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/slab.h> 21 #include <linux/spi/spi.h> 22 #include <linux/types.h> 23 #include <linux/of.h> 24 #include <linux/property.h> 25 26 #include <linux/dma/imx-dma.h> 27 28 #define DRIVER_NAME "spi_imx" 29 30 static bool use_dma = true; 31 module_param(use_dma, bool, 0644); 32 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)"); 33 34 /* define polling limits */ 35 static unsigned int polling_limit_us = 30; 36 module_param(polling_limit_us, uint, 0664); 37 MODULE_PARM_DESC(polling_limit_us, 38 "time in us to run a transfer in polling mode\n"); 39 40 #define MXC_RPM_TIMEOUT 2000 /* 2000ms */ 41 42 #define MXC_CSPIRXDATA 0x00 43 #define MXC_CSPITXDATA 0x04 44 #define MXC_CSPICTRL 0x08 45 #define MXC_CSPIINT 0x0c 46 #define MXC_RESET 0x1c 47 48 /* generic defines to abstract from the different register layouts */ 49 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */ 50 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */ 51 #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */ 52 53 /* The maximum bytes that a sdma BD can transfer. */ 54 #define MAX_SDMA_BD_BYTES (1 << 15) 55 #define MX51_ECSPI_CTRL_MAX_BURST 512 56 /* The maximum bytes that IMX53_ECSPI can transfer in target mode.*/ 57 #define MX53_MAX_TRANSFER_BYTES 512 58 59 enum spi_imx_devtype { 60 IMX1_CSPI, 61 IMX21_CSPI, 62 IMX27_CSPI, 63 IMX31_CSPI, 64 IMX35_CSPI, /* CSPI on all i.mx except above */ 65 IMX51_ECSPI, /* ECSPI on i.mx51 */ 66 IMX53_ECSPI, /* ECSPI on i.mx53 and later */ 67 }; 68 69 struct spi_imx_data; 70 71 struct spi_imx_devtype_data { 72 void (*intctrl)(struct spi_imx_data *spi_imx, int enable); 73 int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg); 74 int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi); 75 void (*trigger)(struct spi_imx_data *spi_imx); 76 int (*rx_available)(struct spi_imx_data *spi_imx); 77 void (*reset)(struct spi_imx_data *spi_imx); 78 void (*setup_wml)(struct spi_imx_data *spi_imx); 79 void (*disable)(struct spi_imx_data *spi_imx); 80 bool has_dmamode; 81 bool has_targetmode; 82 unsigned int fifo_size; 83 bool dynamic_burst; 84 /* 85 * ERR009165 fixed or not: 86 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf 87 */ 88 bool tx_glitch_fixed; 89 enum spi_imx_devtype devtype; 90 }; 91 92 struct spi_imx_data { 93 struct spi_controller *controller; 94 struct device *dev; 95 96 struct completion xfer_done; 97 void __iomem *base; 98 unsigned long base_phys; 99 100 struct clk *clk_per; 101 struct clk *clk_ipg; 102 unsigned long spi_clk; 103 unsigned int spi_bus_clk; 104 105 unsigned int bits_per_word; 106 unsigned int spi_drctl; 107 108 unsigned int count, remainder; 109 void (*tx)(struct spi_imx_data *spi_imx); 110 void (*rx)(struct spi_imx_data *spi_imx); 111 void *rx_buf; 112 const void *tx_buf; 113 unsigned int txfifo; /* number of words pushed in tx FIFO */ 114 unsigned int dynamic_burst; 115 bool rx_only; 116 117 /* Target mode */ 118 bool target_mode; 119 bool target_aborted; 120 unsigned int target_burst; 121 122 /* DMA */ 123 bool usedma; 124 u32 wml; 125 struct completion dma_rx_completion; 126 struct completion dma_tx_completion; 127 128 const struct spi_imx_devtype_data *devtype_data; 129 }; 130 131 static inline int is_imx27_cspi(struct spi_imx_data *d) 132 { 133 return d->devtype_data->devtype == IMX27_CSPI; 134 } 135 136 static inline int is_imx35_cspi(struct spi_imx_data *d) 137 { 138 return d->devtype_data->devtype == IMX35_CSPI; 139 } 140 141 static inline int is_imx51_ecspi(struct spi_imx_data *d) 142 { 143 return d->devtype_data->devtype == IMX51_ECSPI; 144 } 145 146 static inline int is_imx53_ecspi(struct spi_imx_data *d) 147 { 148 return d->devtype_data->devtype == IMX53_ECSPI; 149 } 150 151 #define MXC_SPI_BUF_RX(type) \ 152 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \ 153 { \ 154 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \ 155 \ 156 if (spi_imx->rx_buf) { \ 157 *(type *)spi_imx->rx_buf = val; \ 158 spi_imx->rx_buf += sizeof(type); \ 159 } \ 160 \ 161 spi_imx->remainder -= sizeof(type); \ 162 } 163 164 #define MXC_SPI_BUF_TX(type) \ 165 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \ 166 { \ 167 type val = 0; \ 168 \ 169 if (spi_imx->tx_buf) { \ 170 val = *(type *)spi_imx->tx_buf; \ 171 spi_imx->tx_buf += sizeof(type); \ 172 } \ 173 \ 174 spi_imx->count -= sizeof(type); \ 175 \ 176 writel(val, spi_imx->base + MXC_CSPITXDATA); \ 177 } 178 179 MXC_SPI_BUF_RX(u8) 180 MXC_SPI_BUF_TX(u8) 181 MXC_SPI_BUF_RX(u16) 182 MXC_SPI_BUF_TX(u16) 183 MXC_SPI_BUF_RX(u32) 184 MXC_SPI_BUF_TX(u32) 185 186 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set 187 * (which is currently not the case in this driver) 188 */ 189 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 190 256, 384, 512, 768, 1024}; 191 192 /* MX21, MX27 */ 193 static unsigned int spi_imx_clkdiv_1(unsigned int fin, 194 unsigned int fspi, unsigned int max, unsigned int *fres) 195 { 196 int i; 197 198 for (i = 2; i < max; i++) 199 if (fspi * mxc_clkdivs[i] >= fin) 200 break; 201 202 *fres = fin / mxc_clkdivs[i]; 203 return i; 204 } 205 206 /* MX1, MX31, MX35, MX51 CSPI */ 207 static unsigned int spi_imx_clkdiv_2(unsigned int fin, 208 unsigned int fspi, unsigned int *fres) 209 { 210 int i, div = 4; 211 212 for (i = 0; i < 7; i++) { 213 if (fspi * div >= fin) 214 goto out; 215 div <<= 1; 216 } 217 218 out: 219 *fres = fin / div; 220 return i; 221 } 222 223 static int spi_imx_bytes_per_word(const int bits_per_word) 224 { 225 if (bits_per_word <= 8) 226 return 1; 227 else if (bits_per_word <= 16) 228 return 2; 229 else 230 return 4; 231 } 232 233 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi, 234 struct spi_transfer *transfer) 235 { 236 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 237 238 if (!use_dma || controller->fallback) 239 return false; 240 241 if (!controller->dma_rx) 242 return false; 243 244 if (spi_imx->target_mode) 245 return false; 246 247 if (transfer->len < spi_imx->devtype_data->fifo_size) 248 return false; 249 250 spi_imx->dynamic_burst = 0; 251 252 return true; 253 } 254 255 /* 256 * Note the number of natively supported chip selects for MX51 is 4. Some 257 * devices may have less actual SS pins but the register map supports 4. When 258 * using gpio chip selects the cs values passed into the macros below can go 259 * outside the range 0 - 3. We therefore need to limit the cs value to avoid 260 * corrupting bits outside the allocated locations. 261 * 262 * The simplest way to do this is to just mask the cs bits to 2 bits. This 263 * still allows all 4 native chip selects to work as well as gpio chip selects 264 * (which can use any of the 4 chip select configurations). 