xref: /openbmc/linux/drivers/spi/spi-geni-qcom.c (revision 234489ac)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
3 
4 #include <linux/clk.h>
5 #include <linux/dmaengine.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/dma/qcom-gpi-dma.h>
8 #include <linux/interrupt.h>
9 #include <linux/io.h>
10 #include <linux/log2.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/pm_opp.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/soc/qcom/geni-se.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spinlock.h>
18 
19 /* SPI SE specific registers and respective register fields */
20 #define SE_SPI_CPHA		0x224
21 #define CPHA			BIT(0)
22 
23 #define SE_SPI_LOOPBACK		0x22c
24 #define LOOPBACK_ENABLE		0x1
25 #define NORMAL_MODE		0x0
26 #define LOOPBACK_MSK		GENMASK(1, 0)
27 
28 #define SE_SPI_CPOL		0x230
29 #define CPOL			BIT(2)
30 
31 #define SE_SPI_DEMUX_OUTPUT_INV	0x24c
32 #define CS_DEMUX_OUTPUT_INV_MSK	GENMASK(3, 0)
33 
34 #define SE_SPI_DEMUX_SEL	0x250
35 #define CS_DEMUX_OUTPUT_SEL	GENMASK(3, 0)
36 
37 #define SE_SPI_TRANS_CFG	0x25c
38 #define CS_TOGGLE		BIT(0)
39 
40 #define SE_SPI_WORD_LEN		0x268
41 #define WORD_LEN_MSK		GENMASK(9, 0)
42 #define MIN_WORD_LEN		4
43 
44 #define SE_SPI_TX_TRANS_LEN	0x26c
45 #define SE_SPI_RX_TRANS_LEN	0x270
46 #define TRANS_LEN_MSK		GENMASK(23, 0)
47 
48 #define SE_SPI_PRE_POST_CMD_DLY	0x274
49 
50 #define SE_SPI_DELAY_COUNTERS	0x278
51 #define SPI_INTER_WORDS_DELAY_MSK	GENMASK(9, 0)
52 #define SPI_CS_CLK_DELAY_MSK		GENMASK(19, 10)
53 #define SPI_CS_CLK_DELAY_SHFT		10
54 
55 /* M_CMD OP codes for SPI */
56 #define SPI_TX_ONLY		1
57 #define SPI_RX_ONLY		2
58 #define SPI_TX_RX		7
59 #define SPI_CS_ASSERT		8
60 #define SPI_CS_DEASSERT		9
61 #define SPI_SCK_ONLY		10
62 /* M_CMD params for SPI */
63 #define SPI_PRE_CMD_DELAY	BIT(0)
64 #define TIMESTAMP_BEFORE	BIT(1)
65 #define FRAGMENTATION		BIT(2)
66 #define TIMESTAMP_AFTER		BIT(3)
67 #define POST_CMD_DELAY		BIT(4)
68 
69 #define GSI_LOOPBACK_EN		BIT(0)
70 #define GSI_CS_TOGGLE		BIT(3)
71 #define GSI_CPHA		BIT(4)
72 #define GSI_CPOL		BIT(5)
73 
74 struct spi_geni_master {
75 	struct geni_se se;
76 	struct device *dev;
77 	u32 tx_fifo_depth;
78 	u32 fifo_width_bits;
79 	u32 tx_wm;
80 	u32 last_mode;
81 	unsigned long cur_speed_hz;
82 	unsigned long cur_sclk_hz;
83 	unsigned int cur_bits_per_word;
84 	unsigned int tx_rem_bytes;
85 	unsigned int rx_rem_bytes;
86 	const struct spi_transfer *cur_xfer;
87 	struct completion cs_done;
88 	struct completion cancel_done;
89 	struct completion abort_done;
90 	struct completion tx_reset_done;
91 	struct completion rx_reset_done;
92 	unsigned int oversampling;
93 	spinlock_t lock;
94 	int irq;
95 	bool cs_flag;
96 	bool abort_failed;
97 	struct dma_chan *tx;
98 	struct dma_chan *rx;
99 	int cur_xfer_mode;
100 	dma_addr_t tx_se_dma;
101 	dma_addr_t rx_se_dma;
102 };
103 
104 static int get_spi_clk_cfg(unsigned int speed_hz,
105 			struct spi_geni_master *mas,
106 			unsigned int *clk_idx,
107 			unsigned int *clk_div)
108 {
109 	unsigned long sclk_freq;
110 	unsigned int actual_hz;
111 	int ret;
112 
113 	ret = geni_se_clk_freq_match(&mas->se,
114 				speed_hz * mas->oversampling,
115 				clk_idx, &sclk_freq, false);
116 	if (ret) {
117 		dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
118 							ret, speed_hz);
119 		return ret;
120 	}
121 
122 	*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
123 	actual_hz = sclk_freq / (mas->oversampling * *clk_div);
124 
125 	dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
126 				actual_hz, sclk_freq, *clk_idx, *clk_div);
127 	ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
128 	if (ret)
129 		dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
130 	else
131 		mas->cur_sclk_hz = sclk_freq;
132 
133 	return ret;
134 }
135 
136 static void handle_se_timeout(struct spi_master *spi,
137 				struct spi_message *msg)
138 {
139 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
140 	unsigned long time_left;
141 	struct geni_se *se = &mas->se;
142 	const struct spi_transfer *xfer;
143 
144 	spin_lock_irq(&mas->lock);
145 	reinit_completion(&mas->cancel_done);
146 	if (mas->cur_xfer_mode == GENI_SE_FIFO)
147 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
148 
149 	xfer = mas->cur_xfer;
150 	mas->cur_xfer = NULL;
151 	geni_se_cancel_m_cmd(se);
152 	spin_unlock_irq(&mas->lock);
153 
154 	time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
155 	if (time_left)
156 		goto unmap_if_dma;
157 
158 	spin_lock_irq(&mas->lock);
159 	reinit_completion(&mas->abort_done);
160 	geni_se_abort_m_cmd(se);
161 	spin_unlock_irq(&mas->lock);
162 
163 	time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
164 	if (!time_left) {
165 		dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
166 
167 		/*
168 		 * No need for a lock since SPI core has a lock and we never
169 		 * access this from an interrupt.
