1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (c) 2017-2018, The Linux foundation. All rights reserved. 3 4 #include <linux/clk.h> 5 #include <linux/dmaengine.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/dma/qcom-gpi-dma.h> 8 #include <linux/interrupt.h> 9 #include <linux/io.h> 10 #include <linux/log2.h> 11 #include <linux/module.h> 12 #include <linux/platform_device.h> 13 #include <linux/pm_opp.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/property.h> 16 #include <linux/soc/qcom/geni-se.h> 17 #include <linux/spi/spi.h> 18 #include <linux/spinlock.h> 19 20 /* SPI SE specific registers and respective register fields */ 21 #define SE_SPI_CPHA 0x224 22 #define CPHA BIT(0) 23 24 #define SE_SPI_LOOPBACK 0x22c 25 #define LOOPBACK_ENABLE 0x1 26 #define NORMAL_MODE 0x0 27 #define LOOPBACK_MSK GENMASK(1, 0) 28 29 #define SE_SPI_CPOL 0x230 30 #define CPOL BIT(2) 31 32 #define SE_SPI_DEMUX_OUTPUT_INV 0x24c 33 #define CS_DEMUX_OUTPUT_INV_MSK GENMASK(3, 0) 34 35 #define SE_SPI_DEMUX_SEL 0x250 36 #define CS_DEMUX_OUTPUT_SEL GENMASK(3, 0) 37 38 #define SE_SPI_TRANS_CFG 0x25c 39 #define CS_TOGGLE BIT(1) 40 41 #define SE_SPI_WORD_LEN 0x268 42 #define WORD_LEN_MSK GENMASK(9, 0) 43 #define MIN_WORD_LEN 4 44 45 #define SE_SPI_TX_TRANS_LEN 0x26c 46 #define SE_SPI_RX_TRANS_LEN 0x270 47 #define TRANS_LEN_MSK GENMASK(23, 0) 48 49 #define SE_SPI_PRE_POST_CMD_DLY 0x274 50 51 #define SE_SPI_DELAY_COUNTERS 0x278 52 #define SPI_INTER_WORDS_DELAY_MSK GENMASK(9, 0) 53 #define SPI_CS_CLK_DELAY_MSK GENMASK(19, 10) 54 #define SPI_CS_CLK_DELAY_SHFT 10 55 56 #define SE_SPI_SLAVE_EN (0x2BC) 57 #define SPI_SLAVE_EN BIT(0) 58 59 /* M_CMD OP codes for SPI */ 60 #define SPI_TX_ONLY 1 61 #define SPI_RX_ONLY 2 62 #define SPI_TX_RX 7 63 #define SPI_CS_ASSERT 8 64 #define SPI_CS_DEASSERT 9 65 #define SPI_SCK_ONLY 10 66 /* M_CMD params for SPI */ 67 #define SPI_PRE_CMD_DELAY BIT(0) 68 #define TIMESTAMP_BEFORE BIT(1) 69 #define FRAGMENTATION BIT(2) 70 #define TIMESTAMP_AFTER BIT(3) 71 #define POST_CMD_DELAY BIT(4) 72 73 #define GSI_LOOPBACK_EN BIT(0) 74 #define GSI_CS_TOGGLE BIT(3) 75 #define GSI_CPHA BIT(4) 76 #define GSI_CPOL BIT(5) 77 78 struct spi_geni_master { 79 struct geni_se se; 80 struct device *dev; 81 u32 tx_fifo_depth; 82 u32 fifo_width_bits; 83 u32 tx_wm; 84 u32 last_mode; 85 unsigned long cur_speed_hz; 86 unsigned long cur_sclk_hz; 87 unsigned int cur_bits_per_word; 88 unsigned int tx_rem_bytes; 89 unsigned int rx_rem_bytes; 90 const struct spi_transfer *cur_xfer; 91 struct completion cs_done; 92 struct completion cancel_done; 93 struct completion abort_done; 94 struct completion tx_reset_done; 95 struct completion rx_reset_done; 96 unsigned int oversampling; 97 spinlock_t lock; 98 int irq; 99 bool cs_flag; 100 bool abort_failed; 101 struct dma_chan *tx; 102 struct dma_chan *rx; 103 int cur_xfer_mode; 104 }; 105 106 static void spi_slv_setup(struct spi_geni_master *mas) 107 { 108 struct geni_se *se = &mas->se; 109 110 writel(SPI_SLAVE_EN, se->base + SE_SPI_SLAVE_EN); 111 writel(GENI_IO_MUX_0_EN, se->base + GENI_OUTPUT_CTRL); 112 writel(START_TRIGGER, se->base + SE_GENI_CFG_SEQ_START); 113 dev_dbg(mas->dev, "spi slave setup done\n"); 114 } 115 116 static int get_spi_clk_cfg(unsigned int speed_hz, 117 struct spi_geni_master *mas, 118 unsigned int *clk_idx, 119 unsigned int *clk_div) 120 { 121 unsigned long sclk_freq; 122 unsigned int actual_hz; 123 int ret; 124 125 ret = geni_se_clk_freq_match(&mas->se, 126 speed_hz * mas->oversampling, 127 clk_idx, &sclk_freq, false); 128 if (ret) { 129 dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n", 130 ret, speed_hz); 131 return ret; 132 } 133 134 *clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz); 135 actual_hz = sclk_freq / (mas->oversampling * *clk_div); 136 137 dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz, 138 