xref: /openbmc/linux/drivers/spi/spi-geni-qcom.c (revision baeb8628)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
3 
4 #include <linux/clk.h>
5 #include <linux/dmaengine.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/dma/qcom-gpi-dma.h>
8 #include <linux/interrupt.h>
9 #include <linux/io.h>
10 #include <linux/log2.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/pm_opp.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/property.h>
16 #include <linux/soc/qcom/geni-se.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spinlock.h>
19 
20 /* SPI SE specific registers and respective register fields */
21 #define SE_SPI_CPHA		0x224
22 #define CPHA			BIT(0)
23 
24 #define SE_SPI_LOOPBACK		0x22c
25 #define LOOPBACK_ENABLE		0x1
26 #define NORMAL_MODE		0x0
27 #define LOOPBACK_MSK		GENMASK(1, 0)
28 
29 #define SE_SPI_CPOL		0x230
30 #define CPOL			BIT(2)
31 
32 #define SE_SPI_DEMUX_OUTPUT_INV	0x24c
33 #define CS_DEMUX_OUTPUT_INV_MSK	GENMASK(3, 0)
34 
35 #define SE_SPI_DEMUX_SEL	0x250
36 #define CS_DEMUX_OUTPUT_SEL	GENMASK(3, 0)
37 
38 #define SE_SPI_TRANS_CFG	0x25c
39 #define CS_TOGGLE		BIT(1)
40 
41 #define SE_SPI_WORD_LEN		0x268
42 #define WORD_LEN_MSK		GENMASK(9, 0)
43 #define MIN_WORD_LEN		4
44 
45 #define SE_SPI_TX_TRANS_LEN	0x26c
46 #define SE_SPI_RX_TRANS_LEN	0x270
47 #define TRANS_LEN_MSK		GENMASK(23, 0)
48 
49 #define SE_SPI_PRE_POST_CMD_DLY	0x274
50 
51 #define SE_SPI_DELAY_COUNTERS	0x278
52 #define SPI_INTER_WORDS_DELAY_MSK	GENMASK(9, 0)
53 #define SPI_CS_CLK_DELAY_MSK		GENMASK(19, 10)
54 #define SPI_CS_CLK_DELAY_SHFT		10
55 
56 #define SE_SPI_SLAVE_EN				(0x2BC)
57 #define SPI_SLAVE_EN				BIT(0)
58 
59 /* M_CMD OP codes for SPI */
60 #define SPI_TX_ONLY		1
61 #define SPI_RX_ONLY		2
62 #define SPI_TX_RX		7
63 #define SPI_CS_ASSERT		8
64 #define SPI_CS_DEASSERT		9
65 #define SPI_SCK_ONLY		10
66 /* M_CMD params for SPI */
67 #define SPI_PRE_CMD_DELAY	BIT(0)
68 #define TIMESTAMP_BEFORE	BIT(1)
69 #define FRAGMENTATION		BIT(2)
70 #define TIMESTAMP_AFTER		BIT(3)
71 #define POST_CMD_DELAY		BIT(4)
72 
73 #define GSI_LOOPBACK_EN		BIT(0)
74 #define GSI_CS_TOGGLE		BIT(3)
75 #define GSI_CPHA		BIT(4)
76 #define GSI_CPOL		BIT(5)
77 
78 struct spi_geni_master {
79 	struct geni_se se;
80 	struct device *dev;
81 	u32 tx_fifo_depth;
82 	u32 fifo_width_bits;
83 	u32 tx_wm;
84 	u32 last_mode;
85 	unsigned long cur_speed_hz;
86 	unsigned long cur_sclk_hz;
87 	unsigned int cur_bits_per_word;
88 	unsigned int tx_rem_bytes;
89 	unsigned int rx_rem_bytes;
90 	const struct spi_transfer *cur_xfer;
91 	struct completion cs_done;
92 	struct completion cancel_done;
93 	struct completion abort_done;
94 	struct completion tx_reset_done;
95 	struct completion rx_reset_done;
96 	unsigned int oversampling;
97 	spinlock_t lock;
98 	int irq;
99 	bool cs_flag;
100 	bool abort_failed;
101 	struct dma_chan *tx;
102 	struct dma_chan *rx;
103 	int cur_xfer_mode;
104 };
105 
106 static void spi_slv_setup(struct spi_geni_master *mas)
107 {
108 	struct geni_se *se = &mas->se;
109 
110 	writel(SPI_SLAVE_EN, se->base + SE_SPI_SLAVE_EN);
111 	writel(GENI_IO_MUX_0_EN, se->base + GENI_OUTPUT_CTRL);
112 	writel(START_TRIGGER, se->base + SE_GENI_CFG_SEQ_START);
113 	dev_dbg(mas->dev, "spi slave setup done\n");
114 }
115 
116 static int get_spi_clk_cfg(unsigned int speed_hz,
117 			struct spi_geni_master *mas,
118 			unsigned int *clk_idx,
119 			unsigned int *clk_div)
120 {
121 	unsigned long sclk_freq;
122 	unsigned int actual_hz;
123 	int ret;
124 
125 	ret = geni_se_clk_freq_match(&mas->se,
126 				speed_hz * mas->oversampling,
127 				clk_idx, &sclk_freq, false);
128 	if (ret) {
129 		dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
130 							ret, speed_hz);
131 		return ret;
132 	}
133 
134 	*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
135 	actual_hz = sclk_freq / (mas->oversampling * *clk_div);
136 
137 	dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
138 				actual_hz, sclk_freq, *clk_idx, *clk_div);
139 	ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
140 	if (ret)
141 		dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
142 	else
143 		mas->cur_sclk_hz = sclk_freq;
144 
145 	return ret;
146 }
147 
148 static void handle_se_timeout(struct spi_master *spi,
149 				struct spi_message *msg)
150 {
151 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
152 	unsigned long time_left;
153 	struct geni_se *se = &mas->se;
154 	const struct spi_transfer *xfer;
155 
156 	spin_lock_irq(&mas->lock);
157 	if (mas->cur_xfer_mode == GENI_SE_FIFO)
158 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
159 
160 	xfer = mas->cur_xfer;
161 	mas->cur_xfer = NULL;
162 
163 	if (spi->slave) {
164 		/*
165 		 * skip CMD Cancel sequnece since spi slave
166 		 * doesn`t support CMD Cancel sequnece
167 		 */
168 		spin_unlock_irq(&mas->lock);
169 		goto unmap_if_dma;
170 	}
171 
172 	reinit_completion(&mas->cancel_done);
173 	geni_se_cancel_m_cmd(se);
174 	spin_unlock_irq(&mas->lock);
175 
176 	time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
177 	if (time_left)
178 		goto unmap_if_dma;
179 
180 	spin_lock_irq(&mas->lock);
181 	reinit_completion(&mas->abort_done);
182 	geni_se_abort_m_cmd(se);
183 	spin_unlock_irq(&mas->lock);
184 
185 	time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
186 	if (!time_left) {
187 		dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
188 
189 		/*
190 		 * No need for a lock since SPI core has a lock and we never
191 		 * access this from an interrupt.