265 */ 266 267 #define MX51_ECSPI_CTRL 0x08 268 #define MX51_ECSPI_CTRL_ENABLE (1 << 0) 269 #define MX51_ECSPI_CTRL_XCH (1 << 2) 270 #define MX51_ECSPI_CTRL_SMC (1 << 3) 271 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4) 272 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16) 273 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8 274 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12 275 #define MX51_ECSPI_CTRL_CS(cs) ((cs & 3) << 18) 276 #define MX51_ECSPI_CTRL_BL_OFFSET 20 277 #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20) 278 279 #define MX51_ECSPI_CONFIG 0x0c 280 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs & 3) + 0)) 281 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs & 3) + 4)) 282 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs & 3) + 8)) 283 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs & 3) + 12)) 284 #define MX51_ECSPI_CONFIG_DATACTL(cs) (1 << ((cs & 3) + 16)) 285 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs & 3) + 20)) 286 287 #define MX51_ECSPI_INT 0x10 288 #define MX51_ECSPI_INT_TEEN (1 << 0) 289 #define MX51_ECSPI_INT_RREN (1 << 3) 290 #define MX51_ECSPI_INT_RDREN (1 << 4) 291 292 #define MX51_ECSPI_DMA 0x14 293 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f) 294 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16) 295 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24) 296 297 #define MX51_ECSPI_DMA_TEDEN (1 << 7) 298 #define MX51_ECSPI_DMA_RXDEN (1 << 23) 299 #define MX51_ECSPI_DMA_RXTDEN (1 << 31) 300 301 #define MX51_ECSPI_STAT 0x18 302 #define MX51_ECSPI_STAT_RR (1 << 3) 303 304 #define MX51_ECSPI_TESTREG 0x20 305 #define MX51_ECSPI_TESTREG_LBC BIT(31) 306 307 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx) 308 { 309 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); 310 311 if (spi_imx->rx_buf) { 312 #ifdef __LITTLE_ENDIAN 313 unsigned int bytes_per_word; 314 315 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 316 if (bytes_per_word == 1) 317 swab32s(&val); 318 else if (bytes_per_word == 2) 319 swahw32s(&val); 320 #endif 321 *(u32 *)spi_imx->rx_buf = val; 322 spi_imx->rx_buf += sizeof(u32); 323 } 324 325 spi_imx->remainder -= sizeof(u32); 326 } 327 328 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx) 329 { 330 int unaligned; 331 u32 val; 332 333 unaligned = spi_imx->remainder % 4; 334 335 if (!unaligned) { 336 spi_imx_buf_rx_swap_u32(spi_imx); 337 return; 338 } 339 340 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 341 spi_imx_buf_rx_u16(spi_imx); 342 return; 343 } 344 345 val = readl(spi_imx->base + MXC_CSPIRXDATA); 346 347 while (unaligned--) { 348 if (spi_imx->rx_buf) { 349 *(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff; 350 spi_imx->rx_buf++; 351 } 352 spi_imx->remainder--; 353 } 354 } 355 356 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx) 357 { 358 u32 val = 0; 359 #ifdef __LITTLE_ENDIAN 360 unsigned int bytes_per_word; 361 #endif 362 363 if (spi_imx->tx_buf) { 364 val = *(u32 *)spi_imx->tx_buf; 365 spi_imx->tx_buf += sizeof(u32); 366 } 367 368 spi_imx->count -= sizeof(u32); 369 #ifdef __LITTLE_ENDIAN 370 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 371 372 if (bytes_per_word == 1) 373 swab32s(&val); 374 else if (bytes_per_word == 2) 375 swahw32s(&val); 376 #endif 377 writel(val, spi_imx->base + MXC_CSPITXDATA); 378 } 379 380 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx) 381 { 382 int unaligned; 383 u32 val = 0; 384 385 unaligned = spi_imx->count % 4; 386 387 if (!unaligned) { 388 spi_imx_buf_tx_swap_u32(spi_imx); 389 return; 390 } 391 392 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 393 spi_imx_buf_tx_u16(spi_imx); 394 return; 395 } 396 397 while (unaligned--) { 398 if (spi_imx->tx_buf) { 399 val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned); 400 spi_imx->tx_buf++; 401 } 402 spi_imx->count--; 403 } 404 405 writel(val, spi_imx->base + MXC_CSPITXDATA); 406 } 407 408 static void mx53_ecspi_rx_target(struct spi_imx_data *spi_imx) 409 { 410 u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA)); 411 412 if (spi_imx->rx_buf) { 413 int n_bytes = spi_imx->target_burst % sizeof(val); 414 415 if (!n_bytes) 416 n_bytes = sizeof(val); 417 418 memcpy(spi_imx->rx_buf, 419 ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes); 420 421 spi_imx->rx_buf += n_bytes; 422 spi_imx->target_burst -= n_bytes; 423 } 424 425 spi_imx->remainder -= sizeof(u32); 426 } 427 428 static void mx53_ecspi_tx_target(struct spi_imx_data *spi_imx) 429 { 430 u32 val = 0; 431 int n_bytes = spi_imx->count % sizeof(val); 432 433 if (!n_bytes) 434 n_bytes = sizeof(val); 435 436 if (spi_imx->tx_buf) { 437 memcpy(((u8 *)&val) + sizeof(val) - n_bytes, 438 spi_imx->tx_buf, n_bytes); 439 val = cpu_to_be32(val); 440 spi_imx->tx_buf += n_bytes; 441 } 442 443 spi_imx->count -= n_bytes; 444 445 writel(val, spi_imx->base + MXC_CSPITXDATA); 446 } 447 448 /* MX51 eCSPI */ 449 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx, 450 unsigned int fspi, unsigned int *fres) 451 { 452 /* 453 * there are two 4-bit dividers, the pre-divider divides by 454 * $pre, the post-divider by 2^$post 455 */ 456 unsigned int pre, post; 457 unsigned int fin = spi_imx->spi_clk; 458 459 fspi = min(fspi, fin); 460 461 post = fls(fin) - fls(fspi); 462 if (fin > fspi << post) 463 post++; 464 465 /* now we have: (fin <= fspi << post) with post being minimal */ 466 467 post = max(4U, post) - 4; 468 if (unlikely(post > 0xf)) { 469 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n", 470 fspi, fin); 471 return 0xff; 472 } 473 474 pre = DIV_ROUND_UP(fin, fspi << post) - 1; 475 476 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n", 477 __func__, fin, fspi, post, pre); 478 479 /* Resulting frequency for the SCLK line. */ 480 *fres = (fin / (pre + 1)) >> post; 481 482 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) | 483 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET); 484 } 485 486 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable) 487 { 488 unsigned int val = 0; 489 490 if (enable & MXC_INT_TE) 491 val |= MX51_ECSPI_INT_TEEN; 492 493 if (enable & MXC_INT_RR) 494 val |= MX51_ECSPI_INT_RREN; 495 496 if (enable & MXC_INT_RDR) 497 val |= MX51_ECSPI_INT_RDREN; 498 499 writel(val, spi_imx->base + MX51_ECSPI_INT); 500 } 501 502 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx) 503 { 504 u32 reg; 505 506 reg = readl(spi_imx->base + MX51_ECSPI_CTRL); 507 reg |= MX51_ECSPI_CTRL_XCH; 508 writel(reg, spi_imx->base + MX51_ECSPI_CTRL); 509 } 510 511 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx) 512 { 513 u32 ctrl; 514 515 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 516 ctrl &= ~MX51_ECSPI_CTRL_ENABLE; 517 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 518 } 519 520 static int mx51_ecspi_channel(const struct spi_device *spi) 521 { 522 if (!spi_get_csgpiod(spi, 0)) 523 return spi_get_chipselect(spi, 0); 524 return spi->controller->unused_native_cs; 525 } 526 527 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx, 528 struct spi_message *msg) 529 { 530 struct spi_device *spi = msg->spi; 531 struct spi_transfer *xfer; 532 u32 ctrl = MX51_ECSPI_CTRL_ENABLE; 533 u32 min_speed_hz = ~0U; 534 u32 testreg, delay; 535 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 536 u32 current_cfg = cfg; 537 int channel = mx51_ecspi_channel(spi); 538 539 /* set Host or Target mode */ 540 if (spi_imx->target_mode) 541 ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK; 542 else 543 ctrl |= MX51_ECSPI_CTRL_MODE_MASK; 544 545 /* 546 * Enable SPI_RDY handling (falling edge/level triggered). 