actual_hz, sclk_freq, *clk_idx, *clk_div); 139 ret = dev_pm_opp_set_rate(mas->dev, sclk_freq); 140 if (ret) 141 dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret); 142 else 143 mas->cur_sclk_hz = sclk_freq; 144 145 return ret; 146 } 147 148 static void handle_se_timeout(struct spi_master *spi, 149 struct spi_message *msg) 150 { 151 struct spi_geni_master *mas = spi_master_get_devdata(spi); 152 unsigned long time_left; 153 struct geni_se *se = &mas->se; 154 const struct spi_transfer *xfer; 155 156 spin_lock_irq(&mas->lock); 157 if (mas->cur_xfer_mode == GENI_SE_FIFO) 158 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 159 160 xfer = mas->cur_xfer; 161 mas->cur_xfer = NULL; 162 163 if (spi->slave) { 164 /* 165 * skip CMD Cancel sequnece since spi slave 166 * doesn`t support CMD Cancel sequnece 167 */ 168 spin_unlock_irq(&mas->lock); 169 goto unmap_if_dma; 170 } 171 172 reinit_completion(&mas->cancel_done); 173 geni_se_cancel_m_cmd(se); 174 spin_unlock_irq(&mas->lock); 175 176 time_left = wait_for_completion_timeout(&mas->cancel_done, HZ); 177 if (time_left) 178 goto unmap_if_dma; 179 180 spin_lock_irq(&mas->lock); 181 reinit_completion(&mas->abort_done); 182 geni_se_abort_m_cmd(se); 183 spin_unlock_irq(&mas->lock); 184 185 time_left = wait_for_completion_timeout(&mas->abort_done, HZ); 186 if (!time_left) { 187 dev_err(mas->dev, "Failed to cancel/abort m_cmd\n"); 188 189 /* 190 * No need for a lock since SPI core has a lock and we never 191 * access this from an interrupt. 192 */ 193 mas->abort_failed = true; 194 } 195 196 unmap_if_dma: 197 if (mas->cur_xfer_mode == GENI_SE_DMA) { 198 if (xfer) { 199 if (xfer->tx_buf) { 200 spin_lock_irq(&mas->lock); 201 reinit_completion(&mas->tx_reset_done); 202 writel(1, se->base + SE_DMA_TX_FSM_RST); 203 spin_unlock_irq(&mas->lock); 204 time_left = wait_for_completion_timeout(&mas->tx_reset_done, HZ); 205 if (!time_left) 206 dev_err(mas->dev, "DMA TX RESET failed\n"); 207 } 208 if (xfer->rx_buf) { 209 spin_lock_irq(&mas->lock); 210 reinit_completion(&mas->rx_reset_done); 211 writel(1, se->base + SE_DMA_RX_FSM_RST); 212 spin_unlock_irq(&mas->lock); 213 time_left = wait_for_completion_timeout(&mas->rx_reset_done, HZ); 214 if (!time_left) 215 dev_err(mas->dev, "DMA RX RESET failed\n"); 216 } 217 } else { 218 /* 219 * This can happen if a timeout happened and we had to wait 220 * for lock in this function because isr was holding the lock 221 * and handling transfer completion at that time. 222 */ 223 dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n"); 224 } 225 } 226 } 227 228 static void handle_gpi_timeout(struct spi_master *spi, struct spi_message *msg) 229 { 230 struct spi_geni_master *mas = spi_master_get_devdata(spi); 231 232 dmaengine_terminate_sync(mas->tx); 233 dmaengine_terminate_sync(mas->rx); 234 } 235 236 static void spi_geni_handle_err(struct spi_master *spi, struct spi_message *msg) 237 { 238 struct spi_geni_master *mas = spi_master_get_devdata(spi); 239 240 switch (mas->cur_xfer_mode) { 241 case GENI_SE_FIFO: 242 case GENI_SE_DMA: 243 handle_se_timeout(spi, msg); 244 break; 245 case GENI_GPI_DMA: 246 handle_gpi_timeout(spi, msg); 247 break; 248 default: 249 dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode); 250 } 251 } 252 253 static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas) 254 { 255 struct geni_se *se = &mas->se; 256 u32 m_irq, m_irq_en; 257 258 if (!mas->abort_failed) 259 return false; 260 261 /* 262 * The only known case where a transfer times out and then a cancel 263 * times out then an abort times out is if something is blocking our 264 * interrupt handler from running. Avoid starting any new transfers 265 * until that sorts itself out. 266 */ 267 spin_lock_irq(&mas->lock); 268 m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS); 269 m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN); 270 spin_unlock_irq(&mas->lock); 271 272 if (m_irq & m_irq_en) { 273 dev_err(mas->dev, "Interrupts pending after abort: %#010x\n", 274 m_irq & m_irq_en); 275 return true; 276 } 277 278 /* 279 * If we're here the problem resolved itself so no need to check more 280 * on future transfers. 