192 		 */
193 		mas->abort_failed = true;
194 	}
195 
196 unmap_if_dma:
197 	if (mas->cur_xfer_mode == GENI_SE_DMA) {
198 		if (xfer) {
199 			if (xfer->tx_buf) {
200 				spin_lock_irq(&mas->lock);
201 				reinit_completion(&mas->tx_reset_done);
202 				writel(1, se->base + SE_DMA_TX_FSM_RST);
203 				spin_unlock_irq(&mas->lock);
204 				time_left = wait_for_completion_timeout(&mas->tx_reset_done, HZ);
205 				if (!time_left)
206 					dev_err(mas->dev, "DMA TX RESET failed\n");
207 			}
208 			if (xfer->rx_buf) {
209 				spin_lock_irq(&mas->lock);
210 				reinit_completion(&mas->rx_reset_done);
211 				writel(1, se->base + SE_DMA_RX_FSM_RST);
212 				spin_unlock_irq(&mas->lock);
213 				time_left = wait_for_completion_timeout(&mas->rx_reset_done, HZ);
214 				if (!time_left)
215 					dev_err(mas->dev, "DMA RX RESET failed\n");
216 			}
217 		} else {
218 			/*
219 			 * This can happen if a timeout happened and we had to wait
220 			 * for lock in this function because isr was holding the lock
221 			 * and handling transfer completion at that time.
222 			 */
223 			dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n");
224 		}
225 	}
226 }
227 
228 static void handle_gpi_timeout(struct spi_master *spi, struct spi_message *msg)
229 {
230 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
231 
232 	dmaengine_terminate_sync(mas->tx);
233 	dmaengine_terminate_sync(mas->rx);
234 }
235 
236 static void spi_geni_handle_err(struct spi_master *spi, struct spi_message *msg)
237 {
238 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
239 
240 	switch (mas->cur_xfer_mode) {
241 	case GENI_SE_FIFO:
242 	case GENI_SE_DMA:
243 		handle_se_timeout(spi, msg);
244 		break;
245 	case GENI_GPI_DMA:
246 		handle_gpi_timeout(spi, msg);
247 		break;
248 	default:
249 		dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode);
250 	}
251 }
252 
253 static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
254 {
255 	struct geni_se *se = &mas->se;
256 	u32 m_irq, m_irq_en;
257 
258 	if (!mas->abort_failed)
259 		return false;
260 
261 	/*
262 	 * The only known case where a transfer times out and then a cancel
263 	 * times out then an abort times out is if something is blocking our
264 	 * interrupt handler from running.  Avoid starting any new transfers
265 	 * until that sorts itself out.
266 	 */
267 	spin_lock_irq(&mas->lock);
268 	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
269 	m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
270 	spin_unlock_irq(&mas->lock);
271 
272 	if (m_irq & m_irq_en) {
273 		dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
274 			m_irq & m_irq_en);
275 		return true;
276 	}
277 
278 	/*
279 	 * If we're here the problem resolved itself so no need to check more
280 	 * on future transfers.
