1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (c) 2017-2018, The Linux foundation. All rights reserved. 3 4 #include <linux/clk.h> 5 #include <linux/interrupt.h> 6 #include <linux/io.h> 7 #include <linux/log2.h> 8 #include <linux/module.h> 9 #include <linux/platform_device.h> 10 #include <linux/pm_opp.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/qcom-geni-se.h> 13 #include <linux/spi/spi.h> 14 #include <linux/spinlock.h> 15 16 /* SPI SE specific registers and respective register fields */ 17 #define SE_SPI_CPHA 0x224 18 #define CPHA BIT(0) 19 20 #define SE_SPI_LOOPBACK 0x22c 21 #define LOOPBACK_ENABLE 0x1 22 #define NORMAL_MODE 0x0 23 #define LOOPBACK_MSK GENMASK(1, 0) 24 25 #define SE_SPI_CPOL 0x230 26 #define CPOL BIT(2) 27 28 #define SE_SPI_DEMUX_OUTPUT_INV 0x24c 29 #define CS_DEMUX_OUTPUT_INV_MSK GENMASK(3, 0) 30 31 #define SE_SPI_DEMUX_SEL 0x250 32 #define CS_DEMUX_OUTPUT_SEL GENMASK(3, 0) 33 34 #define SE_SPI_TRANS_CFG 0x25c 35 #define CS_TOGGLE BIT(0) 36 37 #define SE_SPI_WORD_LEN 0x268 38 #define WORD_LEN_MSK GENMASK(9, 0) 39 #define MIN_WORD_LEN 4 40 41 #define SE_SPI_TX_TRANS_LEN 0x26c 42 #define SE_SPI_RX_TRANS_LEN 0x270 43 #define TRANS_LEN_MSK GENMASK(23, 0) 44 45 #define SE_SPI_PRE_POST_CMD_DLY 0x274 46 47 #define SE_SPI_DELAY_COUNTERS 0x278 48 #define SPI_INTER_WORDS_DELAY_MSK GENMASK(9, 0) 49 #define SPI_CS_CLK_DELAY_MSK GENMASK(19, 10) 50 #define SPI_CS_CLK_DELAY_SHFT 10 51 52 /* M_CMD OP codes for SPI */ 53 #define SPI_TX_ONLY 1 54 #define SPI_RX_ONLY 2 55 #define SPI_TX_RX 7 56 #define SPI_CS_ASSERT 8 57 #define SPI_CS_DEASSERT 9 58 #define SPI_SCK_ONLY 10 59 /* M_CMD params for SPI */ 60 #define SPI_PRE_CMD_DELAY BIT(0) 61 #define TIMESTAMP_BEFORE BIT(1) 62 #define FRAGMENTATION BIT(2) 63 #define TIMESTAMP_AFTER BIT(3) 64 #define POST_CMD_DELAY BIT(4) 65 66 struct spi_geni_master { 67 struct geni_se se; 68 struct device *dev; 69 u32 tx_fifo_depth; 70 u32 fifo_width_bits; 71 u32 tx_wm; 72 u32 last_mode; 73 unsigned long cur_speed_hz; 74 unsigned long cur_sclk_hz; 75 unsigned int cur_bits_per_word; 76 unsigned int tx_rem_bytes; 77 unsigned int rx_rem_bytes; 78 const struct spi_transfer *cur_xfer; 79 struct completion cs_done; 80 struct completion cancel_done; 81 struct completion abort_done; 82 unsigned int oversampling; 83 spinlock_t lock; 84 int irq; 85 bool cs_flag; 86 bool abort_failed; 87 }; 88 89 static int get_spi_clk_cfg(unsigned int speed_hz, 90 struct spi_geni_master *mas, 91 unsigned int *clk_idx, 92 unsigned int *clk_div) 93 { 94 unsigned long sclk_freq; 95 unsigned int actual_hz; 96 int ret; 97 98 ret = geni_se_clk_freq_match(&mas->se, 99 speed_hz * mas->oversampling, 100 clk_idx, &sclk_freq, false); 101 if (ret) { 102 dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n", 103 ret, speed_hz); 104 return ret; 105 } 106 107 *clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz); 108 actual_hz = sclk_freq / (mas->oversampling * *clk_div); 109 110 dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz, 111 actual_hz, sclk_freq, *clk_idx, *clk_div); 112 ret = dev_pm_opp_set_rate(mas->dev, sclk_freq); 113 if (ret) 114 dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret); 115 else 116 mas->cur_sclk_hz = sclk_freq; 117 118 return ret; 119 } 120 121 static void handle_fifo_timeout(struct spi_master *spi, 122 struct spi_message *msg) 123 { 124 struct spi_geni_master *mas = spi_master_get_devdata(spi); 125 unsigned long time_left; 126 struct geni_se *se = &mas->se; 127 128 spin_lock_irq(&mas->lock); 129 reinit_completion(&mas->cancel_done); 130 