1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (c) 2017-2018, The Linux foundation. All rights reserved. 3 4 #include <linux/clk.h> 5 #include <linux/interrupt.h> 6 #include <linux/io.h> 7 #include <linux/log2.h> 8 #include <linux/module.h> 9 #include <linux/platform_device.h> 10 #include <linux/pm_opp.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/qcom-geni-se.h> 13 #include <linux/spi/spi.h> 14 #include <linux/spinlock.h> 15 16 /* SPI SE specific registers and respective register fields */ 17 #define SE_SPI_CPHA 0x224 18 #define CPHA BIT(0) 19 20 #define SE_SPI_LOOPBACK 0x22c 21 #define LOOPBACK_ENABLE 0x1 22 #define NORMAL_MODE 0x0 23 #define LOOPBACK_MSK GENMASK(1, 0) 24 25 #define SE_SPI_CPOL 0x230 26 #define CPOL BIT(2) 27 28 #define SE_SPI_DEMUX_OUTPUT_INV 0x24c 29 #define CS_DEMUX_OUTPUT_INV_MSK GENMASK(3, 0) 30 31 #define SE_SPI_DEMUX_SEL 0x250 32 #define CS_DEMUX_OUTPUT_SEL GENMASK(3, 0) 33 34 #define SE_SPI_TRANS_CFG 0x25c 35 #define CS_TOGGLE BIT(0) 36 37 #define SE_SPI_WORD_LEN 0x268 38 #define WORD_LEN_MSK GENMASK(9, 0) 39 #define MIN_WORD_LEN 4 40 41 #define SE_SPI_TX_TRANS_LEN 0x26c 42 #define SE_SPI_RX_TRANS_LEN 0x270 43 #define TRANS_LEN_MSK GENMASK(23, 0) 44 45 #define SE_SPI_PRE_POST_CMD_DLY 0x274 46 47 #define SE_SPI_DELAY_COUNTERS 0x278 48 #define SPI_INTER_WORDS_DELAY_MSK GENMASK(9, 0) 49 #define SPI_CS_CLK_DELAY_MSK GENMASK(19, 10) 50 #define SPI_CS_CLK_DELAY_SHFT 10 51 52 /* M_CMD OP codes for SPI */ 53 #define SPI_TX_ONLY 1 54 #define SPI_RX_ONLY 2 55 #define SPI_TX_RX 7 56 #define SPI_CS_ASSERT 8 57 #define SPI_CS_DEASSERT 9 58 #define SPI_SCK_ONLY 10 59 /* M_CMD params for SPI */ 60 #define SPI_PRE_CMD_DELAY BIT(0) 61 #define TIMESTAMP_BEFORE BIT(1) 62 #define FRAGMENTATION BIT(2) 63 #define TIMESTAMP_AFTER BIT(3) 64 #define POST_CMD_DELAY BIT(4) 65 66 struct spi_geni_master { 67 struct geni_se se; 68 struct device *dev; 69 u32 tx_fifo_depth; 70 u32 fifo_width_bits; 71 u32 tx_wm; 72 u32 last_mode; 73 unsigned long cur_speed_hz; 74 unsigned long cur_sclk_hz; 75 unsigned int cur_bits_per_word; 76 unsigned int tx_rem_bytes; 77 unsigned int rx_rem_bytes; 78 const struct spi_transfer *cur_xfer; 79 struct completion cs_done; 80 struct completion cancel_done; 81 struct completion abort_done; 82 unsigned int oversampling; 83 spinlock_t lock; 84 int irq; 85 bool cs_flag; 86 }; 87 88 static int get_spi_clk_cfg(unsigned int speed_hz, 89 struct spi_geni_master *mas, 90 unsigned int *clk_idx, 91 unsigned int *clk_div) 92 { 93 unsigned long sclk_freq; 94 unsigned int actual_hz; 95 int ret; 96 97 ret = geni_se_clk_freq_match(&mas->se, 98 speed_hz * mas->oversampling, 99 clk_idx, &sclk_freq, false); 100 if (ret) { 101 dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n", 102 ret, speed_hz); 103 return ret; 104 } 105 106 *clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz); 107 actual_hz = sclk_freq / (mas->oversampling * *clk_div); 108 109 dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz, 110 actual_hz, sclk_freq, *clk_idx, *clk_div); 111 ret = dev_pm_opp_set_rate(mas->dev, sclk_freq); 112 if (ret) 113 dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret); 114 else 115 mas->cur_sclk_hz = sclk_freq; 116 117 return ret; 118 } 119 120 static void handle_fifo_timeout(struct spi_master *spi, 121 struct spi_message *msg) 122 { 123 struct spi_geni_master *mas = spi_master_get_devdata(spi); 124 unsigned long time_left; 125 struct geni_se *se = &mas->se; 126 127 spin_lock_irq(&mas->lock); 128 reinit_completion(&mas->cancel_done); 129 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 130 mas->cur_xfer = NULL; 131 geni_se_cancel_m_cmd(se); 132 spin_unlock_irq(&mas->lock); 133 134 time_left = wait_for_completion_timeout(&mas->cancel_done, HZ); 135 if (time_left) 136 return; 137 138 spin_lock_irq(&mas->lock); 139 reinit_completion(&mas->abort_done); 140 geni_se_abort_m_cmd(se); 141 spin_unlock_irq(&mas->lock); 142 143 time_left = wait_for_completion_timeout(&mas->abort_done, HZ); 144 if (!time_left) 145 dev_err(mas->dev, "Failed to cancel/abort m_cmd\n"); 146 } 147 148 static void spi_geni_set_cs(struct spi_device *slv, bool set_flag) 149 { 150 struct spi_geni_master *mas = spi_master_get_devdata(slv->master); 151 struct spi_master *spi = dev_get_drvdata(mas->dev); 152 struct geni_se *se = &mas->se; 153 unsigned long time_left; 154 155 if (!