170 		 */
171 		mas->abort_failed = true;
172 	}
173 
174 unmap_if_dma:
175 	if (mas->cur_xfer_mode == GENI_SE_DMA) {
176 		if (xfer) {
177 			if (xfer->tx_buf && mas->tx_se_dma) {
178 				spin_lock_irq(&mas->lock);
179 				reinit_completion(&mas->tx_reset_done);
180 				writel(1, se->base + SE_DMA_TX_FSM_RST);
181 				spin_unlock_irq(&mas->lock);
182 				time_left = wait_for_completion_timeout(&mas->tx_reset_done, HZ);
183 				if (!time_left)
184 					dev_err(mas->dev, "DMA TX RESET failed\n");
185 				geni_se_tx_dma_unprep(se, mas->tx_se_dma, xfer->len);
186 			}
187 			if (xfer->rx_buf && mas->rx_se_dma) {
188 				spin_lock_irq(&mas->lock);
189 				reinit_completion(&mas->rx_reset_done);
190 				writel(1, se->base + SE_DMA_RX_FSM_RST);
191 				spin_unlock_irq(&mas->lock);
192 				time_left = wait_for_completion_timeout(&mas->rx_reset_done, HZ);
193 				if (!time_left)
194 					dev_err(mas->dev, "DMA RX RESET failed\n");
195 				geni_se_rx_dma_unprep(se, mas->rx_se_dma, xfer->len);
196 			}
197 		} else {
198 			/*
199 			 * This can happen if a timeout happened and we had to wait
200 			 * for lock in this function because isr was holding the lock
201 			 * and handling transfer completion at that time.
202 			 */
203 			dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n");
204 		}
205 	}
206 }
207 
208 static void handle_gpi_timeout(struct spi_master *spi, struct spi_message *msg)
209 {
210 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
211 
212 	dmaengine_terminate_sync(mas->tx);
213 	dmaengine_terminate_sync(mas->rx);
214 }
215 
216 static void spi_geni_handle_err(struct spi_master *spi, struct spi_message *msg)
217 {
218 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
219 
220 	switch (mas->cur_xfer_mode) {
221 	case GENI_SE_FIFO:
222 	case GENI_SE_DMA:
223 		handle_se_timeout(spi, msg);
224 		break;
225 	case GENI_GPI_DMA:
226 		handle_gpi_timeout(spi, msg);
227 		break;
228 	default:
229 		dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode);
230 	}
231 }
232 
233 static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
234 {
235 	struct geni_se *se = &mas->se;
236 	u32 m_irq, m_irq_en;
237 
238 	if (!mas->abort_failed)
239 		return false;
240 
241 	/*
242 	 * The only known case where a transfer times out and then a cancel
243 	 * times out then an abort times out is if something is blocking our
244 	 * interrupt handler from running.  Avoid starting any new transfers
245 	 * until that sorts itself out.
246 	 */
247 	spin_lock_irq(&mas->lock);
248 	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
249 	m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
250 	spin_unlock_irq(&mas->lock);
251 
252 	if (m_irq & m_irq_en) {
253 		dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
254 			m_irq & m_irq_en);
255 		return true;
256 	}
257 
258 	/*
259 	 * If we're here the problem resolved itself so no need to check more
260 	 * on future transfers.
261 	 */
262 	mas->abort_failed = false;
263 
264 	return false;
265 }
266 
267 static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
268 {
269 	struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
270 	struct spi_master *spi = dev_get_drvdata(mas->dev);
271 	struct geni_se *se = &mas->se;
272 	unsigned long time_left;
273 
274 	if (!(slv->mode & SPI_CS_HIGH))
275 		set_flag = !set_flag;
276 
277 	if (set_flag == mas->cs_flag)
278 		return;
279 
280 	pm_runtime_get_sync(mas->dev);
281 
282 	if (spi_geni_is_abort_still_pending(mas)) {
283 		dev_err(mas->dev, "Can't set chip select\n");
284 		goto exit;
285 	}
286 
287 	spin_lock_irq(&mas->lock);
288 	if (mas->cur_xfer) {
289 		dev_err(mas->dev, "Can't set CS when prev xfer running\n");
290 		spin_unlock_irq(&mas->lock);
291 		goto exit;
292 	}
293 
294 	mas->cs_flag = set_flag;
295 	/* set xfer_mode to FIFO to complete cs_done in isr */
296 	mas->cur_xfer_mode = GENI_SE_FIFO;
297 	reinit_completion(&mas->cs_done);
298 	if (set_flag)
299 		geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
300 	else
301 		geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
302 	spin_unlock_irq(&mas->lock);
303 
304 	time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
305 	if (!time_left) {
306 		dev_warn(mas->dev, "Timeout setting chip select\n");
307 		handle_se_timeout(spi, NULL);
308 	}
309 
310 exit:
311 	pm_runtime_put(mas->dev);
312 }
313 
314 static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
315 					unsigned int bits_per_word)
316 {
317 	unsigned int pack_words;
318 	bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
319 	struct geni_se *se = &mas->se;
320 	u32 word_len;
321 
322 	/*
323 	 * If bits_per_word isn't a byte aligned value, set the packing to be
324 	 * 1 SPI word per FIFO word.