281 */ 282 mas->abort_failed = false; 283 284 return false; 285 } 286 287 static void spi_geni_set_cs(struct spi_device *slv, bool set_flag) 288 { 289 struct spi_geni_master *mas = spi_master_get_devdata(slv->master); 290 struct spi_master *spi = dev_get_drvdata(mas->dev); 291 struct geni_se *se = &mas->se; 292 unsigned long time_left; 293 294 if (!(slv->mode & SPI_CS_HIGH)) 295 set_flag = !set_flag; 296 297 if (set_flag == mas->cs_flag) 298 return; 299 300 pm_runtime_get_sync(mas->dev); 301 302 if (spi_geni_is_abort_still_pending(mas)) { 303 dev_err(mas->dev, "Can't set chip select\n"); 304 goto exit; 305 } 306 307 spin_lock_irq(&mas->lock); 308 if (mas->cur_xfer) { 309 dev_err(mas->dev, "Can't set CS when prev xfer running\n"); 310 spin_unlock_irq(&mas->lock); 311 goto exit; 312 } 313 314 mas->cs_flag = set_flag; 315 /* set xfer_mode to FIFO to complete cs_done in isr */ 316 mas->cur_xfer_mode = GENI_SE_FIFO; 317 geni_se_select_mode(se, mas->cur_xfer_mode); 318 319 reinit_completion(&mas->cs_done); 320 if (set_flag) 321 geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0); 322 else 323 geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0); 324 spin_unlock_irq(&mas->lock); 325 326 time_left = wait_for_completion_timeout(&mas->cs_done, HZ); 327 if (!time_left) { 328 dev_warn(mas->dev, "Timeout setting chip select\n"); 329 handle_se_timeout(spi, NULL); 330 } 331 332 exit: 333 pm_runtime_put(mas->dev); 334 } 335 336 static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode, 337 unsigned int bits_per_word) 338 { 339 unsigned int pack_words; 340 bool msb_first = (mode & SPI_LSB_FIRST) ? false : true; 341 struct geni_se *se = &mas->se; 342 u32 word_len; 343 344 /* 345 * If bits_per_word isn't a byte aligned value, set the packing to be 346 * 1 SPI word per FIFO word. 347 */ 348 if (!(mas->fifo_width_bits % bits_per_word)) 349 pack_words = mas->fifo_width_bits / bits_per_word; 350 else 351 pack_words = 1; 352 geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first, 353 true, true); 354 word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK; 355 writel(word_len, se->base + SE_SPI_WORD_LEN); 356 } 357 358 static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas, 359 unsigned long clk_hz) 360 { 361 u32 clk_sel, m_clk_cfg, idx, div; 362 struct geni_se *se = &mas->se; 363 int ret; 364 365 if (clk_hz == mas->cur_speed_hz) 366 return 0; 367 368 ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div); 369 if (ret) { 370 dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret); 371 return ret; 372 } 373 374 /* 375 * SPI core clock gets configured with the requested frequency 376 * or the frequency closer to the requested frequency. 377 * For that reason requested frequency is stored in the 378 * cur_speed_hz and referred in the consecutive transfer instead 379 * of calling clk_get_rate() API. 380 */ 381 mas->cur_speed_hz = clk_hz; 382 383 clk_sel = idx & CLK_SEL_MSK; 384 m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN; 385 writel(clk_sel, se->base + SE_GENI_CLK_SEL); 386 writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG); 387 388 /* Set BW quota for CPU as driver supports FIFO mode only. */ 389 se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz); 390 ret = geni_icc_set_bw(se); 391 if (ret) 392 return ret; 393 394 return 0; 395 } 396 397 static int setup_fifo_params(struct spi_device *spi_slv, 398 struct spi_master *spi) 399 { 400 struct spi_geni_master *mas = spi_master_get_devdata(spi); 401 struct geni_se *se = &mas->se; 402 u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0; 