547 */ 548 if (spi->mode & SPI_READY) 549 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl); 550 551 /* set chip select to use */ 552 ctrl |= MX51_ECSPI_CTRL_CS(channel); 553 554 /* 555 * The ctrl register must be written first, with the EN bit set other 556 * registers must not be written to. 557 */ 558 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 559 560 testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG); 561 if (spi->mode & SPI_LOOP) 562 testreg |= MX51_ECSPI_TESTREG_LBC; 563 else 564 testreg &= ~MX51_ECSPI_TESTREG_LBC; 565 writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG); 566 567 /* 568 * eCSPI burst completion by Chip Select signal in Target mode 569 * is not functional for imx53 Soc, config SPI burst completed when 570 * BURST_LENGTH + 1 bits are received 571 */ 572 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx)) 573 cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel); 574 else 575 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel); 576 577 if (spi->mode & SPI_CPOL) { 578 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel); 579 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel); 580 } else { 581 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel); 582 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel); 583 } 584 585 if (spi->mode & SPI_MOSI_IDLE_LOW) 586 cfg |= MX51_ECSPI_CONFIG_DATACTL(channel); 587 else 588 cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel); 589 590 if (spi->mode & SPI_CS_HIGH) 591 cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel); 592 else 593 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel); 594 595 if (cfg == current_cfg) 596 return 0; 597 598 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 599 600 /* 601 * Wait until the changes in the configuration register CONFIGREG 602 * propagate into the hardware. It takes exactly one tick of the 603 * SCLK clock, but we will wait two SCLK clock just to be sure. The 604 * effect of the delay it takes for the hardware to apply changes 605 * is noticable if the SCLK clock run very slow. In such a case, if 606 * the polarity of SCLK should be inverted, the GPIO ChipSelect might 607 * be asserted before the SCLK polarity changes, which would disrupt 608 * the SPI communication as the device on the other end would consider 609 * the change of SCLK polarity as a clock tick already. 610 * 611 * Because spi_imx->spi_bus_clk is only set in prepare_message 612 * callback, iterate over all the transfers in spi_message, find the 613 * one with lowest bus frequency, and use that bus frequency for the 614 * delay calculation. In case all transfers have speed_hz == 0, then 615 * min_speed_hz is ~0 and the resulting delay is zero. 616 */ 617 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 618 if (!xfer->speed_hz) 619 continue; 620 min_speed_hz = min(xfer->speed_hz, min_speed_hz); 621 } 622 623 delay = (2 * 1000000) / min_speed_hz; 624 if (likely(delay < 10)) /* SCLK is faster than 200 kHz */ 625 udelay(delay); 626 else /* SCLK is _very_ slow */ 627 usleep_range(delay, delay + 10); 628 629 return 0; 630 } 631 632 static void mx51_configure_cpha(struct spi_imx_data *spi_imx, 633 struct spi_device *spi) 634 { 635 bool cpha = (spi->mode & SPI_CPHA); 636 bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only; 637 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 638 int channel = mx51_ecspi_channel(spi); 639 640 /* Flip cpha logical value iff flip_cpha */ 641 cpha ^= flip_cpha; 642 643 if (cpha) 644 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel); 645 else 646 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel); 647 648 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 649 } 650 651 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx, 652 struct spi_device *spi) 653 { 654 u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 655 u32 clk; 656 657 /* Clear BL field and set the right value */ 658 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 659 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx)) 660 ctrl |= (spi_imx->target_burst * 8 - 1) 661 << MX51_ECSPI_CTRL_BL_OFFSET; 662 else { 663 ctrl |= (spi_imx->bits_per_word - 1) 664 << MX51_ECSPI_CTRL_BL_OFFSET; 665 } 666 667 /* set clock speed */ 668 ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET | 669 0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET); 670 ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk); 671 spi_imx->spi_bus_clk = clk; 672 673 mx51_configure_cpha(spi_imx, spi); 674 675 /* 676 * ERR009165: work in XHC mode instead of SMC as PIO on the chips 677 * before i.mx6ul. 678 */ 679 if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed) 680 ctrl |= MX51_ECSPI_CTRL_SMC; 681 else 682 ctrl &= ~MX51_ECSPI_CTRL_SMC; 683 684 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 685 686 return 0; 687 } 688 689 static void mx51_setup_wml(struct spi_imx_data *spi_imx) 690 { 691 u32 tx_wml = 0; 692 693 if (spi_imx->devtype_data->tx_glitch_fixed) 694 tx_wml = spi_imx->wml; 695 /* 696 * Configure the DMA register: setup the watermark 697 * and enable DMA request. 698 */ 699 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) | 700 MX51_ECSPI_DMA_TX_WML(tx_wml) | 701 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) | 702 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN | 703 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA); 704 } 705 706 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx) 707 { 708 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR; 709 } 710 711 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx) 712 { 713 /* drain receive buffer */ 714 while (mx51_ecspi_rx_available(spi_imx)) 715 readl(spi_imx->base + MXC_CSPIRXDATA); 716 } 717 718 #define MX31_INTREG_TEEN (1 << 0) 719 #define MX31_INTREG_RREN (1 << 3) 720 721 #define MX31_CSPICTRL_ENABLE (1 << 0) 722 #define MX31_CSPICTRL_HOST (1 << 1) 723 #define MX31_CSPICTRL_XCH (1 << 2) 724 #define MX31_CSPICTRL_SMC (1 << 3) 725 #define MX31_CSPICTRL_POL (1 << 4) 726 #define MX31_CSPICTRL_PHA (1 << 5) 727 #define MX31_CSPICTRL_SSCTL (1 << 6) 728 #define MX31_CSPICTRL_SSPOL (1 << 7) 729 #define MX31_CSPICTRL_BC_SHIFT 8 730 #define MX35_CSPICTRL_BL_SHIFT 20 731 #define MX31_CSPICTRL_CS_SHIFT 24 732 #define MX35_CSPICTRL_CS_SHIFT 12 733 #define MX31_CSPICTRL_DR_SHIFT 16 734 735 #define MX31_CSPI_DMAREG 0x10 736 #define MX31_DMAREG_RH_DEN (1<<4) 737 #define MX31_DMAREG_TH_DEN (1<<1) 738 739 #define MX31_CSPISTATUS 0x14 740 #define MX31_STATUS_RR (1 << 3) 741 742 #define MX31_CSPI_TESTREG 0x1C 743 #define MX31_TEST_LBC (1 << 14) 744 745 /* These functions also work for the i.MX35, but be aware that 746 * the i.MX35 has a slightly different register layout for bits 747 * we do not use here. 748 */ 749 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable) 750 { 751 unsigned int val = 0; 752 753 if (enable & MXC_INT_TE) 754 val |= MX31_INTREG_TEEN; 755 if (enable & MXC_INT_RR) 756 val |= MX31_INTREG_RREN; 757 758 writel(val, spi_imx->base + MXC_CSPIINT); 759 } 760 761 static void mx31_trigger(struct spi_imx_data *spi_imx) 762 { 763 unsigned int reg; 764 765 reg = readl(spi_imx->base + MXC_CSPICTRL); 766 