325 	 */
326 	if (!(mas->fifo_width_bits % bits_per_word))
327 		pack_words = mas->fifo_width_bits / bits_per_word;
328 	else
329 		pack_words = 1;
330 	geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
331 								true, true);
332 	word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
333 	writel(word_len, se->base + SE_SPI_WORD_LEN);
334 }
335 
336 static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
337 					unsigned long clk_hz)
338 {
339 	u32 clk_sel, m_clk_cfg, idx, div;
340 	struct geni_se *se = &mas->se;
341 	int ret;
342 
343 	if (clk_hz == mas->cur_speed_hz)
344 		return 0;
345 
346 	ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
347 	if (ret) {
348 		dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
349 		return ret;
350 	}
351 
352 	/*
353 	 * SPI core clock gets configured with the requested frequency
354 	 * or the frequency closer to the requested frequency.
355 	 * For that reason requested frequency is stored in the
356 	 * cur_speed_hz and referred in the consecutive transfer instead
357 	 * of calling clk_get_rate() API.
358 	 */
359 	mas->cur_speed_hz = clk_hz;
360 
361 	clk_sel = idx & CLK_SEL_MSK;
362 	m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
363 	writel(clk_sel, se->base + SE_GENI_CLK_SEL);
364 	writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
365 
366 	/* Set BW quota for CPU as driver supports FIFO mode only. */
367 	se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
368 	ret = geni_icc_set_bw(se);
369 	if (ret)
370 		return ret;
371 
372 	return 0;
373 }
374 
375 static int setup_fifo_params(struct spi_device *spi_slv,
376 					struct spi_master *spi)
377 {
378 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
379 	struct geni_se *se = &mas->se;
380 	u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
381 	u32 demux_sel;
382 
383 	if (mas->last_mode != spi_slv->mode) {
384 		if (spi_slv->mode & SPI_LOOP)
385 			loopback_cfg = LOOPBACK_ENABLE;
386 
387 		if (spi_slv->mode & SPI_CPOL)
388 			cpol = CPOL;
389 
390 		if (spi_slv->mode & SPI_CPHA)
391 			cpha = CPHA;
392 
393 		if (spi_slv->mode & SPI_CS_HIGH)
394 			demux_output_inv = BIT(spi_get_chipselect(spi_slv, 0));
395 
396 		demux_sel = spi_get_chipselect(spi_slv, 0);
397 		mas->cur_bits_per_word = spi_slv->bits_per_word;
398 
399 		spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
400 		writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
401 		writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
402 		writel(cpha, se->base + SE_SPI_CPHA);
403 		writel(cpol, se->base + SE_SPI_CPOL);
404 		writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
405 
406 		mas->last_mode = spi_slv->mode;
407 	}
408 
409 	return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
410 }
411 
412 static void
413 spi_gsi_callback_result(void *cb, const struct dmaengine_result *result)
414 {
415 	struct spi_master *spi = cb;
416 
417 	spi->cur_msg->status = -EIO;
418 	if (result->result != DMA_TRANS_NOERROR) {
419 		dev_err(&spi->dev, "DMA txn failed: %d\n", result->result);
420 		spi_finalize_current_transfer(spi);
421 		return;
422 	}
423 
424 	if (!result->residue) {
425 		spi->cur_msg->status = 0;
426 		dev_dbg(&spi->dev, "DMA txn completed\n");
427 	} else {
428 		dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue);
429 	}
430 
431 	spi_finalize_current_transfer(spi);
432 }
433 
434 static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas,
435 			  struct spi_device *spi_slv, struct spi_master *spi)
436 {
437 	unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
438 	struct dma_slave_config config = {};
439 	struct gpi_spi_config peripheral = {};
440 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
441 	int ret;
442 
443 	config.peripheral_config = &peripheral;
444 	config.peripheral_size = sizeof(peripheral);
445 	peripheral.set_config = true;
446 
447 	if (xfer->bits_per_word != mas->cur_bits_per_word ||
448 	    xfer->speed_hz != mas->cur_speed_hz) {
449 		mas->cur_bits_per_word = xfer->bits_per_word;
450 		mas->cur_speed_hz = xfer->speed_hz;
451 	}
452 
453 	if (xfer->tx_buf && xfer->rx_buf) {
454 		peripheral.cmd = SPI_DUPLEX;
455 	} else if (xfer->tx_buf) {
456 		peripheral.cmd = SPI_TX;
457 		peripheral.rx_len = 0;
458 	} else if (xfer->rx_buf) {
459 		peripheral.cmd = SPI_RX;
460 		if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) {
461 			peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word);
462 		} else {
463 			int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1;
464 