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 131 mas->cur_xfer = NULL; 132 geni_se_cancel_m_cmd(se); 133 spin_unlock_irq(&mas->lock); 134 135 time_left = wait_for_completion_timeout(&mas->cancel_done, HZ); 136 if (time_left) 137 return; 138 139 spin_lock_irq(&mas->lock); 140 reinit_completion(&mas->abort_done); 141 geni_se_abort_m_cmd(se); 142 spin_unlock_irq(&mas->lock); 143 144 time_left = wait_for_completion_timeout(&mas->abort_done, HZ); 145 if (!time_left) { 146 dev_err(mas->dev, "Failed to cancel/abort m_cmd\n"); 147 148 /* 149 * No need for a lock since SPI core has a lock and we never 150 * access this from an interrupt. 151 */ 152 mas->abort_failed = true; 153 } 154 } 155 156 static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas) 157 { 158 struct geni_se *se = &mas->se; 159 u32 m_irq, m_irq_en; 160 161 if (!mas->abort_failed) 162 return false; 163 164 /* 165 * The only known case where a transfer times out and then a cancel 166 * times out then an abort times out is if something is blocking our 167 * interrupt handler from running. Avoid starting any new transfers 168 * until that sorts itself out. 169 */ 170 spin_lock_irq(&mas->lock); 171 m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS); 172 m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN); 173 spin_unlock_irq(&mas->lock); 174 175 if (m_irq & m_irq_en) { 176 dev_err(mas->dev, "Interrupts pending after abort: %#010x\n", 177 m_irq & m_irq_en); 178 return true; 179 } 180 181 /* 182 * If we're here the problem resolved itself so no need to check more 183 * on future transfers. 184 */ 185 mas->abort_failed = false; 186 187 return false; 188 } 189 190 static void spi_geni_set_cs(struct spi_device *slv, bool set_flag) 191 { 192 struct spi_geni_master *mas = spi_master_get_devdata(slv->master); 193 struct spi_master *spi = dev_get_drvdata(mas->dev); 194 struct geni_se *se = &mas->se; 195 unsigned long time_left; 196 197 if (!(slv->mode & SPI_CS_HIGH)) 198 set_flag = !set_flag; 199 200 if (set_flag == mas->cs_flag) 201 return; 202 203 pm_runtime_get_sync(mas->dev); 204 205 if (spi_geni_is_abort_still_pending(mas)) { 206 dev_err(mas->dev, "Can't set chip select\n"); 207 goto exit; 208 } 209 210 spin_lock_irq(&mas->lock); 211 if (mas->cur_xfer) { 212 dev_err(mas->dev, "Can't set CS when prev xfer running\n"); 213 spin_unlock_irq(&mas->lock); 214 goto exit; 215 } 216 217 mas->cs_flag = set_flag; 218 reinit_completion(&mas->cs_done); 219 if (set_flag) 220 geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0); 221 else 222 geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0); 223 spin_unlock_irq(&mas->lock); 224 225 time_left = wait_for_completion_timeout(&mas->cs_done, HZ); 226 if (!time_left) { 227 dev_warn(mas->dev, "Timeout setting chip select\n"); 228 handle_fifo_timeout(spi, NULL); 229 } 230 231 exit: 232 pm_runtime_put(mas->dev); 233 } 234 235 static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode, 236 unsigned int bits_per_word) 237 { 238 unsigned int pack_words; 239 bool msb_first = (mode & SPI_LSB_FIRST) ? false : true; 240 struct geni_se *se = &mas->se; 241 u32 word_len; 242 243 /* 244 * If bits_per_word isn't a byte aligned value, set the packing to be 245 * 1 SPI word per FIFO word. 246 */ 247 if (!