403 u32 demux_sel; 404 405 if (mas->last_mode != spi_slv->mode) { 406 if (spi_slv->mode & SPI_LOOP) 407 loopback_cfg = LOOPBACK_ENABLE; 408 409 if (spi_slv->mode & SPI_CPOL) 410 cpol = CPOL; 411 412 if (spi_slv->mode & SPI_CPHA) 413 cpha = CPHA; 414 415 if (spi_slv->mode & SPI_CS_HIGH) 416 demux_output_inv = BIT(spi_get_chipselect(spi_slv, 0)); 417 418 demux_sel = spi_get_chipselect(spi_slv, 0); 419 mas->cur_bits_per_word = spi_slv->bits_per_word; 420 421 spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word); 422 writel(loopback_cfg, se->base + SE_SPI_LOOPBACK); 423 writel(demux_sel, se->base + SE_SPI_DEMUX_SEL); 424 writel(cpha, se->base + SE_SPI_CPHA); 425 writel(cpol, se->base + SE_SPI_CPOL); 426 writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV); 427 428 mas->last_mode = spi_slv->mode; 429 } 430 431 return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz); 432 } 433 434 static void 435 spi_gsi_callback_result(void *cb, const struct dmaengine_result *result) 436 { 437 struct spi_master *spi = cb; 438 439 spi->cur_msg->status = -EIO; 440 if (result->result != DMA_TRANS_NOERROR) { 441 dev_err(&spi->dev, "DMA txn failed: %d\n", result->result); 442 spi_finalize_current_transfer(spi); 443 return; 444 } 445 446 if (!result->residue) { 447 spi->cur_msg->status = 0; 448 dev_dbg(&spi->dev, "DMA txn completed\n"); 449 } else { 450 dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue); 451 } 452 453 spi_finalize_current_transfer(spi); 454 } 455 456 static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas, 457 struct spi_device *spi_slv, struct spi_master *spi) 458 { 459 unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK; 460 struct dma_slave_config config = {}; 461 struct gpi_spi_config peripheral = {}; 462 struct dma_async_tx_descriptor *tx_desc, *rx_desc; 463 int ret; 464 465 config.peripheral_config = &peripheral; 466 config.peripheral_size = sizeof(peripheral); 467 peripheral.set_config = true; 468 469 if (xfer->bits_per_word != mas->cur_bits_per_word || 470 xfer->speed_hz != mas->cur_speed_hz) { 471 mas->cur_bits_per_word = xfer->bits_per_word; 472 mas->cur_speed_hz = xfer->speed_hz; 473 } 474 475 if (xfer->tx_buf && xfer->rx_buf) { 476 peripheral.cmd = SPI_DUPLEX; 477 } else if (xfer->tx_buf) { 478 peripheral.cmd = SPI_TX; 479 peripheral.rx_len = 0; 480 } else if (xfer->rx_buf) { 481 peripheral.cmd = SPI_RX; 482 if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) { 483 peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word); 484 } else { 485 int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1; 486 487 peripheral.rx_len = (xfer->len / bytes_per_word); 488 } 489 } 490 491 peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP); 492 peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL); 493 peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA); 494 peripheral.cs = spi_get_chipselect(spi_slv, 0); 495 peripheral.pack_en = true; 496 peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN; 497 498 ret = get_spi_clk_cfg(mas->cur_speed_hz, mas, 499 &peripheral.clk_src, &peripheral.clk_div); 500 if (ret) { 501 dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret); 502 return ret; 503 } 504 505 if (!xfer->cs_change) { 506 if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers)) 507 peripheral.fragmentation = FRAGMENTATION; 508 } 509 510 if (peripheral.cmd & SPI_RX) { 511 dmaengine_slave_config(mas->rx, &config); 512 rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents, 513 DMA_DEV_TO_MEM, flags); 514 if (!rx_desc) { 515 dev_err(mas->dev, "Err setting up rx desc\n"); 516 return -EIO; 517 } 518 } 519 520 /* 521 * Prepare the TX always, even for RX or tx_buf being null, we would 522 * need TX to be prepared per GSI spec 523 */ 524 dmaengine_slave_config(mas->tx, &config); 525 tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents, 