281 	 */
282 	mas->abort_failed = false;
283 
284 	return false;
285 }
286 
287 static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
288 {
289 	struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
290 	struct spi_master *spi = dev_get_drvdata(mas->dev);
291 	struct geni_se *se = &mas->se;
292 	unsigned long time_left;
293 
294 	if (!(slv->mode & SPI_CS_HIGH))
295 		set_flag = !set_flag;
296 
297 	if (set_flag == mas->cs_flag)
298 		return;
299 
300 	pm_runtime_get_sync(mas->dev);
301 
302 	if (spi_geni_is_abort_still_pending(mas)) {
303 		dev_err(mas->dev, "Can't set chip select\n");
304 		goto exit;
305 	}
306 
307 	spin_lock_irq(&mas->lock);
308 	if (mas->cur_xfer) {
309 		dev_err(mas->dev, "Can't set CS when prev xfer running\n");
310 		spin_unlock_irq(&mas->lock);
311 		goto exit;
312 	}
313 
314 	mas->cs_flag = set_flag;
315 	/* set xfer_mode to FIFO to complete cs_done in isr */
316 	mas->cur_xfer_mode = GENI_SE_FIFO;
317 	geni_se_select_mode(se, mas->cur_xfer_mode);
318 
319 	reinit_completion(&mas->cs_done);
320 	if (set_flag)
321 		geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
322 	else
323 		geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
324 	spin_unlock_irq(&mas->lock);
325 
326 	time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
327 	if (!time_left) {
328 		dev_warn(mas->dev, "Timeout setting chip select\n");
329 		handle_se_timeout(spi, NULL);
330 	}
331 
332 exit:
333 	pm_runtime_put(mas->dev);
334 }
335 
336 static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
337 					unsigned int bits_per_word)
338 {
339 	unsigned int pack_words;
340 	bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
341 	struct geni_se *se = &mas->se;
342 	u32 word_len;
343 
344 	/*
345 	 * If bits_per_word isn't a byte aligned value, set the packing to be
346 	 * 1 SPI word per FIFO word.
347 	 */
348 	if (!(mas->fifo_width_bits % bits_per_word))
349 		pack_words = mas->fifo_width_bits / bits_per_word;
350 	else
351 		pack_words = 1;
352 	geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
353 								true, true);
354 	word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
355 	writel(word_len, se->base + SE_SPI_WORD_LEN);
356 }
357 
358 static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
359 					unsigned long clk_hz)
360 {
361 	u32 clk_sel, m_clk_cfg, idx, div;
362 	struct geni_se *se = &mas->se;
363 	int ret;
364 
365 	if (clk_hz == mas->cur_speed_hz)
366 		return 0;
367 
368 	ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
369 	if (ret) {
370 		dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
371 		return ret;
372 	}
373 
374 	/*
375 	 * SPI core clock gets configured with the requested frequency
376 	 * or the frequency closer to the requested frequency.
377 	 * For that reason requested frequency is stored in the
378 	 * cur_speed_hz and referred in the consecutive transfer instead
379 	 * of calling clk_get_rate() API.
380 	 */
381 	mas->cur_speed_hz = clk_hz;
382 
383 	clk_sel = idx & CLK_SEL_MSK;
384 	m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
385 	writel(clk_sel, se->base + SE_GENI_CLK_SEL);
386 	writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
387 
388 	/* Set BW quota for CPU as driver supports FIFO mode only. */
389 	se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
390 	ret = geni_icc_set_bw(se);
391 	if (ret)
392 		return ret;
393 
394 	return 0;
395 }
396 
397 static int setup_fifo_params(struct spi_device *spi_slv,
398 					struct spi_master *spi)
399 {
400 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
401 	struct geni_se *se = &mas->se;
402 	u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
403 	u32 demux_sel;
404 
405 	if (mas->last_mode != spi_slv->mode) {
406 		if (spi_slv->mode & SPI_LOOP)
407 			loopback_cfg = LOOPBACK_ENABLE;
408 
409 		if (spi_slv->mode & SPI_CPOL)
410 			cpol = CPOL;
411 
412 		if (spi_slv->mode & SPI_CPHA)
413 			cpha = CPHA;
414 
415 		if (spi_slv->mode & SPI_CS_HIGH)
416 			demux_output_inv = BIT(spi_get_chipselect(spi_slv, 0));
417 
418 		demux_sel = spi_get_chipselect(spi_slv, 0);
419 		mas->cur_bits_per_word = spi_slv->bits_per_word;
420 
421 		spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
422 		writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
423 		writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
424 		writel(cpha, se->base + SE_SPI_CPHA);
425 		writel(cpol, se->base + SE_SPI_CPOL);
426 		writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
427 
428 		mas->last_mode = spi_slv->mode;
429 	}
430 
431 	return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
432 }
433 
434 static void
435 spi_gsi_callback_result(void *cb, const struct dmaengine_result *result)
436 {
437 	struct spi_master *spi = cb;
438 
439 	spi->cur_msg->status = -EIO;
440 	if (result->result != DMA_TRANS_NOERROR) {
441 		dev_err(&spi->dev, "DMA txn failed: %d\n", result->result);
442 		spi_finalize_current_transfer(spi);
443 		return;
444 	}
445 
446 	if (!result->residue) {
447 		spi->cur_msg->status = 0;
448 		dev_dbg(&spi->dev, "DMA txn completed\n");
449 	} else {
450 		dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue);
451 	}
452 
453 	spi_finalize_current_transfer(spi);
454 }
455 
456 static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas,
457 			  struct spi_device *spi_slv, struct spi_master *spi)
458 {
459 	unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
460 	struct dma_slave_config config = {};
461 	struct gpi_spi_config peripheral = {};
462 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
463 	int ret;
464 
465 	config.peripheral_config = &peripheral;
466 	config.peripheral_size = sizeof(peripheral);
467 	peripheral.set_config = true;
468 
469 	if (xfer->bits_per_word != mas->cur_bits_per_word ||
470 	    xfer->speed_hz != mas->cur_speed_hz) {