(mas->fifo_width_bits % bits_per_word)) 248 pack_words = mas->fifo_width_bits / bits_per_word; 249 else 250 pack_words = 1; 251 geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first, 252 true, true); 253 word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK; 254 writel(word_len, se->base + SE_SPI_WORD_LEN); 255 } 256 257 static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas, 258 unsigned long clk_hz) 259 { 260 u32 clk_sel, m_clk_cfg, idx, div; 261 struct geni_se *se = &mas->se; 262 int ret; 263 264 if (clk_hz == mas->cur_speed_hz) 265 return 0; 266 267 ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div); 268 if (ret) { 269 dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret); 270 return ret; 271 } 272 273 /* 274 * SPI core clock gets configured with the requested frequency 275 * or the frequency closer to the requested frequency. 276 * For that reason requested frequency is stored in the 277 * cur_speed_hz and referred in the consecutive transfer instead 278 * of calling clk_get_rate() API. 279 */ 280 mas->cur_speed_hz = clk_hz; 281 282 clk_sel = idx & CLK_SEL_MSK; 283 m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN; 284 writel(clk_sel, se->base + SE_GENI_CLK_SEL); 285 writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG); 286 287 /* Set BW quota for CPU as driver supports FIFO mode only. */ 288 se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz); 289 ret = geni_icc_set_bw(se); 290 if (ret) 291 return ret; 292 293 return 0; 294 } 295 296 static int setup_fifo_params(struct spi_device *spi_slv, 297 struct spi_master *spi) 298 { 299 struct spi_geni_master *mas = spi_master_get_devdata(spi); 300 struct geni_se *se = &mas->se; 301 u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0; 302 u32 demux_sel; 303 304 if (mas->last_mode != spi_slv->mode) { 305 if (spi_slv->mode & SPI_LOOP) 306 loopback_cfg = LOOPBACK_ENABLE; 307 308 if (spi_slv->mode & SPI_CPOL) 309 cpol = CPOL; 310 311 if (spi_slv->mode & SPI_CPHA) 312 cpha = CPHA; 313 314 if (spi_slv->mode & SPI_CS_HIGH) 315 demux_output_inv = BIT(spi_slv->chip_select); 316 317 demux_sel = spi_slv->chip_select; 318 mas->cur_bits_per_word = spi_slv->bits_per_word; 319 320 spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word); 321 writel(loopback_cfg, se->base + SE_SPI_LOOPBACK); 322 writel(demux_sel, se->base + SE_SPI_DEMUX_SEL); 323 writel(cpha, se->base + SE_SPI_CPHA); 324 writel(cpol, se->base + SE_SPI_CPOL); 325 writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV); 326 327 mas->last_mode = spi_slv->mode; 328 } 329 330 return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz); 331 } 332 333 static int spi_geni_prepare_message(struct spi_master *spi, 334 struct spi_message *spi_msg) 335 { 336 int ret; 337 struct spi_geni_master *mas = spi_master_get_devdata(spi); 338 339 if (spi_geni_is_abort_still_pending(mas)) 340 return -EBUSY; 341 342 ret = setup_fifo_params(spi_msg->spi, spi); 343 if (ret) 344 dev_err(mas->dev, "Couldn't select mode %d\n", ret); 345 return ret; 346 } 347 348 static int spi_geni_init(struct spi_geni_master *mas) 349 { 350 struct geni_se *se = &mas->se; 351 unsigned int proto, major, minor, ver; 352 u32 spi_tx_cfg; 353 354 pm_runtime_get_sync(mas->dev); 355 356 proto = geni_se_read_proto(se); 357 if (proto != GENI_SE_SPI) { 358 dev_err(mas->dev, "Invalid proto %d\n", proto); 359 pm_runtime_put(mas->dev); 360 return -ENXIO; 361 } 362 mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se); 363 364 /* Width of Tx and Rx FIFO is same */ 365 mas->fifo_width_bits = geni_se_get_tx_fifo_width(se); 366 367 /* 368 * Hardware programming guide suggests to configure 369 * RX FIFO RFR level to fifo_depth-2. 