526 DMA_MEM_TO_DEV, flags); 527 if (!tx_desc) { 528 dev_err(mas->dev, "Err setting up tx desc\n"); 529 return -EIO; 530 } 531 532 tx_desc->callback_result = spi_gsi_callback_result; 533 tx_desc->callback_param = spi; 534 535 if (peripheral.cmd & SPI_RX) 536 dmaengine_submit(rx_desc); 537 dmaengine_submit(tx_desc); 538 539 if (peripheral.cmd & SPI_RX) 540 dma_async_issue_pending(mas->rx); 541 542 dma_async_issue_pending(mas->tx); 543 return 1; 544 } 545 546 static u32 get_xfer_len_in_words(struct spi_transfer *xfer, 547 struct spi_geni_master *mas) 548 { 549 u32 len; 550 551 if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) 552 len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word; 553 else 554 len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1); 555 len &= TRANS_LEN_MSK; 556 557 return len; 558 } 559 560 static bool geni_can_dma(struct spi_controller *ctlr, 561 struct spi_device *slv, struct spi_transfer *xfer) 562 { 563 struct spi_geni_master *mas = spi_master_get_devdata(slv->master); 564 u32 len, fifo_size; 565 566 if (mas->cur_xfer_mode == GENI_GPI_DMA) 567 return true; 568 569 /* Set SE DMA mode for SPI slave. */ 570 if (ctlr->slave) 571 return true; 572 573 len = get_xfer_len_in_words(xfer, mas); 574 fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word; 575 576 if (len > fifo_size) 577 return true; 578 else 579 return false; 580 } 581 582 static int spi_geni_prepare_message(struct spi_master *spi, 583 struct spi_message *spi_msg) 584 { 585 struct spi_geni_master *mas = spi_master_get_devdata(spi); 586 int ret; 587 588 switch (mas->cur_xfer_mode) { 589 case GENI_SE_FIFO: 590 case GENI_SE_DMA: 591 if (spi_geni_is_abort_still_pending(mas)) 592 return -EBUSY; 593 ret = setup_fifo_params(spi_msg->spi, spi); 594 if (ret) 595 dev_err(mas->dev, "Couldn't select mode %d\n", ret); 596 return ret; 597 598 case GENI_GPI_DMA: 599 /* nothing to do for GPI DMA */ 600 return 0; 601 } 602 603 dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode); 604 return -EINVAL; 605 } 606 607 static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas) 608 { 609 int ret; 610 611 mas->tx = dma_request_chan(mas->dev, "tx"); 612 if (IS_ERR(mas->tx)) { 613 ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx), 614 "Failed to get tx DMA ch\n"); 615 goto err_tx; 616 } 617 618 mas->rx = dma_request_chan(mas->dev, "rx"); 619 if (IS_ERR(mas->rx)) { 620 ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx), 621 "Failed to get rx DMA ch\n"); 622 goto err_rx; 623 } 624 625 return 0; 626 627 err_rx: 628 mas->rx = NULL; 629 dma_release_channel(mas->tx); 630 err_tx: 631 mas->tx = NULL; 632 return ret; 633 } 634 635 static void spi_geni_release_dma_chan(struct spi_geni_master *mas) 636 { 637 if (mas->rx) { 638 dma_release_channel(mas->rx); 639 mas->rx = NULL; 640 } 641 642 if (mas->tx) { 643 dma_release_channel(mas->tx); 644 mas->tx = NULL; 645 } 646 } 647 648 static int spi_geni_init(struct spi_geni_master *mas) 649 { 650 struct spi_master *spi = dev_get_drvdata(mas->dev); 651 struct geni_se *se = &mas->se; 652 unsigned int proto, major, minor, ver; 653 u32 spi_tx_cfg, fifo_disable; 654 int ret = -ENXIO; 655 656 pm_runtime_get_sync(mas->dev); 657 658 proto = geni_se_read_proto(se); 659 660 if (spi->slave) { 661 if (proto != GENI_SE_SPI_SLAVE) { 662 dev_err(mas->dev, "Invalid proto %d\n", proto); 663 goto out_pm; 664 } 665 spi_slv_setup(mas); 666 } else if (proto != GENI_SE_SPI) { 667 dev_err(mas->dev, "Invalid proto %d\n", proto); 668 goto out_pm; 669 } 670 mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se); 671 672 /* Width of Tx and Rx FIFO is same */ 673 mas->fifo_width_bits = geni_se_get_tx_fifo_width(se); 674 675 /* 676 * Hardware programming guide suggests to configure 677 * RX FIFO RFR level to fifo_depth-2. 