reg |= MX31_CSPICTRL_XCH; 767 writel(reg, spi_imx->base + MXC_CSPICTRL); 768 } 769 770 static int mx31_prepare_message(struct spi_imx_data *spi_imx, 771 struct spi_message *msg) 772 { 773 return 0; 774 } 775 776 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx, 777 struct spi_device *spi) 778 { 779 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_HOST; 780 unsigned int clk; 781 782 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) << 783 MX31_CSPICTRL_DR_SHIFT; 784 spi_imx->spi_bus_clk = clk; 785 786 if (is_imx35_cspi(spi_imx)) { 787 reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT; 788 reg |= MX31_CSPICTRL_SSCTL; 789 } else { 790 reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT; 791 } 792 793 if (spi->mode & SPI_CPHA) 794 reg |= MX31_CSPICTRL_PHA; 795 if (spi->mode & SPI_CPOL) 796 reg |= MX31_CSPICTRL_POL; 797 if (spi->mode & SPI_CS_HIGH) 798 reg |= MX31_CSPICTRL_SSPOL; 799 if (!spi_get_csgpiod(spi, 0)) 800 reg |= (spi_get_chipselect(spi, 0)) << 801 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT : 802 MX31_CSPICTRL_CS_SHIFT); 803 804 if (spi_imx->usedma) 805 reg |= MX31_CSPICTRL_SMC; 806 807 writel(reg, spi_imx->base + MXC_CSPICTRL); 808 809 reg = readl(spi_imx->base + MX31_CSPI_TESTREG); 810 if (spi->mode & SPI_LOOP) 811 reg |= MX31_TEST_LBC; 812 else 813 reg &= ~MX31_TEST_LBC; 814 writel(reg, spi_imx->base + MX31_CSPI_TESTREG); 815 816 if (spi_imx->usedma) { 817 /* 818 * configure DMA requests when RXFIFO is half full and 819 * when TXFIFO is half empty 820 */ 821 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN, 822 spi_imx->base + MX31_CSPI_DMAREG); 823 } 824 825 return 0; 826 } 827 828 static int mx31_rx_available(struct spi_imx_data *spi_imx) 829 { 830 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR; 831 } 832 833 static void mx31_reset(struct spi_imx_data *spi_imx) 834 { 835 /* drain receive buffer */ 836 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR) 837 readl(spi_imx->base + MXC_CSPIRXDATA); 838 } 839 840 #define MX21_INTREG_RR (1 << 4) 841 #define MX21_INTREG_TEEN (1 << 9) 842 #define MX21_INTREG_RREN (1 << 13) 843 844 #define MX21_CSPICTRL_POL (1 << 5) 845 #define MX21_CSPICTRL_PHA (1 << 6) 846 #define MX21_CSPICTRL_SSPOL (1 << 8) 847 #define MX21_CSPICTRL_XCH (1 << 9) 848 #define MX21_CSPICTRL_ENABLE (1 << 10) 849 #define MX21_CSPICTRL_HOST (1 << 11) 850 #define MX21_CSPICTRL_DR_SHIFT 14 851 #define MX21_CSPICTRL_CS_SHIFT 19 852 853 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable) 854 { 855 unsigned int val = 0; 856 857 if (enable & MXC_INT_TE) 858 val |= MX21_INTREG_TEEN; 859 if (enable & MXC_INT_RR) 860 val |= MX21_INTREG_RREN; 861 862 writel(val, spi_imx->base + MXC_CSPIINT); 863 } 864 865 static void mx21_trigger(struct spi_imx_data *spi_imx) 866 { 867 unsigned int reg; 868 869 reg = readl(spi_imx->base + MXC_CSPICTRL); 870 reg |= MX21_CSPICTRL_XCH; 871 writel(reg, spi_imx->base + MXC_CSPICTRL); 872 } 873 874 static int mx21_prepare_message(struct spi_imx_data *spi_imx, 875 struct spi_message *msg) 876 { 877 return 0; 878 } 879 880 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx, 881 struct spi_device *spi) 882 { 883 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_HOST; 884 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18; 885 unsigned int clk; 886 887 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk) 888 << MX21_CSPICTRL_DR_SHIFT; 889 spi_imx->spi_bus_clk = clk; 890 891 reg |= spi_imx->bits_per_word - 1; 892 893 if (spi->mode & SPI_CPHA) 894 reg |= MX21_CSPICTRL_PHA; 895 if (spi->mode & SPI_CPOL) 896 reg |= MX21_CSPICTRL_POL; 897 if (spi->mode & SPI_CS_HIGH) 898 reg |= MX21_CSPICTRL_SSPOL; 899 if (!spi_get_csgpiod(spi, 0)) 900 reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT; 901 902 writel(reg, spi_imx->base + MXC_CSPICTRL); 903 904 return 0; 905 } 906 907 static int mx21_rx_available(struct spi_imx_data *spi_imx) 908 { 909 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR; 910 } 911 912 static void mx21_reset(struct spi_imx_data *spi_imx) 913 { 914 writel(1, spi_imx->base + MXC_RESET); 915 } 916 917 #define MX1_INTREG_RR (1 << 3) 918 #define MX1_INTREG_TEEN (1 << 8) 919 #define MX1_INTREG_RREN (1 << 11) 920 921 #define MX1_CSPICTRL_POL (1 << 4) 922 #define MX1_CSPICTRL_PHA (1 << 5) 923 #define MX1_CSPICTRL_XCH (1 << 8) 924 #define MX1_CSPICTRL_ENABLE (1 << 9) 925 #define MX1_CSPICTRL_HOST (1 << 10) 926 #define MX1_CSPICTRL_DR_SHIFT 13 927 928 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable) 929 { 930 unsigned int val = 0; 931 932 if (enable & MXC_INT_TE) 933 val |= MX1_INTREG_TEEN; 934 if (enable & MXC_INT_RR) 935 val |= MX1_INTREG_RREN; 936 937 writel(val, spi_imx->base + MXC_CSPIINT); 938 } 939 940 static void mx1_trigger(struct spi_imx_data *spi_imx) 941 { 942 unsigned int reg; 943 944 reg = readl(spi_imx->base + MXC_CSPICTRL); 945 reg |= MX1_CSPICTRL_XCH; 946 writel(reg, spi_imx->base + MXC_CSPICTRL); 947 } 948 949 static int mx1_prepare_message(struct spi_imx_data *spi_imx, 950 struct spi_message *msg) 951 { 952 return 0; 953 } 954 955 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx, 956 struct spi_device *spi) 957 { 958 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_HOST; 959 unsigned int clk; 960 961 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) << 962 MX1_CSPICTRL_DR_SHIFT; 963 spi_imx->spi_bus_clk = clk; 964 965 reg |= spi_imx->bits_per_word - 1; 966 967 if (spi->mode & SPI_CPHA) 968 reg |= MX1_CSPICTRL_PHA; 969 if (spi->mode & SPI_CPOL) 970 reg |= MX1_CSPICTRL_POL; 971 972 writel(reg, spi_imx->base + MXC_CSPICTRL); 973 974 return 0; 975 } 976 977 static int mx1_rx_available(struct spi_imx_data *spi_imx) 978 { 979 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR; 980 } 981 982 static void mx1_reset(struct spi_imx_data *spi_imx) 983 { 984 writel(1, spi_imx->base + MXC_RESET); 985 } 986 987 static struct spi_imx_devtype_data imx1_cspi_devtype_data = { 988 .intctrl = mx1_intctrl, 989 .prepare_message = mx1_prepare_message, 990 .prepare_transfer = mx1_prepare_transfer, 991 .trigger = mx1_trigger, 992 .rx_available = mx1_rx_available, 993 .reset = mx1_reset, 994 .fifo_size = 8, 995 .has_dmamode = false, 996 .dynamic_burst = false, 997 .has_targetmode = false, 998 .devtype = IMX1_CSPI, 999 }; 1000 1001 static struct spi_imx_devtype_data imx21_cspi_devtype_data = { 1002 .intctrl = mx21_intctrl, 1003 .prepare_message = mx21_prepare_message, 1004 .prepare_transfer = mx21_prepare_transfer, 1005 .trigger = mx21_trigger, 1006 .rx_available = mx21_rx_available, 1007 .reset = mx21_reset, 1008 .fifo_size = 8, 1009 .has_dmamode = false, 1010 .dynamic_burst = false, 1011 .has_targetmode = false, 1012 .devtype = IMX21_CSPI, 1013 }; 1014 1015 static struct spi_imx_devtype_data imx27_cspi_devtype_data = { 1016 /* i.mx27 cspi shares the functions with i.mx21 one */ 1017 .intctrl = mx21_intctrl, 1018 .prepare_message = mx21_prepare_message, 1019 .prepare_transfer = mx21_prepare_transfer, 1020 .trigger = mx21_trigger, 1021 .rx_available = mx21_rx_available, 1022 .reset = mx21_reset, 1023 .fifo_size = 8, 1024 .has_dmamode = false, 1025 .dynamic_burst = false, 1026 .has_targetmode = false, 1027 .devtype = IMX27_CSPI, 1028 }; 1029 1030 static struct spi_imx_devtype_data imx31_cspi_devtype_data = { 1031 .intctrl = mx31_intctrl, 1032 .prepare_message = mx31_prepare_message, 1033 .prepare_transfer = mx31_prepare_transfer, 1034 .trigger = mx31_trigger, 1035 .rx_available = mx31_rx_available, 1036 .reset = mx31_reset, 1037 .fifo_size = 8, 1038 .has_dmamode = false, 1039 .dynamic_burst = false, 1040 .has_targetmode = false, 1041 .devtype = IMX31_CSPI, 1042 }; 1043 1044 static struct spi_imx_devtype_data imx35_cspi_devtype_data = { 1045 /* i.mx35 and later cspi shares the functions with i.mx31 one */ 1046 .intctrl = mx31_intctrl, 1047 .prepare_message = mx31_prepare_message, 1048 .prepare_transfer = mx31_prepare_transfer, 1049 .trigger = mx31_trigger, 1050 .rx_available = mx31_rx_available, 1051 .reset = mx31_reset, 1052 .fifo_size = 8, 1053 .has_dmamode = true, 1054 .dynamic_burst = false, 1055 .has_targetmode = false, 1056 .devtype = IMX35_CSPI, 1057 }; 1058 1059 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = { 1060 .intctrl = mx51_ecspi_intctrl, 1061 .prepare_message = mx51_ecspi_prepare_message, 1062 .prepare_transfer = mx51_ecspi_prepare_transfer, 1063 .trigger = mx51_ecspi_trigger, 1064 .rx_available = mx51_ecspi_rx_available, 1065 .reset = mx51_ecspi_reset, 1066 .setup_wml = mx51_setup_wml, 1067 .fifo_size = 64, 1068 .has_dmamode = true, 1069 .dynamic_burst = true, 1070 .has_targetmode = true, 1071 .disable = mx51_ecspi_disable, 1072 .devtype = IMX51_ECSPI, 1073 }; 1074 1075 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = { 1076 .intctrl = mx51_ecspi_intctrl, 1077 .prepare_message = mx51_ecspi_prepare_message, 1078 .prepare_transfer = mx51_ecspi_prepare_transfer, 1079 .trigger = mx51_ecspi_trigger, 1080 .rx_available = mx51_ecspi_rx_available, 1081 .reset = mx51_ecspi_reset, 1082 .fifo_size = 64, 1083 .has_dmamode = true, 1084 .has_targetmode = true, 1085 .disable = mx51_ecspi_disable, 1086 .devtype = IMX53_ECSPI, 1087 }; 1088 1089 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = { 1090 .intctrl = mx51_ecspi_intctrl, 1091 .prepare_message = mx51_ecspi_prepare_message, 1092 .prepare_transfer = mx51_ecspi_prepare_transfer, 1093 .trigger = mx51_ecspi_trigger, 1094 .rx_available = mx51_ecspi_rx_available, 1095 .reset = mx51_ecspi_reset, 1096 .setup_wml = mx51_setup_wml, 1097 .fifo_size = 64, 1098 .has_dmamode = true, 1099 .dynamic_burst = true, 1100 .has_targetmode = true, 1101 .tx_glitch_fixed = true, 1102 .disable = mx51_ecspi_disable, 1103 .devtype = IMX51_ECSPI, 1104 }; 1105 1106 static const struct of_device_id spi_imx_dt_ids[] = { 1107 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, }, 1108 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, }, 1109 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, }, 1110 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, }, 1111 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, }, 1112 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, }, 1113 { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, }, 1114 { .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, }, 1115 { /* sentinel */ } 1116 }; 1117 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids); 1118 1119 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits) 1120 { 1121 u32 ctrl; 1122 1123 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 1124 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 1125 ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET); 1126 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 1127 } 1128 1129 static void spi_imx_push(struct spi_imx_data *spi_imx) 1130 { 1131 unsigned int burst_len; 1132 1133 /* 1134 * Reload the FIFO when the remaining bytes to be transferred in the 1135 * current burst is 0. This only applies when bits_per_word is a 1136 * multiple of 8. 1137 */ 1138 if (!spi_imx->remainder) { 1139 if (spi_imx->dynamic_burst) { 1140 1141 /* We need to deal unaligned data first */ 1142 burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST; 1143 1144 if (!burst_len) 1145 burst_len = MX51_ECSPI_CTRL_MAX_BURST; 1146 1147 spi_imx_set_burst_len(spi_imx, burst_len * 8); 1148 1149 spi_imx->remainder = burst_len; 1150 } else { 1151 spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word); 1152 } 1153 } 1154 1155 while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) { 1156 if (!spi_imx->count) 1157 break; 1158 if (spi_imx->dynamic_burst && 1159 spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4)) 1160 break; 1161 spi_imx->tx(spi_imx); 1162 spi_imx->txfifo++; 1163 } 1164 1165 if (!spi_imx->target_mode) 1166 spi_imx->devtype_data->trigger(spi_imx); 1167 } 1168 1169 static irqreturn_t spi_imx_isr(int irq, void *dev_id) 1170 { 1171 struct spi_imx_data *spi_imx = dev_id; 1172 1173 while (spi_imx->txfifo && 1174 spi_imx->devtype_data->rx_available(spi_imx)) { 1175 spi_imx->rx(spi_imx); 1176 spi_imx->txfifo--; 1177 } 1178 1179 if (spi_imx->count) { 1180 spi_imx_push(spi_imx); 1181 return IRQ_HANDLED; 1182 } 1183 1184 if (spi_imx->txfifo) { 1185 /* No data left to push, but still waiting for rx data, 1186 * enable receive data available interrupt. 1187 */ 1188 spi_imx->devtype_data->intctrl( 1189 spi_imx, MXC_INT_RR); 1190 return IRQ_HANDLED; 1191 } 1192 1193 spi_imx->devtype_data->intctrl(spi_imx, 0); 1194 complete(&spi_imx->xfer_done); 1195 1196 return IRQ_HANDLED; 1197 } 1198 1199 static int spi_imx_dma_configure(struct spi_controller *controller) 1200 { 1201 int ret; 1202 enum dma_slave_buswidth buswidth; 1203 struct dma_slave_config rx = {}, tx = {}; 1204 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1205 1206 switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) { 1207 case 4: 1208 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1209 break; 1210 case 2: 1211 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1212 break; 1213 case 1: 1214 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1215 break; 1216 default: 1217 return -EINVAL; 1218 } 1219 1220 tx.direction = DMA_MEM_TO_DEV; 1221 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA; 1222 tx.dst_addr_width = buswidth; 1223 tx.dst_maxburst = spi_imx->wml; 1224 ret = dmaengine_slave_config(controller->dma_tx, &tx); 1225 if (ret) { 1226 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret); 1227 return ret; 1228 } 1229 1230 rx.direction = DMA_DEV_TO_MEM; 1231 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA; 1232 rx.src_addr_width = buswidth; 1233 rx.src_maxburst = spi_imx->wml; 1234 ret = dmaengine_slave_config(controller->dma_rx, &rx); 1235 if (ret) { 1236 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret); 1237 return ret; 1238 } 1239 1240 return 0; 1241 } 1242 1243 static int spi_imx_setupxfer(struct spi_device *spi, 1244 struct spi_transfer *t) 1245 { 1246 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1247 1248 if (!t) 1249 return 0; 1250 1251 if (!t->speed_hz) { 1252 if (!spi->max_speed_hz) { 1253 dev_err(&spi->dev, "no speed_hz provided!\n"); 1254 return -EINVAL; 1255 } 1256 dev_dbg(&spi->dev, "using spi->max_speed_hz!