(slv->mode & SPI_CS_HIGH)) 156 set_flag = !set_flag; 157 158 if (set_flag == mas->cs_flag) 159 return; 160 161 mas->cs_flag = set_flag; 162 163 pm_runtime_get_sync(mas->dev); 164 spin_lock_irq(&mas->lock); 165 reinit_completion(&mas->cs_done); 166 if (set_flag) 167 geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0); 168 else 169 geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0); 170 spin_unlock_irq(&mas->lock); 171 172 time_left = wait_for_completion_timeout(&mas->cs_done, HZ); 173 if (!time_left) 174 handle_fifo_timeout(spi, NULL); 175 176 pm_runtime_put(mas->dev); 177 } 178 179 static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode, 180 unsigned int bits_per_word) 181 { 182 unsigned int pack_words; 183 bool msb_first = (mode & SPI_LSB_FIRST) ? false : true; 184 struct geni_se *se = &mas->se; 185 u32 word_len; 186 187 /* 188 * If bits_per_word isn't a byte aligned value, set the packing to be 189 * 1 SPI word per FIFO word. 190 */ 191 if (!(mas->fifo_width_bits % bits_per_word)) 192 pack_words = mas->fifo_width_bits / bits_per_word; 193 else 194 pack_words = 1; 195 geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first, 196 true, true); 197 word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK; 198 writel(word_len, se->base + SE_SPI_WORD_LEN); 199 } 200 201 static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas, 202 unsigned long clk_hz) 203 { 204 u32 clk_sel, m_clk_cfg, idx, div; 205 struct geni_se *se = &mas->se; 206 int ret; 207 208 if (clk_hz == mas->cur_speed_hz) 209 return 0; 210 211 ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div); 212 if (ret) { 213 dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret); 214 return ret; 215 } 216 217 /* 218 * SPI core clock gets configured with the requested frequency 219 * or the frequency closer to the requested frequency. 220 * For that reason requested frequency is stored in the 221 * cur_speed_hz and referred in the consecutive transfer instead 222 * of calling clk_get_rate() API. 223 */ 224 mas->cur_speed_hz = clk_hz; 225 226 clk_sel = idx & CLK_SEL_MSK; 227 m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN; 228 writel(clk_sel, se->base + SE_GENI_CLK_SEL); 229 writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG); 230 231 /* Set BW quota for CPU as driver supports FIFO mode only. */ 232 se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz); 233 ret = geni_icc_set_bw(se); 234 if (ret) 235 return ret; 236 237 return 0; 238 } 239 240 static int setup_fifo_params(struct spi_device *spi_slv, 241 struct spi_master *spi) 242 { 243 struct spi_geni_master *mas = spi_master_get_devdata(spi); 244 struct geni_se *se = &mas->se; 245 u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0; 246 u32 demux_sel; 247 248 if (mas->last_mode != spi_slv->mode) { 249 if (spi_slv->mode & SPI_LOOP) 250 loopback_cfg = LOOPBACK_ENABLE; 251 252 if (spi_slv->mode & SPI_CPOL) 253 cpol = CPOL; 254 255 if (spi_slv->mode & SPI_CPHA) 256 cpha = CPHA; 257 258 if (spi_slv->mode & SPI_CS_HIGH) 259 demux_output_inv = BIT(spi_slv->chip_select); 260 261 demux_sel = spi_slv->chip_select; 262 mas->cur_bits_per_word = spi_slv->bits_per_word; 263 264 spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word); 265 writel(loopback_cfg, se->base + SE_SPI_LOOPBACK); 266 writel(demux_sel, se->base + SE_SPI_DEMUX_SEL); 267 writel(cpha, se->base + SE_SPI_CPHA); 268 writel(cpol, se->base + SE_SPI_CPOL); 269 writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV); 