370 */ 371 geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2); 372 /* Transmit an entire FIFO worth of data per IRQ */ 373 mas->tx_wm = 1; 374 ver = geni_se_get_qup_hw_version(se); 375 major = GENI_SE_VERSION_MAJOR(ver); 376 minor = GENI_SE_VERSION_MINOR(ver); 377 378 if (major == 1 && minor == 0) 379 mas->oversampling = 2; 380 else 381 mas->oversampling = 1; 382 383 geni_se_select_mode(se, GENI_SE_FIFO); 384 385 /* We always control CS manually */ 386 spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG); 387 spi_tx_cfg &= ~CS_TOGGLE; 388 writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG); 389 390 pm_runtime_put(mas->dev); 391 return 0; 392 } 393 394 static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas) 395 { 396 /* 397 * Calculate how many bytes we'll put in each FIFO word. If the 398 * transfer words don't pack cleanly into a FIFO word we'll just put 399 * one transfer word in each FIFO word. If they do pack we'll pack 'em. 400 */ 401 if (mas->fifo_width_bits % mas->cur_bits_per_word) 402 return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word, 403 BITS_PER_BYTE)); 404 405 return mas->fifo_width_bits / BITS_PER_BYTE; 406 } 407 408 static bool geni_spi_handle_tx(struct spi_geni_master *mas) 409 { 410 struct geni_se *se = &mas->se; 411 unsigned int max_bytes; 412 const u8 *tx_buf; 413 unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); 414 unsigned int i = 0; 415 416 /* Stop the watermark IRQ if nothing to send */ 417 if (!mas->cur_xfer) { 418 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 419 return false; 420 } 421 422 max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word; 423 if (mas->tx_rem_bytes < max_bytes) 424 max_bytes = mas->tx_rem_bytes; 425 426 tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes; 427 while (i < max_bytes) { 428 unsigned int j; 429 unsigned int bytes_to_write; 430 u32 fifo_word = 0; 431 u8 *fifo_byte = (u8 *)&fifo_word; 432 433 bytes_to_write = min(bytes_per_fifo_word, max_bytes - i); 434 for (j = 0; j < bytes_to_write; j++) 435 fifo_byte[j] = tx_buf[i++]; 436 iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1); 437 } 438 mas->tx_rem_bytes -= max_bytes; 439 if (!mas->tx_rem_bytes) { 440 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 441 return false; 442 } 443 return true; 444 } 445 446 static void geni_spi_handle_rx(struct spi_geni_master *mas) 447 { 448 struct geni_se *se = &mas->se; 449 u32 rx_fifo_status; 450 unsigned int rx_bytes; 451 unsigned int rx_last_byte_valid; 452 u8 *rx_buf; 453 unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); 454 unsigned int i = 0; 455 456 rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS); 457 rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word; 458 if (rx_fifo_status & RX_LAST) { 459 rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK; 460 rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT; 461 if (rx_last_byte_valid && rx_last_byte_valid < 4) 462 rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid; 463 } 464 465 /* Clear out the FIFO and bail if nowhere to put it */ 466 if (!mas->cur_xfer) { 467 for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++) 468 readl(se->base + SE_GENI_RX_FIFOn); 469 return; 470 } 471 472 if (mas->rx_rem_bytes < rx_bytes) 473 rx_bytes = mas->rx_rem_bytes; 474 475 rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes; 476 while (i < rx_bytes) { 477 u32 fifo_word = 0; 478 u8 *fifo_byte = (u8 *)&fifo_word; 479 unsigned int bytes_to_read; 480 unsigned int j; 481 482 bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i); 483 ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1); 484 for (j = 0; j < bytes_to_read; j++) 485 rx_buf[i++] = fifo_byte[j]; 486 } 487 mas->rx_rem_bytes -= rx_bytes; 488 } 489 490 static void setup_fifo_xfer(struct