\n"); 1257 spi_imx->spi_bus_clk = spi->max_speed_hz; 1258 } else 1259 spi_imx->spi_bus_clk = t->speed_hz; 1260 1261 spi_imx->bits_per_word = t->bits_per_word; 1262 spi_imx->count = t->len; 1263 1264 /* 1265 * Initialize the functions for transfer. To transfer non byte-aligned 1266 * words, we have to use multiple word-size bursts, we can't use 1267 * dynamic_burst in that case. 1268 */ 1269 if (spi_imx->devtype_data->dynamic_burst && !spi_imx->target_mode && 1270 !(spi->mode & SPI_CS_WORD) && 1271 (spi_imx->bits_per_word == 8 || 1272 spi_imx->bits_per_word == 16 || 1273 spi_imx->bits_per_word == 32)) { 1274 1275 spi_imx->rx = spi_imx_buf_rx_swap; 1276 spi_imx->tx = spi_imx_buf_tx_swap; 1277 spi_imx->dynamic_burst = 1; 1278 1279 } else { 1280 if (spi_imx->bits_per_word <= 8) { 1281 spi_imx->rx = spi_imx_buf_rx_u8; 1282 spi_imx->tx = spi_imx_buf_tx_u8; 1283 } else if (spi_imx->bits_per_word <= 16) { 1284 spi_imx->rx = spi_imx_buf_rx_u16; 1285 spi_imx->tx = spi_imx_buf_tx_u16; 1286 } else { 1287 spi_imx->rx = spi_imx_buf_rx_u32; 1288 spi_imx->tx = spi_imx_buf_tx_u32; 1289 } 1290 spi_imx->dynamic_burst = 0; 1291 } 1292 1293 if (spi_imx_can_dma(spi_imx->controller, spi, t)) 1294 spi_imx->usedma = true; 1295 else 1296 spi_imx->usedma = false; 1297 1298 spi_imx->rx_only = ((t->tx_buf == NULL) 1299 || (t->tx_buf == spi->controller->dummy_tx)); 1300 1301 if (is_imx53_ecspi(spi_imx) && spi_imx->target_mode) { 1302 spi_imx->rx = mx53_ecspi_rx_target; 1303 spi_imx->tx = mx53_ecspi_tx_target; 1304 spi_imx->target_burst = t->len; 1305 } 1306 1307 spi_imx->devtype_data->prepare_transfer(spi_imx, spi); 1308 1309 return 0; 1310 } 1311 1312 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx) 1313 { 1314 struct spi_controller *controller = spi_imx->controller; 1315 1316 if (controller->dma_rx) { 1317 dma_release_channel(controller->dma_rx); 1318 controller->dma_rx = NULL; 1319 } 1320 1321 if (controller->dma_tx) { 1322 dma_release_channel(controller->dma_tx); 1323 controller->dma_tx = NULL; 1324 } 1325 } 1326 1327 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx, 1328 struct spi_controller *controller) 1329 { 1330 int ret; 1331 1332 spi_imx->wml = spi_imx->devtype_data->fifo_size / 2; 1333 1334 /* Prepare for TX DMA: */ 1335 controller->dma_tx = dma_request_chan(dev, "tx"); 1336 if (IS_ERR(controller->dma_tx)) { 1337 ret = PTR_ERR(controller->dma_tx); 1338 dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret); 1339 controller->dma_tx = NULL; 1340 goto err; 1341 } 1342 1343 /* Prepare for RX : */ 1344 controller->dma_rx = dma_request_chan(dev, "rx"); 1345 if (IS_ERR(controller->dma_rx)) { 1346 ret = PTR_ERR(controller->dma_rx); 1347 dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret); 1348 controller->dma_rx = NULL; 1349 goto err; 1350 } 1351 1352 init_completion(&spi_imx->dma_rx_completion); 1353 init_completion(&spi_imx->dma_tx_completion); 1354 controller->can_dma = spi_imx_can_dma; 1355 controller->max_dma_len = MAX_SDMA_BD_BYTES; 1356 spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX | 1357 SPI_CONTROLLER_MUST_TX; 1358 1359 return 0; 1360 err: 1361 spi_imx_sdma_exit(spi_imx); 1362 return ret; 1363 } 1364 1365 static void spi_imx_dma_rx_callback(void *cookie) 1366 { 1367 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1368 1369 complete(&spi_imx->dma_rx_completion); 1370 } 1371 1372 static void spi_imx_dma_tx_callback(void *cookie) 1373 { 1374 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1375 1376 complete(&spi_imx->dma_tx_completion); 1377 } 1378 1379 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size) 1380 { 1381 unsigned long timeout = 0; 1382 1383 /* Time with actual data transfer and CS change delay related to HW */ 1384 timeout = (8 + 4) * size / spi_imx->spi_bus_clk; 1385 1386 /* Add extra second for scheduler related activities */ 1387 timeout += 1; 1388 1389 /* Double calculated timeout */ 1390 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC); 1391 } 1392 1393 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx, 1394 struct spi_transfer *transfer) 1395 { 1396 struct dma_async_tx_descriptor *desc_tx, *desc_rx; 1397 unsigned long transfer_timeout; 1398 unsigned long timeout; 1399 struct spi_controller *controller = spi_imx->controller; 1400 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg; 1401 struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents); 1402 unsigned int bytes_per_word, i; 1403 int ret; 1404 1405 /* Get the right burst length from the last sg to ensure no tail data */ 1406 bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word); 1407 for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) { 1408 if (!(sg_dma_len(last_sg) % (i * bytes_per_word))) 1409 break; 1410 } 1411 /* Use 1 as wml in case no available burst length got */ 1412 if (i == 0) 1413 i = 1; 1414 1415 spi_imx->wml = i; 1416 1417 ret = spi_imx_dma_configure(controller); 1418 if (ret) 1419 goto dma_failure_no_start; 1420 1421 if (!spi_imx->devtype_data->setup_wml) { 1422 dev_err(spi_imx->dev, "No setup_wml()?\n"); 1423 ret = -EINVAL; 1424 goto dma_failure_no_start; 1425 } 1426 spi_imx->devtype_data->setup_wml(spi_imx); 1427 1428 /* 1429 * The TX DMA setup starts the transfer, so make sure RX is configured 1430 * before TX. 1431 */ 1432 desc_rx = dmaengine_prep_slave_sg(controller->dma_rx, 1433 rx->sgl, rx->nents, DMA_DEV_TO_MEM, 1434 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1435 if (!desc_rx) { 1436 ret = -EINVAL; 1437 goto dma_failure_no_start; 1438 } 1439 1440 desc_rx->callback = spi_imx_dma_rx_callback; 1441 desc_rx->callback_param = (void *)spi_imx; 1442 dmaengine_submit(desc_rx); 1443 reinit_completion(&spi_imx->dma_rx_completion); 1444 dma_async_issue_pending(controller->dma_rx); 1445 1446 desc_tx = dmaengine_prep_slave_sg(controller->dma_tx, 1447 tx->sgl, tx->nents, DMA_MEM_TO_DEV, 1448 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1449 if (!desc_tx) { 1450 dmaengine_terminate_all(controller->dma_tx); 1451 dmaengine_terminate_all(controller->dma_rx); 1452 return -EINVAL; 1453 } 1454 1455 desc_tx->callback = spi_imx_dma_tx_callback; 1456 desc_tx->callback_param = (void *)spi_imx; 1457 dmaengine_submit(desc_tx); 1458 reinit_completion(&spi_imx->dma_tx_completion); 1459 dma_async_issue_pending(controller->dma_tx); 1460 1461 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1462 1463 /* Wait SDMA to finish the data transfer.