465 			peripheral.rx_len = (xfer->len / bytes_per_word);
466 		}
467 	}
468 
469 	peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP);
470 	peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL);
471 	peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA);
472 	peripheral.cs = spi_get_chipselect(spi_slv, 0);
473 	peripheral.pack_en = true;
474 	peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN;
475 
476 	ret = get_spi_clk_cfg(mas->cur_speed_hz, mas,
477 			      &peripheral.clk_src, &peripheral.clk_div);
478 	if (ret) {
479 		dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret);
480 		return ret;
481 	}
482 
483 	if (!xfer->cs_change) {
484 		if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers))
485 			peripheral.fragmentation = FRAGMENTATION;
486 	}
487 
488 	if (peripheral.cmd & SPI_RX) {
489 		dmaengine_slave_config(mas->rx, &config);
490 		rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents,
491 						  DMA_DEV_TO_MEM, flags);
492 		if (!rx_desc) {
493 			dev_err(mas->dev, "Err setting up rx desc\n");
494 			return -EIO;
495 		}
496 	}
497 
498 	/*
499 	 * Prepare the TX always, even for RX or tx_buf being null, we would
500 	 * need TX to be prepared per GSI spec
501 	 */
502 	dmaengine_slave_config(mas->tx, &config);
503 	tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents,
504 					  DMA_MEM_TO_DEV, flags);
505 	if (!tx_desc) {
506 		dev_err(mas->dev, "Err setting up tx desc\n");
507 		return -EIO;
508 	}
509 
510 	tx_desc->callback_result = spi_gsi_callback_result;
511 	tx_desc->callback_param = spi;
512 
513 	if (peripheral.cmd & SPI_RX)
514 		dmaengine_submit(rx_desc);
515 	dmaengine_submit(tx_desc);
516 
517 	if (peripheral.cmd & SPI_RX)
518 		dma_async_issue_pending(mas->rx);
519 
520 	dma_async_issue_pending(mas->tx);
521 	return 1;
522 }
523 
524 static bool geni_can_dma(struct spi_controller *ctlr,
525 			 struct spi_device *slv, struct spi_transfer *xfer)
526 {
527 	struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
528 
529 	/*
530 	 * Return true if transfer needs to be mapped prior to
531 	 * calling transfer_one which is the case only for GPI_DMA.
532 	 * For SE_DMA mode, map/unmap is done in geni_se_*x_dma_prep.
533 	 */
534 	return mas->cur_xfer_mode == GENI_GPI_DMA;
535 }
536 
537 static int spi_geni_prepare_message(struct spi_master *spi,
538 					struct spi_message *spi_msg)
539 {
540 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
541 	int ret;
542 
543 	switch (mas->cur_xfer_mode) {
544 	case GENI_SE_FIFO:
545 	case GENI_SE_DMA:
546 		if (spi_geni_is_abort_still_pending(mas))
547 			return -EBUSY;
548 		ret = setup_fifo_params(spi_msg->spi, spi);
549 		if (ret)
550 			dev_err(mas->dev, "Couldn't select mode %d\n", ret);
551 		return ret;
552 
553 	case GENI_GPI_DMA:
554 		/* nothing to do for GPI DMA */
555 		return 0;
556 	}
557 
558 	dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode);
559 	return -EINVAL;
560 }
561 
562 static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas)
563 {
564 	int ret;
565 
566 	mas->tx = dma_request_chan(mas->dev, "tx");
567 	if (IS_ERR(mas->tx)) {
568 		ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx),
569 				    "Failed to get tx DMA ch\n");
570 		goto err_tx;
571 	}
572 
573 	mas->rx = dma_request_chan(mas->dev, "rx");
574 	if (IS_ERR(mas->rx)) {
575 		ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx),
576 				    "Failed to get rx DMA ch\n");
577 		goto err_rx;
578 	}
579 
580 	return 0;
581 
582 err_rx:
583 	mas->rx = NULL;
584 	dma_release_channel(mas->tx);
585 err_tx:
586 	mas->tx = NULL;
587 	return ret;
588 }
589 
590 static void spi_geni_release_dma_chan(struct spi_geni_master *mas)
591 {
592 	if (mas->rx) {
593 		dma_release_channel(mas->rx);
594 		mas->rx = NULL;
595 	}
596 
597 	if (mas->tx) {
598 		dma_release_channel(mas->tx);
599 		mas->tx = NULL;
600 	}
601 }
602 
603 static int spi_geni_init(struct spi_geni_master *mas)
604 {
605 	struct geni_se *se = &mas->se;
606 	unsigned int proto, major, minor, ver;
607 	u32 spi_tx_cfg, fifo_disable;
608 	int ret = -ENXIO;
609 
610 	pm_runtime_get_sync(mas->dev);
611 
612 	proto = geni_se_read_proto(se);
613 	if (proto != GENI_SE_SPI) {
614 		dev_err(mas->dev, "Invalid proto %d\n", proto);
615 		goto out_pm;
616 	}
617 	mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
618 
619 	/* Width of Tx and Rx FIFO is same */
620 	mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
621 
622 	/*
623 	 * Hardware programming guide suggests to configure
624 	 * RX FIFO RFR level to fifo_depth-2.