471 		mas->cur_bits_per_word = xfer->bits_per_word;
472 		mas->cur_speed_hz = xfer->speed_hz;
473 	}
474 
475 	if (xfer->tx_buf && xfer->rx_buf) {
476 		peripheral.cmd = SPI_DUPLEX;
477 	} else if (xfer->tx_buf) {
478 		peripheral.cmd = SPI_TX;
479 		peripheral.rx_len = 0;
480 	} else if (xfer->rx_buf) {
481 		peripheral.cmd = SPI_RX;
482 		if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) {
483 			peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word);
484 		} else {
485 			int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1;
486 
487 			peripheral.rx_len = (xfer->len / bytes_per_word);
488 		}
489 	}
490 
491 	peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP);
492 	peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL);
493 	peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA);
494 	peripheral.cs = spi_get_chipselect(spi_slv, 0);
495 	peripheral.pack_en = true;
496 	peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN;
497 
498 	ret = get_spi_clk_cfg(mas->cur_speed_hz, mas,
499 			      &peripheral.clk_src, &peripheral.clk_div);
500 	if (ret) {
501 		dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret);
502 		return ret;
503 	}
504 
505 	if (!xfer->cs_change) {
506 		if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers))
507 			peripheral.fragmentation = FRAGMENTATION;
508 	}
509 
510 	if (peripheral.cmd & SPI_RX) {
511 		dmaengine_slave_config(mas->rx, &config);
512 		rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents,
513 						  DMA_DEV_TO_MEM, flags);
514 		if (!rx_desc) {
515 			dev_err(mas->dev, "Err setting up rx desc\n");
516 			return -EIO;
517 		}
518 	}
519 
520 	/*
521 	 * Prepare the TX always, even for RX or tx_buf being null, we would
522 	 * need TX to be prepared per GSI spec
523 	 */
524 	dmaengine_slave_config(mas->tx, &config);
525 	tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents,
526 					  DMA_MEM_TO_DEV, flags);
527 	if (!tx_desc) {
528 		dev_err(mas->dev, "Err setting up tx desc\n");
529 		return -EIO;
530 	}
531 
532 	tx_desc->callback_result = spi_gsi_callback_result;
533 	tx_desc->callback_param = spi;
534 
535 	if (peripheral.cmd & SPI_RX)
536 		dmaengine_submit(rx_desc);
537 	dmaengine_submit(tx_desc);
538 
539 	if (peripheral.cmd & SPI_RX)
540 		dma_async_issue_pending(mas->rx);
541 
542 	dma_async_issue_pending(mas->tx);
543 	return 1;
544 }
545 
546 static u32 get_xfer_len_in_words(struct spi_transfer *xfer,
547 				struct spi_geni_master *mas)
548 {
549 	u32 len;
550 
551 	if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
552 		len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
553 	else
554 		len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
555 	len &= TRANS_LEN_MSK;
556 
557 	return len;
558 }
559 
560 static bool geni_can_dma(struct spi_controller *ctlr,
561 			 struct spi_device *slv, struct spi_transfer *xfer)
562 {
563 	struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
564 	u32 len, fifo_size;
565 
566 	if (mas->cur_xfer_mode == GENI_GPI_DMA)
567 		return true;
568 
569 	/* Set SE DMA mode for SPI slave. */
570 	if (ctlr->slave)
571 		return true;
572 
573 	len = get_xfer_len_in_words(xfer, mas);
574 	fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word;
575 
576 	if (len > fifo_size)
577 		return true;
578 	else
579 		return false;
580 }
581 
582 static int spi_geni_prepare_message(struct spi_master *spi,
583 					struct spi_message *spi_msg)
584 {
585 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
586 	int ret;
587 
588 	switch (mas->cur_xfer_mode) {
589 	case GENI_SE_FIFO:
590 	case GENI_SE_DMA:
591 		if (spi_geni_is_abort_still_pending(mas))
592 			return -EBUSY;
593 		ret = setup_fifo_params(spi_msg->spi, spi);
594 		if (ret)
595 			dev_err(mas->dev, "Couldn't select mode %d\n", ret);
596 		return ret;
597 
598 	case GENI_GPI_DMA:
599 		/* nothing to do for GPI DMA */
600 		return 0;
601 	}
602 
603 	dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode);
604 	return -EINVAL;
605 }
606 
607 static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas)
608 {
609 	int ret;
610 
611 	mas->tx = dma_request_chan(mas->dev, "tx");
612 	if (IS_ERR(mas->tx)) {
613 		ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx),
614 				    "Failed to get tx DMA ch\n");
615 		goto err_tx;
616 	}
617 
618 	mas->rx = dma_request_chan(mas->dev, "rx");
619 	if (IS_ERR(mas->rx)) {
620 		ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx),
621 				    "Failed to get rx DMA ch\n");
622 		goto err_rx;
623 	}
624 
625 	return 0;
626 
627 err_rx:
628 	mas->rx = NULL;
629 	dma_release_channel(mas->tx);
630 err_tx:
631 	mas->tx = NULL;
632 	return ret;
633 }
634 
635 static void spi_geni_release_dma_chan(struct spi_geni_master *mas)
636 {
637 	if (mas->rx) {
638 		dma_release_channel(mas->rx);
639 		mas->rx = NULL;
640 	}
641 
642 	if (mas->tx) {
643 		dma_release_channel(mas->tx);
644 		mas->tx = NULL;
645 	}
646 }
647 
648 static int spi_geni_init(struct spi_geni_master *mas)
649 {
650 	struct spi_master *spi = dev_get_drvdata(mas->dev);
651 	struct geni_se *se = &mas->se;
652 	unsigned int proto, major, minor, ver;
653 	u32 spi_tx_cfg, fifo_disable;
654 	int ret = -ENXIO;
655 
656 	pm_runtime_get_sync(mas->dev);
657 
658 	proto = geni_se_read_proto(se);
659 
660 	if (spi->slave) {
661 		if (proto != GENI_SE_SPI_SLAVE) {
662 			dev_err(mas->dev, "Invalid proto %d\n", proto);
663 			goto out_pm;
664 		}
665 		spi_slv_setup(mas);
666 	} else if (proto != GENI_SE_SPI) {
667 		dev_err(mas->dev, "Invalid proto %d\n", proto);
668 		goto out_pm;
669 	}
670 	mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
671 
672 	/* Width of Tx and Rx FIFO is same */
673 	mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
674 
675 	/*
676 	 * Hardware programming guide suggests to configure
677 	 * RX FIFO RFR level to fifo_depth-2.