*/ 1464 timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion, 1465 transfer_timeout); 1466 if (!timeout) { 1467 dev_err(spi_imx->dev, "I/O Error in DMA TX\n"); 1468 dmaengine_terminate_all(controller->dma_tx); 1469 dmaengine_terminate_all(controller->dma_rx); 1470 return -ETIMEDOUT; 1471 } 1472 1473 timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion, 1474 transfer_timeout); 1475 if (!timeout) { 1476 dev_err(&controller->dev, "I/O Error in DMA RX\n"); 1477 spi_imx->devtype_data->reset(spi_imx); 1478 dmaengine_terminate_all(controller->dma_rx); 1479 return -ETIMEDOUT; 1480 } 1481 1482 return 0; 1483 /* fallback to pio */ 1484 dma_failure_no_start: 1485 transfer->error |= SPI_TRANS_FAIL_NO_START; 1486 return ret; 1487 } 1488 1489 static int spi_imx_pio_transfer(struct spi_device *spi, 1490 struct spi_transfer *transfer) 1491 { 1492 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1493 unsigned long transfer_timeout; 1494 unsigned long timeout; 1495 1496 spi_imx->tx_buf = transfer->tx_buf; 1497 spi_imx->rx_buf = transfer->rx_buf; 1498 spi_imx->count = transfer->len; 1499 spi_imx->txfifo = 0; 1500 spi_imx->remainder = 0; 1501 1502 reinit_completion(&spi_imx->xfer_done); 1503 1504 spi_imx_push(spi_imx); 1505 1506 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE); 1507 1508 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1509 1510 timeout = wait_for_completion_timeout(&spi_imx->xfer_done, 1511 transfer_timeout); 1512 if (!timeout) { 1513 dev_err(&spi->dev, "I/O Error in PIO\n"); 1514 spi_imx->devtype_data->reset(spi_imx); 1515 return -ETIMEDOUT; 1516 } 1517 1518 return 0; 1519 } 1520 1521 static int spi_imx_poll_transfer(struct spi_device *spi, 1522 struct spi_transfer *transfer) 1523 { 1524 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1525 unsigned long timeout; 1526 1527 spi_imx->tx_buf = transfer->tx_buf; 1528 spi_imx->rx_buf = transfer->rx_buf; 1529 spi_imx->count = transfer->len; 1530 spi_imx->txfifo = 0; 1531 spi_imx->remainder = 0; 1532 1533 /* fill in the fifo before timeout calculations if we are 1534 * interrupted here, then the data is getting transferred by 1535 * the HW while we are interrupted 1536 */ 1537 spi_imx_push(spi_imx); 1538 1539 timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies; 1540 while (spi_imx->txfifo) { 1541 /* RX */ 1542 while (spi_imx->txfifo && 1543 spi_imx->devtype_data->rx_available(spi_imx)) { 1544 spi_imx->rx(spi_imx); 1545 spi_imx->txfifo--; 1546 } 1547 1548 /* TX */ 1549 if (spi_imx->count) { 1550 spi_imx_push(spi_imx); 1551 continue; 1552 } 1553 1554 if (spi_imx->txfifo && 1555 time_after(jiffies, timeout)) { 1556 1557 dev_err_ratelimited(&spi->dev, 1558 "timeout period reached: jiffies: %lu- falling back to interrupt mode\n", 1559 jiffies - timeout); 1560 1561 /* fall back to interrupt mode */ 1562 return spi_imx_pio_transfer(spi, transfer); 1563 } 1564 } 1565 1566 return 0; 1567 } 1568 1569 static int spi_imx_pio_transfer_target(struct spi_device *spi, 1570 struct spi_transfer *transfer) 1571 { 1572 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1573 int ret = 0; 1574 1575 if (is_imx53_ecspi(spi_imx) && 1576 transfer->len > MX53_MAX_TRANSFER_BYTES) { 1577 dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n", 1578 MX53_MAX_TRANSFER_BYTES); 1579 return -EMSGSIZE; 1580 } 1581 1582 spi_imx->tx_buf = transfer->tx_buf; 1583 spi_imx->rx_buf = transfer->rx_buf; 1584 spi_imx->count = transfer->len; 1585 spi_imx->txfifo = 0; 1586 spi_imx->remainder = 0; 1587 1588 reinit_completion(&spi_imx->xfer_done); 1589 spi_imx->target_aborted = false; 1590 1591 spi_imx_push(spi_imx); 1592 1593 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR); 1594 1595 if (wait_for_completion_interruptible(&spi_imx->xfer_done) || 1596 spi_imx->target_aborted) { 1597 dev_dbg(&spi->dev, "interrupted\n"); 1598 ret = -EINTR; 1599 } 1600 1601 /* ecspi has a HW issue when works in Target mode, 1602 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty, 1603 * ECSPI_TXDATA keeps shift out the last word data, 1604 * so we have to disable ECSPI when in target mode after the 1605 * transfer completes 1606 */ 1607 if (spi_imx->devtype_data->disable) 1608 spi_imx->devtype_data->disable(spi_imx); 1609 1610 return ret; 1611 } 1612 1613 static int spi_imx_transfer_one(struct spi_controller *controller, 1614 struct spi_device *spi, 1615 struct spi_transfer *transfer) 1616 { 1617 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1618 unsigned long hz_per_byte, byte_limit; 1619 1620 spi_imx_setupxfer(spi, transfer); 1621 transfer->effective_speed_hz = spi_imx->spi_bus_clk; 1622 1623 /* flush rxfifo before transfer */ 1624 while (spi_imx->devtype_data->rx_available(spi_imx)) 1625 readl(spi_imx->base + MXC_CSPIRXDATA); 1626 1627 if (spi_imx->target_mode) 1628 return spi_imx_pio_transfer_target(spi, transfer); 1629 1630 /* 1631 * If we decided in spi_imx_can_dma() that we want to do a DMA 1632 * transfer, the SPI transfer has already been mapped, so we 1633 * have to do the DMA transfer here. 1634 */ 1635 if (spi_imx->usedma) 1636 return spi_imx_dma_transfer(spi_imx, transfer); 1637 /* 1638 * Calculate the estimated time in us the transfer runs. Find 1639 * the number of Hz per byte per polling limit. 1640 */ 1641 hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0; 1642 byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1; 1643 1644 /* run in polling mode for short transfers */ 1645 if (transfer->len < byte_limit) 1646 return spi_imx_poll_transfer(spi, transfer); 1647 1648 return spi_imx_pio_transfer(spi, transfer); 1649 } 1650 1651 static int spi_imx_setup(struct spi_device *spi) 1652 { 1653 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__, 1654 spi->mode, spi->bits_per_word, spi->max_speed_hz); 1655 1656 return 0; 1657 } 1658 1659 static void spi_imx_cleanup(struct spi_device *spi) 1660 { 1661 } 1662 1663 static int 1664 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg) 1665 { 1666 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1667 int ret; 1668 1669 ret = pm_runtime_resume_and_get(spi_imx->dev); 1670 if (ret < 0) { 1671 dev_err(spi_imx->dev, "failed to enable clock\n"); 1672 return ret; 1673 } 1674 1675 ret = spi_imx->devtype_data->prepare_message(spi_imx, msg); 1676 if (ret) { 1677 pm_runtime_mark_last_busy(spi_imx->dev); 1678 pm_runtime_put_autosuspend(spi_imx->dev); 1679 } 1680 1681 return ret; 1682 } 1683 1684 static int 1685 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg) 1686 { 1687 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1688 1689 pm_runtime_mark_last_busy(spi_imx->dev); 1690 pm_runtime_put_autosuspend(spi_imx->dev); 1691 return 0; 1692 } 1693 1694 static int spi_imx_target_abort(struct spi_controller *controller) 1695 { 1696 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1697 1698 spi_imx->target_aborted = true; 1699 complete(&spi_imx->xfer_done); 1700 1701 return 0; 1702 } 1703 1704 static int spi_imx_probe(struct platform_device *pdev) 1705 { 1706 struct device_node *np = pdev->dev.of_node; 1707 struct spi_controller *controller; 1708 struct spi_imx_data *spi_imx; 1709 struct resource *res; 1710 int ret, irq, spi_drctl; 1711 const struct spi_imx_devtype_data *devtype_data = 1712 of_device_get_match_data(&pdev->dev); 1713 bool target_mode; 1714 u32 val; 1715 1716 target_mode = devtype_data->has_targetmode && 1717 of_property_read_bool(np, "spi-slave"); 1718 if (target_mode) 1719 controller = spi_alloc_target(&pdev->dev, 1720 sizeof(struct spi_imx_data)); 1721 else 1722 controller = spi_alloc_host(&pdev->dev, 1723 sizeof(struct spi_imx_data)); 1724 if (!controller) 1725 return -ENOMEM; 1726 1727 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl); 1728 if ((ret < 0) || (spi_drctl >= 0x3)) { 1729 /* '11' is reserved */ 1730 spi_drctl = 0; 1731 } 1732 1733 platform_set_drvdata(pdev, controller); 1734 1735 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32); 1736 controller->bus_num = np ? -1 : pdev->id; 1737 controller->use_gpio_descriptors = true; 1738 1739 spi_imx = spi_controller_get_devdata(controller); 1740 spi_imx->controller = controller; 1741 spi_imx->dev = &pdev->dev; 1742 spi_imx->target_mode = target_mode; 1743 1744 spi_imx->devtype_data = devtype_data; 1745 1746 /* 1747 * Get number of chip selects from device properties. This can be 1748 * coming from device tree or boardfiles, if it is not defined, 1749 * a default value of 3 chip selects will be used, as all the legacy 1750 * board files have <= 3 chip selects. 