625 	 */
626 	geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
627 	/* Transmit an entire FIFO worth of data per IRQ */
628 	mas->tx_wm = 1;
629 	ver = geni_se_get_qup_hw_version(se);
630 	major = GENI_SE_VERSION_MAJOR(ver);
631 	minor = GENI_SE_VERSION_MINOR(ver);
632 
633 	if (major == 1 && minor == 0)
634 		mas->oversampling = 2;
635 	else
636 		mas->oversampling = 1;
637 
638 	fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE;
639 	switch (fifo_disable) {
640 	case 1:
641 		ret = spi_geni_grab_gpi_chan(mas);
642 		if (!ret) { /* success case */
643 			mas->cur_xfer_mode = GENI_GPI_DMA;
644 			geni_se_select_mode(se, GENI_GPI_DMA);
645 			dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n");
646 			break;
647 		}
648 		/*
649 		 * in case of failure to get gpi dma channel, we can still do the
650 		 * FIFO mode, so fallthrough
651 		 */
652 		dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n");
653 		fallthrough;
654 
655 	case 0:
656 		mas->cur_xfer_mode = GENI_SE_FIFO;
657 		geni_se_select_mode(se, GENI_SE_FIFO);
658 		ret = 0;
659 		break;
660 	}
661 
662 	/* We always control CS manually */
663 	spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
664 	spi_tx_cfg &= ~CS_TOGGLE;
665 	writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
666 
667 out_pm:
668 	pm_runtime_put(mas->dev);
669 	return ret;
670 }
671 
672 static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
673 {
674 	/*
675 	 * Calculate how many bytes we'll put in each FIFO word.  If the
676 	 * transfer words don't pack cleanly into a FIFO word we'll just put
677 	 * one transfer word in each FIFO word.  If they do pack we'll pack 'em.
678 	 */
679 	if (mas->fifo_width_bits % mas->cur_bits_per_word)
680 		return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
681 						       BITS_PER_BYTE));
682 
683 	return mas->fifo_width_bits / BITS_PER_BYTE;
684 }
685 
686 static bool geni_spi_handle_tx(struct spi_geni_master *mas)
687 {
688 	struct geni_se *se = &mas->se;
689 	unsigned int max_bytes;
690 	const u8 *tx_buf;
691 	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
692 	unsigned int i = 0;
693 
694 	/* Stop the watermark IRQ if nothing to send */
695 	if (!mas->cur_xfer) {
696 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
697 		return false;
698 	}
699 
700 	max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
701 	if (mas->tx_rem_bytes < max_bytes)
702 		max_bytes = mas->tx_rem_bytes;
703 
704 	tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
705 	while (i < max_bytes) {
706 		unsigned int j;
707 		unsigned int bytes_to_write;
708 		u32 fifo_word = 0;
709 		u8 *fifo_byte = (u8 *)&fifo_word;
710 
711 		bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
712 		for (j = 0; j < bytes_to_write; j++)
713 			fifo_byte[j] = tx_buf[i++];
714 		iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
715 	}
716 	mas->tx_rem_bytes -= max_bytes;
717 	if (!mas->tx_rem_bytes) {
718 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
719 		return false;
720 	}
721 	return true;
722 }
723 
724 static void geni_spi_handle_rx(struct spi_geni_master *mas)
725 {
726 	struct geni_se *se = &mas->se;
727 	u32 rx_fifo_status;
728 	unsigned int rx_bytes;
729 	unsigned int rx_last_byte_valid;
730 	u8 *rx_buf;
731 	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
732 	unsigned int i = 0;
733 
734 	rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
735 	rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
736 	if (rx_fifo_status & RX_LAST) {
737 		rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
738 		rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
739 		if (rx_last_byte_valid && rx_last_byte_valid < 4)
740 			rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
741 	}
742 
743 	/* Clear out the FIFO and bail if nowhere to put it */
744 	if (!mas->cur_xfer) {
745 		for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
746 			readl(se->base + SE_GENI_RX_FIFOn);
747 		return;
748 	}
749 
750 	if (mas->rx_rem_bytes < rx_bytes)
751 		rx_bytes = mas->rx_rem_bytes;
752 
753 	rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
754 	while (i < rx_bytes) {
755 		u32 fifo_word = 0;
756 		u8 *fifo_byte = (u8 *)&fifo_word;
757 		unsigned int bytes_to_read;
758 		unsigned int j;
759 
760 		bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
761 		ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
762 		for (j = 0; j < bytes_to_read; j++)
763 			rx_buf[i++] = fifo_byte[j];
764 	}
765 	mas->rx_rem_bytes -= rx_bytes;
766 }
767 
768 static int setup_se_xfer(struct spi_transfer *xfer,
769 				struct spi_geni_master *mas,
770 				u16 mode, struct spi_master *spi)
771 {
772 	u32 m_cmd = 0;
773 	u32 len, fifo_size;
774 	struct geni_se *se = &mas->se;
775 	int ret;
776 
777 	/*
778 	 * Ensure that our interrupt handler isn't still running from some
779 	 * prior command before we start messing with the hardware behind
780 	 * its back.  We don't need to _keep_ the lock here since we're only
781 	 * worried about racing with out interrupt handler.  The SPI core
782 	 * already handles making sure that we're not trying to do two
783 	 * transfers at once or setting a chip select and doing a transfer
784 	 * concurrently.