spi_transfer *xfer, 491 struct spi_geni_master *mas, 492 u16 mode, struct spi_master *spi) 493 { 494 u32 m_cmd = 0; 495 u32 len; 496 struct geni_se *se = &mas->se; 497 int ret; 498 499 /* 500 * Ensure that our interrupt handler isn't still running from some 501 * prior command before we start messing with the hardware behind 502 * its back. We don't need to _keep_ the lock here since we're only 503 * worried about racing with out interrupt handler. The SPI core 504 * already handles making sure that we're not trying to do two 505 * transfers at once or setting a chip select and doing a transfer 506 * concurrently. 507 * 508 * NOTE: we actually _can't_ hold the lock here because possibly we 509 * might call clk_set_rate() which needs to be able to sleep. 510 */ 511 spin_lock_irq(&mas->lock); 512 spin_unlock_irq(&mas->lock); 513 514 if (xfer->bits_per_word != mas->cur_bits_per_word) { 515 spi_setup_word_len(mas, mode, xfer->bits_per_word); 516 mas->cur_bits_per_word = xfer->bits_per_word; 517 } 518 519 /* Speed and bits per word can be overridden per transfer */ 520 ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz); 521 if (ret) 522 return; 523 524 mas->tx_rem_bytes = 0; 525 mas->rx_rem_bytes = 0; 526 527 if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) 528 len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word; 529 else 530 len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1); 531 len &= TRANS_LEN_MSK; 532 533 mas->cur_xfer = xfer; 534 if (xfer->tx_buf) { 535 m_cmd |= SPI_TX_ONLY; 536 mas->tx_rem_bytes = xfer->len; 537 writel(len, se->base + SE_SPI_TX_TRANS_LEN); 538 } 539 540 if (xfer->rx_buf) { 541 m_cmd |= SPI_RX_ONLY; 542 writel(len, se->base + SE_SPI_RX_TRANS_LEN); 543 mas->rx_rem_bytes = xfer->len; 544 } 545 546 /* 547 * Lock around right before we start the transfer since our 548 * interrupt could come in at any time now. 549 */ 550 spin_lock_irq(&mas->lock); 551 geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION); 552 if (m_cmd & SPI_TX_ONLY) { 553 if (geni_spi_handle_tx(mas)) 554 writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG); 555 } 556 spin_unlock_irq(&mas->lock); 557 } 558 559 static int spi_geni_transfer_one(struct spi_master *spi, 560 struct spi_device *slv, 561 struct spi_transfer *xfer) 562 { 563 struct spi_geni_master *mas = spi_master_get_devdata(spi); 564 565 if (spi_geni_is_abort_still_pending(mas)) 566 return -EBUSY; 567 568 /* Terminate and return success for 0 byte length transfer */ 569 if (!xfer->len) 570 return 0; 571 572 setup_fifo_xfer(xfer, mas, slv->mode, spi); 573 return 1; 574 } 575 576 static irqreturn_t geni_spi_isr(int irq, void *data) 577 { 578 struct spi_master *spi = data; 579 struct spi_geni_master *mas = spi_master_get_devdata(spi); 580 struct geni_se *se = &mas->se; 581 u32 m_irq; 582 583 m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS); 584 if (!m_irq) 585 return IRQ_NONE; 586 587 if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN | 588 M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN | 589 M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN)) 590 dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq); 591 592 spin_lock(&mas->lock); 593 594 if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN)) 595 geni_spi_handle_rx(mas); 596 597 if (m_irq & M_TX_FIFO_WATERMARK_EN) 598 geni_spi_handle_tx(mas); 599 600 if (m_irq & M_CMD_DONE_EN) { 601 if (mas->cur_xfer) { 602 spi_finalize_current_transfer(spi); 603 mas->cur_xfer = NULL; 604 /* 605 * If this happens, then a CMD_DONE came before all the 606 * Tx buffer bytes were sent out. This is unusual, log 607 * this condition and disable the WM interrupt to 608 * prevent the system from stalling due an interrupt 609 * storm. 