270 271 mas->last_mode = spi_slv->mode; 272 } 273 274 return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz); 275 } 276 277 static int spi_geni_prepare_message(struct spi_master *spi, 278 struct spi_message *spi_msg) 279 { 280 int ret; 281 struct spi_geni_master *mas = spi_master_get_devdata(spi); 282 283 ret = setup_fifo_params(spi_msg->spi, spi); 284 if (ret) 285 dev_err(mas->dev, "Couldn't select mode %d\n", ret); 286 return ret; 287 } 288 289 static int spi_geni_init(struct spi_geni_master *mas) 290 { 291 struct geni_se *se = &mas->se; 292 unsigned int proto, major, minor, ver; 293 u32 spi_tx_cfg; 294 295 pm_runtime_get_sync(mas->dev); 296 297 proto = geni_se_read_proto(se); 298 if (proto != GENI_SE_SPI) { 299 dev_err(mas->dev, "Invalid proto %d\n", proto); 300 pm_runtime_put(mas->dev); 301 return -ENXIO; 302 } 303 mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se); 304 305 /* Width of Tx and Rx FIFO is same */ 306 mas->fifo_width_bits = geni_se_get_tx_fifo_width(se); 307 308 /* 309 * Hardware programming guide suggests to configure 310 * RX FIFO RFR level to fifo_depth-2. 311 */ 312 geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2); 313 /* Transmit an entire FIFO worth of data per IRQ */ 314 mas->tx_wm = 1; 315 ver = geni_se_get_qup_hw_version(se); 316 major = GENI_SE_VERSION_MAJOR(ver); 317 minor = GENI_SE_VERSION_MINOR(ver); 318 319 if (major == 1 && minor == 0) 320 mas->oversampling = 2; 321 else 322 mas->oversampling = 1; 323 324 geni_se_select_mode(se, GENI_SE_FIFO); 325 326 /* We always control CS manually */ 327 spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG); 328 spi_tx_cfg &= ~CS_TOGGLE; 329 writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG); 330 331 pm_runtime_put(mas->dev); 332 return 0; 333 } 334 335 static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas) 336 { 337 /* 338 * Calculate how many bytes we'll put in each FIFO word. If the 339 * transfer words don't pack cleanly into a FIFO word we'll just put 340 * one transfer word in each FIFO word. If they do pack we'll pack 'em. 341 */ 342 if (mas->fifo_width_bits % mas->cur_bits_per_word) 343 return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word, 344 BITS_PER_BYTE)); 345 346 return mas->fifo_width_bits / BITS_PER_BYTE; 347 } 348 349 static bool geni_spi_handle_tx(struct spi_geni_master *mas) 350 { 351 struct geni_se *se = &mas->se; 352 unsigned int max_bytes; 353 const u8 *tx_buf; 354 unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); 355 unsigned int i = 0; 356 357 max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word; 358 if (mas->tx_rem_bytes < max_bytes) 359 max_bytes = mas->tx_rem_bytes; 360 361 tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes; 362 while (i < max_bytes) { 363 unsigned int j; 364 unsigned int bytes_to_write; 365 u32 fifo_word = 0; 366 u8 *fifo_byte = (u8 *)&fifo_word; 367 368 bytes_to_write = min(bytes_per_fifo_word, max_bytes - i); 369 for (j = 0; j < bytes_to_write; j++) 370 fifo_byte[j] = tx_buf[i++]; 371 iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1); 372 } 373 mas->tx_rem_bytes -= max_bytes; 374 if (!mas->tx_rem_bytes) { 375 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 376 return false; 377 } 378 return true; 379 } 380 381 static void geni_spi_handle_rx(struct spi_geni_master *mas) 382 { 383 struct geni_se *se = &mas->se; 384 u32 rx_fifo_status; 385 unsigned int rx_bytes; 386 unsigned int rx_last_byte_valid; 387 u8 *rx_buf; 388 unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); 389 unsigned int i = 0; 390 391 rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS); 392 rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word; 393 if (rx_fifo_status & RX_LAST) { 394 rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK; 395 rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT; 396 if (rx_last_byte_valid && rx_last_byte_valid < 4) 397 rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid; 398 } 399 if (mas->rx_rem_bytes < rx_bytes) 400 rx_bytes = mas->rx_rem_bytes; 401 402 rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes; 403 while (i < rx_bytes) { 404 u32 fifo_word = 0; 405 u8 *fifo_byte = (u8 *)&fifo_word; 406 unsigned int bytes_to_read; 407 unsigned int j; 408 409 bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i); 410 ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1); 411 for (j = 0; j < bytes_to_read; j++) 412 rx_buf[i++] = fifo_byte[j]; 413 } 414 mas->rx_rem_bytes -= rx_bytes; 415 } 416 417 static void setup_fifo_xfer(struct spi_transfer *xfer, 418 struct spi_geni_master *mas, 419 u16 mode, struct spi_master *spi) 420 { 421 u32 m_cmd = 0; 422 u32 len; 423 struct geni_se *se = &mas->se; 424 int ret; 425 426 /* 427 * Ensure that our interrupt handler isn't still running from some 428 * prior command before we start messing with the hardware behind 429 * its back. We don't need to _keep_ the lock here since we're only 430 * worried about racing with out interrupt handler. The SPI core 431 * already handles making sure that we're not trying to do two 432 * transfers at once or setting a chip select and doing a transfer 433 * concurrently. 434 * 435 * NOTE: we actually _can't_ hold the lock here because possibly we 436 * might call clk_set_rate() which needs to be able to sleep. 437 */ 438 spin_lock_irq(&mas->lock); 439 spin_unlock_irq(&mas->lock); 440 441 if (xfer->bits_per_word != mas->cur_bits_per_word) { 442 spi_setup_word_len(mas, mode, xfer->bits_per_word); 443 mas->cur_bits_per_word = xfer->bits_per_word; 444 } 445 446 /* Speed and bits per word can be overridden per transfer */ 447 ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz); 448 if (ret) 449 return; 450 451 mas->tx_rem_bytes = 0; 452 mas->rx_rem_bytes = 0; 453 454 if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) 455 len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word; 456 else 457 len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1); 458 len &= TRANS_LEN_MSK; 459 460 mas->cur_xfer = xfer; 461 if (xfer->tx_buf) { 462 m_cmd |= SPI_TX_ONLY; 463 mas->tx_rem_bytes = xfer->len; 464 writel(len, se->base + SE_SPI_TX_TRANS_LEN); 465 } 466 467 if (xfer->rx_buf) { 468 m_cmd |= SPI_RX_ONLY; 469 writel(len, se->base + SE_SPI_RX_TRANS_LEN); 470 mas->rx_rem_bytes = xfer->len; 471 } 472 473 /* 474 * Lock around right before we start the transfer since our 475 * interrupt could come in at any time now. 476 */ 477 spin_lock_irq(&mas->lock); 478 geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION); 479 480 /* 481 * TX_WATERMARK_REG should be set after SPI configuration and 482 * setting up GENI SE engine, as driver starts data transfer 483 * for the watermark interrupt. 484 */ 485 if (m_cmd & SPI_TX_ONLY) { 486 if (geni_spi_handle_tx(mas)) 487 writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG); 488 } 489 spin_unlock_irq(&mas->lock); 490 } 491 492 static int spi_geni_transfer_one(struct spi_master *spi, 493 struct spi_device *slv, 494 struct spi_transfer *xfer) 495 { 496 struct spi_geni_master *mas = spi_master_get_devdata(spi); 497 498 /* Terminate and return success for 0 byte length transfer */ 499 if (!xfer->len) 500 return 0; 501 502 setup_fifo_xfer(xfer, mas, slv->mode, spi); 503 return 1; 504 } 505 506 static irqreturn_t geni_spi_isr(int irq, void *data) 507 { 508 struct spi_master *spi = data; 509 struct spi_geni_master *mas = spi_master_get_devdata(spi); 510 struct geni_se *se = &mas->se; 511 u32 m_irq; 512 513 m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS); 514 if (!m_irq) 515 return IRQ_NONE; 516 517 if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN | 518 M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN | 519 M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN)) 520 dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq); 