678 	 */
679 	geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
680 	/* Transmit an entire FIFO worth of data per IRQ */
681 	mas->tx_wm = 1;
682 	ver = geni_se_get_qup_hw_version(se);
683 	major = GENI_SE_VERSION_MAJOR(ver);
684 	minor = GENI_SE_VERSION_MINOR(ver);
685 
686 	if (major == 1 && minor == 0)
687 		mas->oversampling = 2;
688 	else
689 		mas->oversampling = 1;
690 
691 	fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE;
692 	switch (fifo_disable) {
693 	case 1:
694 		ret = spi_geni_grab_gpi_chan(mas);
695 		if (!ret) { /* success case */
696 			mas->cur_xfer_mode = GENI_GPI_DMA;
697 			geni_se_select_mode(se, GENI_GPI_DMA);
698 			dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n");
699 			break;
700 		} else if (ret == -EPROBE_DEFER) {
701 			goto out_pm;
702 		}
703 		/*
704 		 * in case of failure to get gpi dma channel, we can still do the
705 		 * FIFO mode, so fallthrough
706 		 */
707 		dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n");
708 		fallthrough;
709 
710 	case 0:
711 		mas->cur_xfer_mode = GENI_SE_FIFO;
712 		geni_se_select_mode(se, GENI_SE_FIFO);
713 		ret = 0;
714 		break;
715 	}
716 
717 	/* We always control CS manually */
718 	if (!spi->slave) {
719 		spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
720 		spi_tx_cfg &= ~CS_TOGGLE;
721 		writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
722 	}
723 
724 out_pm:
725 	pm_runtime_put(mas->dev);
726 	return ret;
727 }
728 
729 static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
730 {
731 	/*
732 	 * Calculate how many bytes we'll put in each FIFO word.  If the
733 	 * transfer words don't pack cleanly into a FIFO word we'll just put
734 	 * one transfer word in each FIFO word.  If they do pack we'll pack 'em.
735 	 */
736 	if (mas->fifo_width_bits % mas->cur_bits_per_word)
737 		return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
738 						       BITS_PER_BYTE));
739 
740 	return mas->fifo_width_bits / BITS_PER_BYTE;
741 }
742 
743 static bool geni_spi_handle_tx(struct spi_geni_master *mas)
744 {
745 	struct geni_se *se = &mas->se;
746 	unsigned int max_bytes;
747 	const u8 *tx_buf;
748 	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
749 	unsigned int i = 0;
750 
751 	/* Stop the watermark IRQ if nothing to send */
752 	if (!mas->cur_xfer) {
753 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
754 		return false;
755 	}
756 
757 	max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
758 	if (mas->tx_rem_bytes < max_bytes)
759 		max_bytes = mas->tx_rem_bytes;
760 
761 	tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
762 	while (i < max_bytes) {
763 		unsigned int j;
764 		unsigned int bytes_to_write;
765 		u32 fifo_word = 0;
766 		u8 *fifo_byte = (u8 *)&fifo_word;
767 
768 		bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
769 		for (j = 0; j < bytes_to_write; j++)
770 			fifo_byte[j] = tx_buf[i++];
771 		iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
772 	}
773 	mas->tx_rem_bytes -= max_bytes;
774 	if (!mas->tx_rem_bytes) {
775 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
776 		return false;
777 	}
778 	return true;
779 }
780 
781 static void geni_spi_handle_rx(struct spi_geni_master *mas)
782 {
783 	struct geni_se *se = &mas->se;
784 	u32 rx_fifo_status;
785 	unsigned int rx_bytes;
786 	unsigned int rx_last_byte_valid;
787 	u8 *rx_buf;
788 	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
789 	unsigned int i = 0;
790 
791 	rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
792 	rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
793 	if (rx_fifo_status & RX_LAST) {
794 		rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
795 		rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
796 		if (rx_last_byte_valid && rx_last_byte_valid < 4)
797 			rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
798 	}
799 
800 	/* Clear out the FIFO and bail if nowhere to put it */
801 	if (!mas->cur_xfer) {
802 		for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
803 			readl(se->base + SE_GENI_RX_FIFOn);
804 		return;
805 	}
806 
807 	if (mas->rx_rem_bytes < rx_bytes)
808 		rx_bytes = mas->rx_rem_bytes;
809 
810 	rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
811 	while (i < rx_bytes) {
812 		u32 fifo_word = 0;
813 		u8 *fifo_byte = (u8 *)&fifo_word;
814 		unsigned int bytes_to_read;
815 		unsigned int j;
816 
817 		bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
818 		ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
819 		for (j = 0; j < bytes_to_read; j++)
820 			rx_buf[i++] = fifo_byte[j];
821 	}
822 	mas->rx_rem_bytes -= rx_bytes;
823 }
824 
825 static int setup_se_xfer(struct spi_transfer *xfer,
826 				struct spi_geni_master *mas,
827 				u16 mode, struct spi_master *spi)
828 {
829 	u32 m_cmd = 0;
830 	u32 len;
831 	struct geni_se *se = &mas->se;
832 	int ret;
833 
834 	/*
835 	 * Ensure that our interrupt handler isn't still running from some
836 	 * prior command before we start messing with the hardware behind
837 	 * its back.  We don't need to _keep_ the lock here since we're only
838 	 * worried about racing with out interrupt handler.  The SPI core
839 	 * already handles making sure that we're not trying to do two
840 	 * transfers at once or setting a chip select and doing a transfer
841 	 * concurrently.