1751 */ 1752 if (!device_property_read_u32(&pdev->dev, "num-cs", &val)) 1753 controller->num_chipselect = val; 1754 else 1755 controller->num_chipselect = 3; 1756 1757 controller->transfer_one = spi_imx_transfer_one; 1758 controller->setup = spi_imx_setup; 1759 controller->cleanup = spi_imx_cleanup; 1760 controller->prepare_message = spi_imx_prepare_message; 1761 controller->unprepare_message = spi_imx_unprepare_message; 1762 controller->target_abort = spi_imx_target_abort; 1763 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS | 1764 SPI_MOSI_IDLE_LOW; 1765 1766 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) || 1767 is_imx53_ecspi(spi_imx)) 1768 controller->mode_bits |= SPI_LOOP | SPI_READY; 1769 1770 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) 1771 controller->mode_bits |= SPI_RX_CPHA_FLIP; 1772 1773 if (is_imx51_ecspi(spi_imx) && 1774 device_property_read_u32(&pdev->dev, "cs-gpios", NULL)) 1775 /* 1776 * When using HW-CS implementing SPI_CS_WORD can be done by just 1777 * setting the burst length to the word size. This is 1778 * considerably faster than manually controlling the CS. 1779 */ 1780 controller->mode_bits |= SPI_CS_WORD; 1781 1782 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) { 1783 controller->max_native_cs = 4; 1784 controller->flags |= SPI_CONTROLLER_GPIO_SS; 1785 } 1786 1787 spi_imx->spi_drctl = spi_drctl; 1788 1789 init_completion(&spi_imx->xfer_done); 1790 1791 spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1792 if (IS_ERR(spi_imx->base)) { 1793 ret = PTR_ERR(spi_imx->base); 1794 goto out_controller_put; 1795 } 1796 spi_imx->base_phys = res->start; 1797 1798 irq = platform_get_irq(pdev, 0); 1799 if (irq < 0) { 1800 ret = irq; 1801 goto out_controller_put; 1802 } 1803 1804 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0, 1805 dev_name(&pdev->dev), spi_imx); 1806 if (ret) { 1807 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret); 1808 goto out_controller_put; 1809 } 1810 1811 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 1812 if (IS_ERR(spi_imx->clk_ipg)) { 1813 ret = PTR_ERR(spi_imx->clk_ipg); 1814 goto out_controller_put; 1815 } 1816 1817 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per"); 1818 if (IS_ERR(spi_imx->clk_per)) { 1819 ret = PTR_ERR(spi_imx->clk_per); 1820 goto out_controller_put; 1821 } 1822 1823 ret = clk_prepare_enable(spi_imx->clk_per); 1824 if (ret) 1825 goto out_controller_put; 1826 1827 ret = clk_prepare_enable(spi_imx->clk_ipg); 1828 if (ret) 1829 goto out_put_per; 1830 1831 pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT); 1832 pm_runtime_use_autosuspend(spi_imx->dev); 1833 pm_runtime_get_noresume(spi_imx->dev); 1834 pm_runtime_set_active(spi_imx->dev); 1835 pm_runtime_enable(spi_imx->dev); 1836 1837 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per); 1838 /* 1839 * Only validated on i.mx35 and i.mx6 now, can remove the constraint 1840 * if validated on other chips. 1841 */ 1842 if (spi_imx->devtype_data->has_dmamode) { 1843 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller); 1844 if (ret == -EPROBE_DEFER) 1845 goto out_runtime_pm_put; 1846 1847 if (ret < 0) 1848 dev_dbg(&pdev->dev, "dma setup error %d, use pio\n", 1849 ret); 1850 } 1851 1852 spi_imx->devtype_data->reset(spi_imx); 1853 1854 spi_imx->devtype_data->intctrl(spi_imx, 0); 1855 1856 controller->dev.of_node = pdev->dev.of_node; 1857 ret = spi_register_controller(controller); 1858 if (ret) { 1859 dev_err_probe(&pdev->dev, ret, "register controller failed\n"); 1860 goto out_register_controller; 1861 } 1862 1863 pm_runtime_mark_last_busy(spi_imx->dev); 1864 pm_runtime_put_autosuspend(spi_imx->dev); 1865 1866 return ret; 1867 1868 out_register_controller: 1869 if (spi_imx->devtype_data->has_dmamode) 1870 spi_imx_sdma_exit(spi_imx); 1871 out_runtime_pm_put: 1872 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1873 pm_runtime_set_suspended(&pdev->dev); 1874 pm_runtime_disable(spi_imx->dev); 1875 1876 clk_disable_unprepare(spi_imx->clk_ipg); 1877 out_put_per: 1878 clk_disable_unprepare(spi_imx->clk_per); 1879 out_controller_put: 1880 spi_controller_put(controller); 1881 1882 return ret; 1883 } 1884 1885 static void spi_imx_remove(struct platform_device *pdev) 1886 { 1887 struct spi_controller *controller = platform_get_drvdata(pdev); 1888 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1889 int ret; 1890 1891 spi_unregister_controller(controller); 1892 1893 ret = pm_runtime_get_sync(spi_imx->dev); 1894 if (ret >= 0) 1895 writel(0, spi_imx->base + MXC_CSPICTRL); 1896 else 1897 dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n"); 1898 1899 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1900 pm_runtime_put_sync(spi_imx->dev); 1901 pm_runtime_disable(spi_imx->dev); 1902 1903 spi_imx_sdma_exit(spi_imx); 1904 } 1905 1906 static int __maybe_unused spi_imx_runtime_resume(struct device *dev) 1907 { 1908 struct spi_controller *controller = dev_get_drvdata(dev); 1909 struct spi_imx_data *spi_imx; 1910 int ret; 1911 1912 spi_imx = spi_controller_get_devdata(controller); 1913 1914 ret = clk_prepare_enable(spi_imx->clk_per); 1915 if (ret) 1916 return ret; 1917 1918 ret = clk_prepare_enable(spi_imx->clk_ipg); 1919 if (ret) { 1920 clk_disable_unprepare(spi_imx->clk_per); 1921 return ret; 1922 } 1923 1924 return 0; 1925 } 1926 1927 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev) 1928 { 1929 struct spi_controller *controller = dev_get_drvdata(dev); 1930 struct spi_imx_data *spi_imx; 1931 1932 spi_imx = spi_controller_get_devdata(controller); 1933 1934 clk_disable_unprepare(spi_imx->clk_per); 1935 clk_disable_unprepare(spi_imx->clk_ipg); 1936 1937 return 0; 1938 } 1939 1940 static int __maybe_unused spi_imx_suspend(struct device *dev) 1941 { 1942 pinctrl_pm_select_sleep_state(dev); 1943 return 0; 1944 } 1945 1946 static int __maybe_unused spi_imx_resume(struct device *dev) 1947 { 1948 pinctrl_pm_select_default_state(dev); 1949 return 0; 1950 } 1951 1952 static const struct dev_pm_ops imx_spi_pm = { 1953 SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend, 1954 spi_imx_runtime_resume, NULL) 1955 SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume) 1956 }; 1957 1958 static struct platform_driver spi_imx_driver = { 1959 .driver = { 1960 .name = DRIVER_NAME, 1961 .of_match_table = spi_imx_dt_ids, 1962 .pm = &imx_spi_pm, 1963 }, 1964 .probe = spi_imx_probe, 1965 .remove_new = spi_imx_remove, 1966 }; 1967 module_platform_driver(spi_imx_driver); 1968 1969 MODULE_DESCRIPTION("i.MX SPI Controller driver"); 1970 MODULE_AUTHOR("Sascha Hauer, Pengutronix"); 1971 MODULE_LICENSE("GPL"); 1972 MODULE_ALIAS("platform:" DRIVER_NAME); 1973