521 522 spin_lock(&mas->lock); 523 524 if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN)) 525 geni_spi_handle_rx(mas); 526 527 if (m_irq & M_TX_FIFO_WATERMARK_EN) 528 geni_spi_handle_tx(mas); 529 530 if (m_irq & M_CMD_DONE_EN) { 531 if (mas->cur_xfer) { 532 spi_finalize_current_transfer(spi); 533 mas->cur_xfer = NULL; 534 /* 535 * If this happens, then a CMD_DONE came before all the 536 * Tx buffer bytes were sent out. This is unusual, log 537 * this condition and disable the WM interrupt to 538 * prevent the system from stalling due an interrupt 539 * storm. 540 * 541 * If this happens when all Rx bytes haven't been 542 * received, log the condition. The only known time 543 * this can happen is if bits_per_word != 8 and some 544 * registers that expect xfer lengths in num spi_words 545 * weren't written correctly. 546 */ 547 if (mas->tx_rem_bytes) { 548 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 549 dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n", 550 mas->tx_rem_bytes, mas->cur_bits_per_word); 551 } 552 if (mas->rx_rem_bytes) 553 dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n", 554 mas->rx_rem_bytes, mas->cur_bits_per_word); 555 } else { 556 complete(&mas->cs_done); 557 } 558 } 559 560 if (m_irq & M_CMD_CANCEL_EN) 561 complete(&mas->cancel_done); 562 if (m_irq & M_CMD_ABORT_EN) 563 complete(&mas->abort_done); 564 565 /* 566 * It's safe or a good idea to Ack all of our our interrupts at the 567 * end of the function. Specifically: 568 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and 569 * clearing Acks. Clearing at the end relies on nobody else having 570 * started a new transfer yet or else we could be clearing _their_ 571 * done bit, but everyone grabs the spinlock before starting a new 572 * transfer. 573 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear 574 * to be "latched level" interrupts so it's important to clear them 575 * _after_ you've handled the condition and always safe to do so 576 * since they'll re-assert if they're still happening. 577 */ 578 writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR); 579 580 spin_unlock(&mas->lock); 581 582 return IRQ_HANDLED; 583 } 584 585 static int spi_geni_probe(struct platform_device *pdev) 586 { 587 int ret, irq; 588 struct spi_master *spi; 589 struct spi_geni_master *mas; 590 void __iomem *base; 591 struct clk *clk; 592 struct device *dev = &pdev->dev; 593 594 irq = platform_get_irq(pdev, 0); 595 if (irq < 0) 596 return irq; 597 598 base = devm_platform_ioremap_resource(pdev, 0); 599 if (IS_ERR(base)) 600 return PTR_ERR(base); 601 602 clk = devm_clk_get(dev, "se"); 603 if (IS_ERR(clk)) 604 return PTR_ERR(clk); 605 606 spi = spi_alloc_master(dev, sizeof(*mas)); 607 if (!spi) 608 return -ENOMEM; 609 610 platform_set_drvdata(pdev, spi); 611 mas = spi_master_get_devdata(spi); 612 mas->irq = irq; 613 mas->dev = dev; 614 mas->se.dev = dev; 615 mas->se.wrapper = dev_get_drvdata(dev->parent); 616 mas->se.base = base; 617 mas->se.clk = clk; 618 mas->se.opp_table = dev_pm_opp_set_clkname(&pdev->dev, "se"); 619 if (IS_ERR(mas->se.opp_table)) 620 return PTR_ERR(mas->se.opp_table); 621 /* OPP table is optional */ 622 ret = dev_pm_opp_of_add_table(&pdev->dev); 623 if (ret && ret != -ENODEV) { 624 dev_err(&pdev->dev, "invalid OPP table in device tree\n"); 625 goto put_clkname; 626 } 627 628 spi->bus_num = -1; 629 spi->dev.of_node = dev->of_node; 630 spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH; 631 spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 632 spi->num_chipselect = 4; 633 spi->max_speed_hz = 50000000; 634 spi->prepare_message = spi_geni_prepare_message; 635 spi->transfer_one = spi_geni_transfer_one; 636 spi->auto_runtime_pm = true; 637 spi->handle_err = handle_fifo_timeout; 638 spi->set_cs = spi_geni_set_cs; 639 640 init_completion(&mas->cs_done); 641 init_completion(&mas->cancel_done); 642 