842 	 *
843 	 * NOTE: we actually _can't_ hold the lock here because possibly we
844 	 * might call clk_set_rate() which needs to be able to sleep.
845 	 */
846 	spin_lock_irq(&mas->lock);
847 	spin_unlock_irq(&mas->lock);
848 
849 	if (xfer->bits_per_word != mas->cur_bits_per_word) {
850 		spi_setup_word_len(mas, mode, xfer->bits_per_word);
851 		mas->cur_bits_per_word = xfer->bits_per_word;
852 	}
853 
854 	/* Speed and bits per word can be overridden per transfer */
855 	ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
856 	if (ret)
857 		return ret;
858 
859 	mas->tx_rem_bytes = 0;
860 	mas->rx_rem_bytes = 0;
861 
862 	len = get_xfer_len_in_words(xfer, mas);
863 
864 	mas->cur_xfer = xfer;
865 	if (xfer->tx_buf) {
866 		m_cmd |= SPI_TX_ONLY;
867 		mas->tx_rem_bytes = xfer->len;
868 		writel(len, se->base + SE_SPI_TX_TRANS_LEN);
869 	}
870 
871 	if (xfer->rx_buf) {
872 		m_cmd |= SPI_RX_ONLY;
873 		writel(len, se->base + SE_SPI_RX_TRANS_LEN);
874 		mas->rx_rem_bytes = xfer->len;
875 	}
876 
877 	/*
878 	 * Select DMA mode if sgt are present; and with only 1 entry
879 	 * This is not a serious limitation because the xfer buffers are
880 	 * expected to fit into in 1 entry almost always, and if any
881 	 * doesn't for any reason we fall back to FIFO mode anyway
882 	 */
883 	if (!xfer->tx_sg.nents && !xfer->rx_sg.nents)
884 		mas->cur_xfer_mode = GENI_SE_FIFO;
885 	else if (xfer->tx_sg.nents > 1 || xfer->rx_sg.nents > 1) {
886 		dev_warn_once(mas->dev, "Doing FIFO, cannot handle tx_nents-%d, rx_nents-%d\n",
887 			xfer->tx_sg.nents, xfer->rx_sg.nents);
888 		mas->cur_xfer_mode = GENI_SE_FIFO;
889 	} else
890 		mas->cur_xfer_mode = GENI_SE_DMA;
891 	geni_se_select_mode(se, mas->cur_xfer_mode);
892 
893 	/*
894 	 * Lock around right before we start the transfer since our
895 	 * interrupt could come in at any time now.
896 	 */
897 	spin_lock_irq(&mas->lock);
898 	geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
899 
900 	if (mas->cur_xfer_mode == GENI_SE_DMA) {
901 		if (m_cmd & SPI_RX_ONLY)
902 			geni_se_rx_init_dma(se, sg_dma_address(xfer->rx_sg.sgl),
903 				sg_dma_len(xfer->rx_sg.sgl));
904 		if (m_cmd & SPI_TX_ONLY)
905 			geni_se_tx_init_dma(se, sg_dma_address(xfer->tx_sg.sgl),
906 				sg_dma_len(xfer->tx_sg.sgl));
907 	} else if (m_cmd & SPI_TX_ONLY) {
908 		if (geni_spi_handle_tx(mas))
909 			writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
910 	}
911 
912 	spin_unlock_irq(&mas->lock);
913 	return ret;
914 }
915 
916 static int spi_geni_transfer_one(struct spi_master *spi,
917 				struct spi_device *slv,
918 				struct spi_transfer *xfer)
919 {
920 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
921 	int ret;
922 
923 	if (spi_geni_is_abort_still_pending(mas))
924 		return -EBUSY;
925 
926 	/* Terminate and return success for 0 byte length transfer */
927 	if (!xfer->len)
928 		return 0;
929 
930 	if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) {
931 		ret = setup_se_xfer(xfer, mas, slv->mode, spi);
932 		/* SPI framework expects +ve ret code to wait for transfer complete */
933 		if (!ret)
934 			ret = 1;
935 		return ret;
936 	}
937 	return setup_gsi_xfer(xfer, mas, slv, spi);
938 }
939 
940 static irqreturn_t geni_spi_isr(int irq, void *data)
941 {
942 	struct spi_master *spi = data;
943 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
944 	struct geni_se *se = &mas->se;
945 	u32 m_irq;
946 
947 	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
948 	if (!m_irq)
949 		return IRQ_NONE;
950 
951 	if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
952 		     M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
953 		     M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
954 		dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
955 
956 	spin_lock(&mas->lock);
957 
958 	if (mas->cur_xfer_mode == GENI_SE_FIFO) {
959 		if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
960 			geni_spi_handle_rx(mas);
961 
962 		if (m_irq & M_TX_FIFO_WATERMARK_EN)
963 			geni_spi_handle_tx(mas);
964 
965 		if (m_irq & M_CMD_DONE_EN) {
966 			if (mas->cur_xfer) {
967 				spi_finalize_current_transfer(spi);
968 				mas->cur_xfer = NULL;
969 				/*
970 				 * If this happens, then a CMD_DONE came before all the
971 				 * Tx buffer bytes were sent out. This is unusual, log
972 				 * this condition and disable the WM interrupt to
973 				 * prevent the system from stalling due an interrupt
974 				 * storm.