785 	 *
786 	 * NOTE: we actually _can't_ hold the lock here because possibly we
787 	 * might call clk_set_rate() which needs to be able to sleep.
788 	 */
789 	spin_lock_irq(&mas->lock);
790 	spin_unlock_irq(&mas->lock);
791 
792 	if (xfer->bits_per_word != mas->cur_bits_per_word) {
793 		spi_setup_word_len(mas, mode, xfer->bits_per_word);
794 		mas->cur_bits_per_word = xfer->bits_per_word;
795 	}
796 
797 	/* Speed and bits per word can be overridden per transfer */
798 	ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
799 	if (ret)
800 		return ret;
801 
802 	mas->tx_rem_bytes = 0;
803 	mas->rx_rem_bytes = 0;
804 
805 	if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
806 		len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
807 	else
808 		len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
809 	len &= TRANS_LEN_MSK;
810 
811 	mas->cur_xfer = xfer;
812 	if (xfer->tx_buf) {
813 		m_cmd |= SPI_TX_ONLY;
814 		mas->tx_rem_bytes = xfer->len;
815 		writel(len, se->base + SE_SPI_TX_TRANS_LEN);
816 	}
817 
818 	if (xfer->rx_buf) {
819 		m_cmd |= SPI_RX_ONLY;
820 		writel(len, se->base + SE_SPI_RX_TRANS_LEN);
821 		mas->rx_rem_bytes = xfer->len;
822 	}
823 
824 	/* Select transfer mode based on transfer length */
825 	fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word;
826 	mas->cur_xfer_mode = (len <= fifo_size) ? GENI_SE_FIFO : GENI_SE_DMA;
827 	geni_se_select_mode(se, mas->cur_xfer_mode);
828 
829 	/*
830 	 * Lock around right before we start the transfer since our
831 	 * interrupt could come in at any time now.
832 	 */
833 	spin_lock_irq(&mas->lock);
834 	geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
835 
836 	if (mas->cur_xfer_mode == GENI_SE_DMA) {
837 		if (m_cmd & SPI_RX_ONLY) {
838 			ret =  geni_se_rx_dma_prep(se, xfer->rx_buf,
839 				xfer->len, &mas->rx_se_dma);
840 			if (ret) {
841 				dev_err(mas->dev, "Failed to setup Rx dma %d\n", ret);
842 				mas->rx_se_dma = 0;
843 				goto unlock_and_return;
844 			}
845 		}
846 		if (m_cmd & SPI_TX_ONLY) {
847 			ret =  geni_se_tx_dma_prep(se, (void *)xfer->tx_buf,
848 				xfer->len, &mas->tx_se_dma);
849 			if (ret) {
850 				dev_err(mas->dev, "Failed to setup Tx dma %d\n", ret);
851 				mas->tx_se_dma = 0;
852 				if (m_cmd & SPI_RX_ONLY) {
853 					/* Unmap rx buffer if duplex transfer */
854 					geni_se_rx_dma_unprep(se, mas->rx_se_dma, xfer->len);
855 					mas->rx_se_dma = 0;
856 				}
857 				goto unlock_and_return;
858 			}
859 		}
860 	} else if (m_cmd & SPI_TX_ONLY) {
861 		if (geni_spi_handle_tx(mas))
862 			writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
863 	}
864 
865 unlock_and_return:
866 	spin_unlock_irq(&mas->lock);
867 	return ret;
868 }
869 
870 static int spi_geni_transfer_one(struct spi_master *spi,
871 				struct spi_device *slv,
872 				struct spi_transfer *xfer)
873 {
874 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
875 	int ret;
876 
877 	if (spi_geni_is_abort_still_pending(mas))
878 		return -EBUSY;
879 
880 	/* Terminate and return success for 0 byte length transfer */
881 	if (!xfer->len)
882 		return 0;
883 
884 	if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) {
885 		ret = setup_se_xfer(xfer, mas, slv->mode, spi);
886 		/* SPI framework expects +ve ret code to wait for transfer complete */
887 		if (!ret)
888 			ret = 1;
889 		return ret;
890 	}
891 	return setup_gsi_xfer(xfer, mas, slv, spi);
892 }
893 
894 static irqreturn_t geni_spi_isr(int irq, void *data)
895 {
896 	struct spi_master *spi = data;
897 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
898 	struct geni_se *se = &mas->se;
899 	u32 m_irq;
900 
901 	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
902 	if (!m_irq)
903 		return IRQ_NONE;
904 
905 	if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
906 		     M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
907 		     M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
908 		dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
909 
910 	spin_lock(&mas->lock);
911 
912 	if (mas->cur_xfer_mode == GENI_SE_FIFO) {
913 		if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
914 			geni_spi_handle_rx(mas);
915 
916 		if (m_irq & M_TX_FIFO_WATERMARK_EN)
917 			geni_spi_handle_tx(mas);
918 
919 		if (m_irq & M_CMD_DONE_EN) {
920 			if (mas->cur_xfer) {
921 				spi_finalize_current_transfer(spi);
922 				mas->cur_xfer = NULL;
923 				/*
924 				 * If this happens, then a CMD_DONE came before all the
925 				 * Tx buffer bytes were sent out. This is unusual, log
926 				 * this condition and disable the WM interrupt to
927 				 * prevent the system from stalling due an interrupt
928 				 * storm.