610 * 611 * If this happens when all Rx bytes haven't been 612 * received, log the condition. The only known time 613 * this can happen is if bits_per_word != 8 and some 614 * registers that expect xfer lengths in num spi_words 615 * weren't written correctly. 616 */ 617 if (mas->tx_rem_bytes) { 618 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 619 dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n", 620 mas->tx_rem_bytes, mas->cur_bits_per_word); 621 } 622 if (mas->rx_rem_bytes) 623 dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n", 624 mas->rx_rem_bytes, mas->cur_bits_per_word); 625 } else { 626 complete(&mas->cs_done); 627 } 628 } 629 630 if (m_irq & M_CMD_CANCEL_EN) 631 complete(&mas->cancel_done); 632 if (m_irq & M_CMD_ABORT_EN) 633 complete(&mas->abort_done); 634 635 /* 636 * It's safe or a good idea to Ack all of our interrupts at the end 637 * of the function. Specifically: 638 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and 639 * clearing Acks. Clearing at the end relies on nobody else having 640 * started a new transfer yet or else we could be clearing _their_ 641 * done bit, but everyone grabs the spinlock before starting a new 642 * transfer. 643 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear 644 * to be "latched level" interrupts so it's important to clear them 645 * _after_ you've handled the condition and always safe to do so 646 * since they'll re-assert if they're still happening. 647 */ 648 writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR); 649 650 spin_unlock(&mas->lock); 651 652 return IRQ_HANDLED; 653 } 654 655 static int spi_geni_probe(struct platform_device *pdev) 656 { 657 int ret, irq; 658 struct spi_master *spi; 659 struct spi_geni_master *mas; 660 void __iomem *base; 661 struct clk *clk; 662 struct device *dev = &pdev->dev; 663 664 irq = platform_get_irq(pdev, 0); 665 if (irq < 0) 666 return irq; 667 668 base = devm_platform_ioremap_resource(pdev, 0); 669 if (IS_ERR(base)) 670 return PTR_ERR(base); 671 672 clk = devm_clk_get(dev, "se"); 673 if (IS_ERR(clk)) 674 return PTR_ERR(clk); 675 676 spi = devm_spi_alloc_master(dev, sizeof(*mas)); 677 if (!spi) 678 return -ENOMEM; 679 680 platform_set_drvdata(pdev, spi); 681 mas = spi_master_get_devdata(spi); 682 mas->irq = irq; 683 mas->dev = dev; 684 mas->se.dev = dev; 685 mas->se.wrapper = dev_get_drvdata(dev->parent); 686 mas->se.base = base; 687 mas->se.clk = clk; 688 689 ret = devm_pm_opp_set_clkname(&pdev->dev, "se"); 690 if (ret) 691 return ret; 692 /* OPP table is optional */ 693 ret = devm_pm_opp_of_add_table(&pdev->dev); 694 if (ret && ret != -ENODEV) { 695 dev_err(&pdev->dev, "invalid OPP table in device tree\n"); 696 return ret; 697 } 698 699 spi->bus_num = -1; 700 spi->dev.of_node = dev->of_node; 701 spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH; 702 spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 703 spi->num_chipselect = 4; 704 spi->max_speed_hz = 50000000; 705 spi->prepare_message = spi_geni_prepare_message; 706 spi->transfer_one = spi_geni_transfer_one; 707 spi->auto_runtime_pm = true; 708 spi->handle_err = handle_fifo_timeout; 709 spi->set_cs = spi_geni_set_cs; 710 spi->use_gpio_descriptors = true; 711 712 init_completion(&mas->cs_done); 713 init_completion(&mas->cancel_done); 714 init_completion(&mas->abort_done); 715 spin_lock_init(&mas->lock); 716 pm_runtime_use_autosuspend(&pdev->dev); 717 