975 				 *
976 				 * If this happens when all Rx bytes haven't been
977 				 * received, log the condition. The only known time
978 				 * this can happen is if bits_per_word != 8 and some
979 				 * registers that expect xfer lengths in num spi_words
980 				 * weren't written correctly.
981 				 */
982 				if (mas->tx_rem_bytes) {
983 					writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
984 					dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
985 						mas->tx_rem_bytes, mas->cur_bits_per_word);
986 				}
987 				if (mas->rx_rem_bytes)
988 					dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
989 						mas->rx_rem_bytes, mas->cur_bits_per_word);
990 			} else {
991 				complete(&mas->cs_done);
992 			}
993 		}
994 	} else if (mas->cur_xfer_mode == GENI_SE_DMA) {
995 		const struct spi_transfer *xfer = mas->cur_xfer;
996 		u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT);
997 		u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT);
998 
999 		if (dma_tx_status)
1000 			writel(dma_tx_status, se->base + SE_DMA_TX_IRQ_CLR);
1001 		if (dma_rx_status)
1002 			writel(dma_rx_status, se->base + SE_DMA_RX_IRQ_CLR);
1003 		if (dma_tx_status & TX_DMA_DONE)
1004 			mas->tx_rem_bytes = 0;
1005 		if (dma_rx_status & RX_DMA_DONE)
1006 			mas->rx_rem_bytes = 0;
1007 		if (dma_tx_status & TX_RESET_DONE)
1008 			complete(&mas->tx_reset_done);
1009 		if (dma_rx_status & RX_RESET_DONE)
1010 			complete(&mas->rx_reset_done);
1011 		if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) {
1012 			spi_finalize_current_transfer(spi);
1013 			mas->cur_xfer = NULL;
1014 		}
1015 	}
1016 
1017 	if (m_irq & M_CMD_CANCEL_EN)
1018 		complete(&mas->cancel_done);
1019 	if (m_irq & M_CMD_ABORT_EN)
1020 		complete(&mas->abort_done);
1021 
1022 	/*
1023 	 * It's safe or a good idea to Ack all of our interrupts at the end
1024 	 * of the function. Specifically:
1025 	 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
1026 	 *   clearing Acks. Clearing at the end relies on nobody else having
1027 	 *   started a new transfer yet or else we could be clearing _their_
1028 	 *   done bit, but everyone grabs the spinlock before starting a new
1029 	 *   transfer.
1030 	 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
1031 	 *   to be "latched level" interrupts so it's important to clear them
1032 	 *   _after_ you've handled the condition and always safe to do so
1033 	 *   since they'll re-assert if they're still happening.
1034 	 */
1035 	writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
1036 
1037 	spin_unlock(&mas->lock);
1038 
1039 	return IRQ_HANDLED;
1040 }
1041 
1042 static int spi_geni_probe(struct platform_device *pdev)
1043 {
1044 	int ret, irq;
1045 	struct spi_master *spi;
1046 	struct spi_geni_master *mas;
1047 	void __iomem *base;
1048 	struct clk *clk;
1049 	struct device *dev = &pdev->dev;
1050 
1051 	irq = platform_get_irq(pdev, 0);
1052 	if (irq < 0)
1053 		return irq;
1054 
1055 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1056 	if (ret)
1057 		return dev_err_probe(dev, ret, "could not set DMA mask\n");
1058 
1059 	base = devm_platform_ioremap_resource(pdev, 0);
1060 	if (IS_ERR(base))
1061 		return PTR_ERR(base);
1062 
1063 	clk = devm_clk_get(dev, "se");
1064 	if (IS_ERR(clk))
1065 		return PTR_ERR(clk);
1066 
1067 	spi = devm_spi_alloc_master(dev, sizeof(*mas));
1068 	if (!spi)
1069 		return -ENOMEM;
1070 
1071 	platform_set_drvdata(pdev, spi);
1072 	mas = spi_master_get_devdata(spi);
1073 	mas->irq = irq;
1074 	mas->dev = dev;
1075 	mas->se.dev = dev;
1076 	mas->se.wrapper = dev_get_drvdata(dev->parent);
1077 	mas->se.base = base;
1078 	mas->se.clk = clk;
1079 
1080 	ret = devm_pm_opp_set_clkname(&pdev->dev, "se");
1081 	if (ret)
1082 		return ret;
1083 	/* OPP table is optional */
1084 	ret = devm_pm_opp_of_add_table(&pdev->dev);
1085 	if (ret && ret != -ENODEV) {
1086 		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
1087 		return ret;
1088 	}
1089 
1090 	spi->bus_num = -1;
1091 	spi->dev.of_node = dev->of_node;
1092 	spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
1093 	spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1094 	spi->num_chipselect = 4;
1095 	spi->max_speed_hz = 50000000;
1096 	spi->max_dma_len = 0xffff0; /* 24 bits for tx/rx dma length */
1097 	spi->prepare_message = spi_geni_prepare_message;
1098 	spi->transfer_one = spi_geni_transfer_one;
1099 	spi->can_dma = geni_can_dma;
1100 	spi->dma_map_dev = dev->parent;
1101 	spi->auto_runtime_pm = true;
1102 	spi->handle_err = spi_geni_handle_err;
1103 	spi->use_gpio_descriptors = true;