init_completion(&mas->abort_done); 643 spin_lock_init(&mas->lock); 644 pm_runtime_use_autosuspend(&pdev->dev); 645 pm_runtime_set_autosuspend_delay(&pdev->dev, 250); 646 pm_runtime_enable(dev); 647 648 ret = geni_icc_get(&mas->se, NULL); 649 if (ret) 650 goto spi_geni_probe_runtime_disable; 651 /* Set the bus quota to a reasonable value for register access */ 652 mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ); 653 mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW; 654 655 ret = geni_icc_set_bw(&mas->se); 656 if (ret) 657 goto spi_geni_probe_runtime_disable; 658 659 ret = spi_geni_init(mas); 660 if (ret) 661 goto spi_geni_probe_runtime_disable; 662 663 ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi); 664 if (ret) 665 goto spi_geni_probe_runtime_disable; 666 667 ret = spi_register_master(spi); 668 if (ret) 669 goto spi_geni_probe_free_irq; 670 671 return 0; 672 spi_geni_probe_free_irq: 673 free_irq(mas->irq, spi); 674 spi_geni_probe_runtime_disable: 675 pm_runtime_disable(dev); 676 spi_master_put(spi); 677 dev_pm_opp_of_remove_table(&pdev->dev); 678 put_clkname: 679 dev_pm_opp_put_clkname(mas->se.opp_table); 680 return ret; 681 } 682 683 static int spi_geni_remove(struct platform_device *pdev) 684 { 685 struct spi_master *spi = platform_get_drvdata(pdev); 686 struct spi_geni_master *mas = spi_master_get_devdata(spi); 687 688 /* Unregister _before_ disabling pm_runtime() so we stop transfers */ 689 spi_unregister_master(spi); 690 691 free_irq(mas->irq, spi); 692 pm_runtime_disable(&pdev->dev); 693 dev_pm_opp_of_remove_table(&pdev->dev); 694 dev_pm_opp_put_clkname(mas->se.opp_table); 695 return 0; 696 } 697 698 static int __maybe_unused spi_geni_runtime_suspend(struct device *dev) 699 { 700 struct spi_master *spi = dev_get_drvdata(dev); 701 struct spi_geni_master *mas = spi_master_get_devdata(spi); 702 int ret; 703 704 /* Drop the performance state vote */ 705 dev_pm_opp_set_rate(dev, 0); 706 707 ret = geni_se_resources_off(&mas->se); 708 if (ret) 709 return ret; 710 711 return geni_icc_disable(&mas->se); 712 } 713 714 static int __maybe_unused spi_geni_runtime_resume(struct device *dev) 715 { 716 struct spi_master *spi = dev_get_drvdata(dev); 717 struct spi_geni_master *mas = spi_master_get_devdata(spi); 718 int ret; 719 720 ret = geni_icc_enable(&mas->se); 721 if (ret) 722 return ret; 723 724 ret = geni_se_resources_on(&mas->se); 725 if (ret) 726 return ret; 727 728 return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz); 729 } 730 731 static int __maybe_unused spi_geni_suspend(struct device *dev) 732 { 733 struct spi_master *spi = dev_get_drvdata(dev); 734 int ret; 735 736 ret = spi_master_suspend(spi); 737 if (ret) 738 return ret; 739 740 ret = pm_runtime_force_suspend(dev); 741 if (ret) 742 spi_master_resume(spi); 743 744 return ret; 745 } 746 747 static int __maybe_unused spi_geni_resume(struct device *dev) 748 { 749 struct spi_master *spi = dev_get_drvdata(dev); 750 int ret; 751 752 ret = pm_runtime_force_resume(dev); 753 if (ret) 754 return ret; 755 756 ret = spi_master_resume(spi); 757 if (ret) 758 pm_runtime_force_suspend(dev); 759 760 return ret; 761 } 762 763 static const struct dev_pm_ops spi_geni_pm_ops = { 764 SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend, 765 spi_geni_runtime_resume, NULL) 766 SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume) 767 }; 768 769 static const struct of_device_id spi_geni_dt_match[] = { 770 { .compatible = "qcom,geni-spi" }, 771 {} 772 }; 773 MODULE_DEVICE_TABLE(of, spi_geni_dt_match); 774 775 static struct platform_driver spi_geni_driver = { 776 .probe = spi_geni_probe, 777 .remove = spi_geni_remove, 778 .driver = { 779 .name = "geni_spi", 780 .pm = &spi_geni_pm_ops, 781 .of_match_table = spi_geni_dt_match, 782 }, 783 }; 784 module_platform_driver(spi_geni_driver); 785 786 MODULE_DESCRIPTION("SPI driver for GENI based QUP cores"); 787 MODULE_LICENSE("GPL v2"); 788