929 				 *
930 				 * If this happens when all Rx bytes haven't been
931 				 * received, log the condition. The only known time
932 				 * this can happen is if bits_per_word != 8 and some
933 				 * registers that expect xfer lengths in num spi_words
934 				 * weren't written correctly.
935 				 */
936 				if (mas->tx_rem_bytes) {
937 					writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
938 					dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
939 						mas->tx_rem_bytes, mas->cur_bits_per_word);
940 				}
941 				if (mas->rx_rem_bytes)
942 					dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
943 						mas->rx_rem_bytes, mas->cur_bits_per_word);
944 			} else {
945 				complete(&mas->cs_done);
946 			}
947 		}
948 	} else if (mas->cur_xfer_mode == GENI_SE_DMA) {
949 		const struct spi_transfer *xfer = mas->cur_xfer;
950 		u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT);
951 		u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT);
952 
953 		if (dma_tx_status)
954 			writel(dma_tx_status, se->base + SE_DMA_TX_IRQ_CLR);
955 		if (dma_rx_status)
956 			writel(dma_rx_status, se->base + SE_DMA_RX_IRQ_CLR);
957 		if (dma_tx_status & TX_DMA_DONE)
958 			mas->tx_rem_bytes = 0;
959 		if (dma_rx_status & RX_DMA_DONE)
960 			mas->rx_rem_bytes = 0;
961 		if (dma_tx_status & TX_RESET_DONE)
962 			complete(&mas->tx_reset_done);
963 		if (dma_rx_status & RX_RESET_DONE)
964 			complete(&mas->rx_reset_done);
965 		if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) {
966 			if (xfer->tx_buf && mas->tx_se_dma) {
967 				geni_se_tx_dma_unprep(se, mas->tx_se_dma, xfer->len);
968 				mas->tx_se_dma = 0;
969 			}
970 			if (xfer->rx_buf && mas->rx_se_dma) {
971 				geni_se_rx_dma_unprep(se, mas->rx_se_dma, xfer->len);
972 				mas->rx_se_dma = 0;
973 			}
974 			spi_finalize_current_transfer(spi);
975 			mas->cur_xfer = NULL;
976 		}
977 	}
978 
979 	if (m_irq & M_CMD_CANCEL_EN)
980 		complete(&mas->cancel_done);
981 	if (m_irq & M_CMD_ABORT_EN)
982 		complete(&mas->abort_done);
983 
984 	/*
985 	 * It's safe or a good idea to Ack all of our interrupts at the end
986 	 * of the function. Specifically:
987 	 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
988 	 *   clearing Acks. Clearing at the end relies on nobody else having
989 	 *   started a new transfer yet or else we could be clearing _their_
990 	 *   done bit, but everyone grabs the spinlock before starting a new
991 	 *   transfer.
992 	 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
993 	 *   to be "latched level" interrupts so it's important to clear them
994 	 *   _after_ you've handled the condition and always safe to do so
995 	 *   since they'll re-assert if they're still happening.
996 	 */
997 	writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
998 
999 	spin_unlock(&mas->lock);
1000 
1001 	return IRQ_HANDLED;
1002 }
1003 
1004 static int spi_geni_probe(struct platform_device *pdev)
1005 {
1006 	int ret, irq;
1007 	struct spi_master *spi;
1008 	struct spi_geni_master *mas;
1009 	void __iomem *base;
1010 	struct clk *clk;
1011 	struct device *dev = &pdev->dev;
1012 
1013 	irq = platform_get_irq(pdev, 0);
1014 	if (irq < 0)
1015 		return irq;
1016 
1017 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1018 	if (ret)
1019 		return dev_err_probe(dev, ret, "could not set DMA mask\n");
1020 
1021 	base = devm_platform_ioremap_resource(pdev, 0);
1022 	if (IS_ERR(base))
1023 		return PTR_ERR(base);
1024 
1025 	clk = devm_clk_get(dev, "se");
1026 	if (IS_ERR(clk))
1027 		return PTR_ERR(clk);
1028 
1029 	spi = devm_spi_alloc_master(dev, sizeof(*mas));
1030 	if (!spi)
1031 		return -ENOMEM;
1032 
1033 	platform_set_drvdata(pdev, spi);
1034 	mas = spi_master_get_devdata(spi);
1035 	mas->irq = irq;
1036 	mas->dev = dev;
1037 	mas->se.dev = dev;
1038 	mas->se.wrapper = dev_get_drvdata(dev->parent);
1039 	mas->se.base = base;
1040 	mas->se.clk = clk;
1041 
1042 	ret = devm_pm_opp_set_clkname(&pdev->dev, "se");
1043 	if (ret)
1044 		return ret;
1045 	/* OPP table is optional */
1046 	ret = devm_pm_opp_of_add_table(&pdev->dev);
1047 	if (ret && ret != -ENODEV) {
1048 		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
1049 		return ret;
1050 	}
1051 
1052 	spi->bus_num = -1;
1053 	spi->dev.of_node = dev->of_node;
1054 	spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
1055 	spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1056 	spi->num_chipselect = 4;
1057 	spi->max_speed_hz = 50000000;
1058 	spi->prepare_message = spi_geni_prepare_message;
1059 	spi->transfer_one = spi_geni_transfer_one;
1060 	spi->can_dma = geni_can_dma;