1104 
1105 	init_completion(&mas->cs_done);
1106 	init_completion(&mas->cancel_done);
1107 	init_completion(&mas->abort_done);
1108 	init_completion(&mas->tx_reset_done);
1109 	init_completion(&mas->rx_reset_done);
1110 	spin_lock_init(&mas->lock);
1111 	pm_runtime_use_autosuspend(&pdev->dev);
1112 	pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
1113 	ret = devm_pm_runtime_enable(dev);
1114 	if (ret)
1115 		return ret;
1116 
1117 	if (device_property_read_bool(&pdev->dev, "spi-slave"))
1118 		spi->slave = true;
1119 
1120 	ret = geni_icc_get(&mas->se, NULL);
1121 	if (ret)
1122 		return ret;
1123 	/* Set the bus quota to a reasonable value for register access */
1124 	mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
1125 	mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
1126 
1127 	ret = geni_icc_set_bw(&mas->se);
1128 	if (ret)
1129 		return ret;
1130 
1131 	ret = spi_geni_init(mas);
1132 	if (ret)
1133 		return ret;
1134 
1135 	/*
1136 	 * check the mode supported and set_cs for fifo mode only
1137 	 * for dma (gsi) mode, the gsi will set cs based on params passed in
1138 	 * TRE
1139 	 */
1140 	if (!spi->slave && mas->cur_xfer_mode == GENI_SE_FIFO)
1141 		spi->set_cs = spi_geni_set_cs;
1142 
1143 	/*
1144 	 * TX is required per GSI spec, see setup_gsi_xfer().
1145 	 */
1146 	if (mas->cur_xfer_mode == GENI_GPI_DMA)
1147 		spi->flags = SPI_CONTROLLER_MUST_TX;
1148 
1149 	ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
1150 	if (ret)
1151 		goto spi_geni_release_dma;
1152 
1153 	ret = spi_register_master(spi);
1154 	if (ret)
1155 		goto spi_geni_probe_free_irq;
1156 
1157 	return 0;
1158 spi_geni_probe_free_irq:
1159 	free_irq(mas->irq, spi);
1160 spi_geni_release_dma:
1161 	spi_geni_release_dma_chan(mas);
1162 	return ret;
1163 }
1164 
1165 static void spi_geni_remove(struct platform_device *pdev)
1166 {
1167 	struct spi_master *spi = platform_get_drvdata(pdev);
1168 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
1169 
1170 	/* Unregister _before_ disabling pm_runtime() so we stop transfers */
1171 	spi_unregister_master(spi);
1172 
1173 	free_irq(mas->irq, spi);
1174 
1175 	spi_geni_release_dma_chan(mas);
1176 }
1177 
1178 static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
1179 {
1180 	struct spi_master *spi = dev_get_drvdata(dev);
1181 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
1182 	int ret;
1183 
1184 	/* Drop the performance state vote */
1185 	dev_pm_opp_set_rate(dev, 0);
1186 
1187 	ret = geni_se_resources_off(&mas->se);
1188 	if (ret)
1189 		return ret;
1190 
1191 	return geni_icc_disable(&mas->se);
1192 }
1193 
1194 static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
1195 {
1196 	struct spi_master *spi = dev_get_drvdata(dev);
1197 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
1198 	int ret;
1199 
1200 	ret = geni_icc_enable(&mas->se);
1201 	if (ret)
1202 		return ret;
1203 
1204 	ret = geni_se_resources_on(&mas->se);
1205 	if (ret)
1206 		return ret;
1207 
1208 	return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
1209 }
1210 
1211 static int __maybe_unused spi_geni_suspend(struct device *dev)
1212 {
1213 	struct spi_master *spi = dev_get_drvdata(dev);
1214 	int ret;
1215 
1216 	ret = spi_master_suspend(spi);
1217 	if (ret)
1218 		return ret;
1219 
1220 	ret = pm_runtime_force_suspend(dev);
1221 	if (ret)
1222 		spi_master_resume(spi);
1223 
1224 	return ret;
1225 }
1226 
1227 static int __maybe_unused spi_geni_resume(struct device *dev)
1228 {
1229 	struct spi_master *spi = dev_get_drvdata(dev);
1230 	int ret;
1231 
1232 	ret = pm_runtime_force_resume(dev);
1233 	if (ret)
1234 		return ret;
1235 
1236 	ret = spi_master_resume(spi);
1237 	if (ret)
1238 		pm_runtime_force_suspend(dev);
1239 
1240 	return ret;
1241 }
1242 
1243 static const struct dev_pm_ops spi_geni_pm_ops = {
1244 	SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
1245 					spi_geni_runtime_resume, NULL)
1246 	SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
1247 };
1248 
1249 static const struct of_device_id spi_geni_dt_match[] = {
1250 	{ .compatible = "qcom,geni-spi" },
1251 	{}
1252 };
1253 MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
1254 
1255 static struct platform_driver spi_geni_driver = {
1256 	.probe  = spi_geni_probe,
1257 	.remove_new = spi_geni_remove,
1258 	.driver = {
1259 		.name = "geni_spi",
1260 		.pm = &spi_geni_pm_ops,
1261 		.of_match_table = spi_geni_dt_match,
1262 	},
1263 };
1264 module_platform_driver(spi_geni_driver);
1265 
1266 MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
1267 MODULE_LICENSE("GPL v2");
1268