pm_runtime_set_autosuspend_delay(&pdev->dev, 250); 718 pm_runtime_enable(dev); 719 720 ret = geni_icc_get(&mas->se, NULL); 721 if (ret) 722 goto spi_geni_probe_runtime_disable; 723 /* Set the bus quota to a reasonable value for register access */ 724 mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ); 725 mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW; 726 727 ret = geni_icc_set_bw(&mas->se); 728 if (ret) 729 goto spi_geni_probe_runtime_disable; 730 731 ret = spi_geni_init(mas); 732 if (ret) 733 goto spi_geni_probe_runtime_disable; 734 735 ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi); 736 if (ret) 737 goto spi_geni_probe_runtime_disable; 738 739 ret = spi_register_master(spi); 740 if (ret) 741 goto spi_geni_probe_free_irq; 742 743 return 0; 744 spi_geni_probe_free_irq: 745 free_irq(mas->irq, spi); 746 spi_geni_probe_runtime_disable: 747 pm_runtime_disable(dev); 748 return ret; 749 } 750 751 static int spi_geni_remove(struct platform_device *pdev) 752 { 753 struct spi_master *spi = platform_get_drvdata(pdev); 754 struct spi_geni_master *mas = spi_master_get_devdata(spi); 755 756 /* Unregister _before_ disabling pm_runtime() so we stop transfers */ 757 spi_unregister_master(spi); 758 759 free_irq(mas->irq, spi); 760 pm_runtime_disable(&pdev->dev); 761 return 0; 762 } 763 764 static int __maybe_unused spi_geni_runtime_suspend(struct device *dev) 765 { 766 struct spi_master *spi = dev_get_drvdata(dev); 767 struct spi_geni_master *mas = spi_master_get_devdata(spi); 768 int ret; 769 770 /* Drop the performance state vote */ 771 dev_pm_opp_set_rate(dev, 0); 772 773 ret = geni_se_resources_off(&mas->se); 774 if (ret) 775 return ret; 776 777 return geni_icc_disable(&mas->se); 778 } 779 780 static int __maybe_unused spi_geni_runtime_resume(struct device *dev) 781 { 782 struct spi_master *spi = dev_get_drvdata(dev); 783 struct spi_geni_master *mas = spi_master_get_devdata(spi); 784 int ret; 785 786 ret = geni_icc_enable(&mas->se); 787 if (ret) 788 return ret; 789 790 ret = geni_se_resources_on(&mas->se); 791 if (ret) 792 return ret; 793 794 return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz); 795 } 796 797 static int __maybe_unused spi_geni_suspend(struct device *dev) 798 { 799 struct spi_master *spi = dev_get_drvdata(dev); 800 int ret; 801 802 ret = spi_master_suspend(spi); 803 if (ret) 804 return ret; 805 806 ret = pm_runtime_force_suspend(dev); 807 if (ret) 808 spi_master_resume(spi); 809 810 return ret; 811 } 812 813 static int __maybe_unused spi_geni_resume(struct device *dev) 814 { 815 struct spi_master *spi = dev_get_drvdata(dev); 816 int ret; 817 818 ret = pm_runtime_force_resume(dev); 819 if (ret) 820 return ret; 821 822 ret = spi_master_resume(spi); 823 if (ret) 824 pm_runtime_force_suspend(dev); 825 826 return ret; 827 } 828 829 static const struct dev_pm_ops spi_geni_pm_ops = { 830 SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend, 831 spi_geni_runtime_resume, NULL) 832 SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume) 833 }; 834 835 static const struct of_device_id spi_geni_dt_match[] = { 836 { .compatible = "qcom,geni-spi" }, 837 {} 838 }; 839 MODULE_DEVICE_TABLE(of, spi_geni_dt_match); 840 841 static struct platform_driver spi_geni_driver = { 842 .probe = spi_geni_probe, 843 .remove = spi_geni_remove, 844 .driver = { 845 .name = "geni_spi", 846 .pm = &spi_geni_pm_ops, 847 .of_match_table = spi_geni_dt_match, 848 }, 849 }; 850 module_platform_driver(spi_geni_driver); 851 852 MODULE_DESCRIPTION("SPI driver for GENI based QUP cores"); 853 MODULE_LICENSE("GPL v2"); 854