1061 	spi->dma_map_dev = dev->parent;
1062 	spi->auto_runtime_pm = true;
1063 	spi->handle_err = spi_geni_handle_err;
1064 	spi->use_gpio_descriptors = true;
1065 
1066 	init_completion(&mas->cs_done);
1067 	init_completion(&mas->cancel_done);
1068 	init_completion(&mas->abort_done);
1069 	init_completion(&mas->tx_reset_done);
1070 	init_completion(&mas->rx_reset_done);
1071 	spin_lock_init(&mas->lock);
1072 	pm_runtime_use_autosuspend(&pdev->dev);
1073 	pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
1074 	pm_runtime_enable(dev);
1075 
1076 	ret = geni_icc_get(&mas->se, NULL);
1077 	if (ret)
1078 		goto spi_geni_probe_runtime_disable;
1079 	/* Set the bus quota to a reasonable value for register access */
1080 	mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
1081 	mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
1082 
1083 	ret = geni_icc_set_bw(&mas->se);
1084 	if (ret)
1085 		goto spi_geni_probe_runtime_disable;
1086 
1087 	ret = spi_geni_init(mas);
1088 	if (ret)
1089 		goto spi_geni_probe_runtime_disable;
1090 
1091 	/*
1092 	 * check the mode supported and set_cs for fifo mode only
1093 	 * for dma (gsi) mode, the gsi will set cs based on params passed in
1094 	 * TRE
1095 	 */
1096 	if (mas->cur_xfer_mode == GENI_SE_FIFO)
1097 		spi->set_cs = spi_geni_set_cs;
1098 
1099 	ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
1100 	if (ret)
1101 		goto spi_geni_release_dma;
1102 
1103 	ret = spi_register_master(spi);
1104 	if (ret)
1105 		goto spi_geni_probe_free_irq;
1106 
1107 	return 0;
1108 spi_geni_probe_free_irq:
1109 	free_irq(mas->irq, spi);
1110 spi_geni_release_dma:
1111 	spi_geni_release_dma_chan(mas);
1112 spi_geni_probe_runtime_disable:
1113 	pm_runtime_disable(dev);
1114 	return ret;
1115 }
1116 
1117 static void spi_geni_remove(struct platform_device *pdev)
1118 {
1119 	struct spi_master *spi = platform_get_drvdata(pdev);
1120 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
1121 
1122 	/* Unregister _before_ disabling pm_runtime() so we stop transfers */
1123 	spi_unregister_master(spi);
1124 
1125 	spi_geni_release_dma_chan(mas);
1126 
1127 	free_irq(mas->irq, spi);
1128 	pm_runtime_disable(&pdev->dev);
1129 }
1130 
1131 static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
1132 {
1133 	struct spi_master *spi = dev_get_drvdata(dev);
1134 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
1135 	int ret;
1136 
1137 	/* Drop the performance state vote */
1138 	dev_pm_opp_set_rate(dev, 0);
1139 
1140 	ret = geni_se_resources_off(&mas->se);
1141 	if (ret)
1142 		return ret;
1143 
1144 	return geni_icc_disable(&mas->se);
1145 }
1146 
1147 static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
1148 {
1149 	struct spi_master *spi = dev_get_drvdata(dev);
1150 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
1151 	int ret;
1152 
1153 	ret = geni_icc_enable(&mas->se);
1154 	if (ret)
1155 		return ret;
1156 
1157 	ret = geni_se_resources_on(&mas->se);
1158 	if (ret)
1159 		return ret;
1160 
1161 	return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
1162 }
1163 
1164 static int __maybe_unused spi_geni_suspend(struct device *dev)
1165 {
1166 	struct spi_master *spi = dev_get_drvdata(dev);
1167 	int ret;
1168 
1169 	ret = spi_master_suspend(spi);
1170 	if (ret)
1171 		return ret;
1172 
1173 	ret = pm_runtime_force_suspend(dev);
1174 	if (ret)
1175 		spi_master_resume(spi);
1176 
1177 	return ret;
1178 }
1179 
1180 static int __maybe_unused spi_geni_resume(struct device *dev)
1181 {
1182 	struct spi_master *spi = dev_get_drvdata(dev);
1183 	int ret;
1184 
1185 	ret = pm_runtime_force_resume(dev);
1186 	if (ret)
1187 		return ret;
1188 
1189 	ret = spi_master_resume(spi);
1190 	if (ret)
1191 		pm_runtime_force_suspend(dev);
1192 
1193 	return ret;
1194 }
1195 
1196 static const struct dev_pm_ops spi_geni_pm_ops = {
1197 	SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
1198 					spi_geni_runtime_resume, NULL)
1199 	SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
1200 };
1201 
1202 static const struct of_device_id spi_geni_dt_match[] = {
1203 	{ .compatible = "qcom,geni-spi" },
1204 	{}
1205 };
1206 MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
1207 
1208 static struct platform_driver spi_geni_driver = {
1209 	.probe  = spi_geni_probe,
1210 	.remove_new = spi_geni_remove,
1211 	.driver = {
1212 		.name = "geni_spi",
1213 		.pm = &spi_geni_pm_ops,
1214 		.of_match_table = spi_geni_dt_match,
1215 	},
1216 };
1217 module_platform_driver(spi_geni_driver);
1218 
1219 MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
1220 MODULE_LICENSE("GPL v2");
1221