678 */ 679 geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2); 680 /* Transmit an entire FIFO worth of data per IRQ */ 681 mas->tx_wm = 1; 682 ver = geni_se_get_qup_hw_version(se); 683 major = GENI_SE_VERSION_MAJOR(ver); 684 minor = GENI_SE_VERSION_MINOR(ver); 685 686 if (major == 1 && minor == 0) 687 mas->oversampling = 2; 688 else 689 mas->oversampling = 1; 690 691 fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE; 692 switch (fifo_disable) { 693 case 1: 694 ret = spi_geni_grab_gpi_chan(mas); 695 if (!ret) { /* success case */ 696 mas->cur_xfer_mode = GENI_GPI_DMA; 697 geni_se_select_mode(se, GENI_GPI_DMA); 698 dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n"); 699 break; 700 } else if (ret == -EPROBE_DEFER) { 701 goto out_pm; 702 } 703 /* 704 * in case of failure to get gpi dma channel, we can still do the 705 * FIFO mode, so fallthrough 706 */ 707 dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n"); 708 fallthrough; 709 710 case 0: 711 mas->cur_xfer_mode = GENI_SE_FIFO; 712 geni_se_select_mode(se, GENI_SE_FIFO); 713 ret = 0; 714 break; 715 } 716 717 /* We always control CS manually */ 718 if (!spi->slave) { 719 spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG); 720 spi_tx_cfg &= ~CS_TOGGLE; 721 writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG); 722 } 723 724 out_pm: 725 pm_runtime_put(mas->dev); 726 return ret; 727 } 728 729 static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas) 730 { 731 /* 732 * Calculate how many bytes we'll put in each FIFO word. If the 733 * transfer words don't pack cleanly into a FIFO word we'll just put 734 * one transfer word in each FIFO word. If they do pack we'll pack 'em. 735 */ 736 if (mas->fifo_width_bits % mas->cur_bits_per_word) 737 return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word, 738 BITS_PER_BYTE)); 739 740 return mas->fifo_width_bits / BITS_PER_BYTE; 741 } 742 743 static bool geni_spi_handle_tx(struct spi_geni_master *mas) 744 { 745 struct geni_se *se = &mas->se; 746 unsigned int max_bytes; 747 const u8 *tx_buf; 748 unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); 749 unsigned int i = 0; 750 751 /* Stop the watermark IRQ if nothing to send */ 752 if (!mas->cur_xfer) { 753 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 754 return false; 755 } 756 757 max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word; 758 if (mas->tx_rem_bytes < max_bytes) 759 max_bytes = mas->tx_rem_bytes; 760 761 tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes; 762 while (i < max_bytes) { 763 unsigned int j; 764 unsigned int bytes_to_write; 765 u32 fifo_word = 0; 766 u8 *fifo_byte = (u8 *)&fifo_word; 767 768 bytes_to_write = min(bytes_per_fifo_word, max_bytes - i); 769 for (j = 0; j < bytes_to_write; j++) 770 fifo_byte[j] = tx_buf[i++]; 771 iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1); 772 } 773 mas->tx_rem_bytes -= max_bytes; 774 if (!mas->tx_rem_bytes) { 775 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 776 return false; 777 } 778 return true; 779 } 780 781 static void geni_spi_handle_rx(struct spi_geni_master *mas) 782 { 783 struct geni_se *se = &mas->se; 784 u32 rx_fifo_status; 785 unsigned int rx_bytes; 786 unsigned int rx_last_byte_valid; 787 u8 *rx_buf; 788 unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); 789 unsigned int i = 0; 790 791 rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS); 792 rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word; 793 if (rx_fifo_status & RX_LAST) { 794 rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK; 795 rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT; 796 if (rx_last_byte_valid && rx_last_byte_valid < 4) 797 rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid; 798 } 799 800 /* Clear out the FIFO and bail if nowhere to put it */ 801 if (!mas->cur_xfer) { 802 for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++) 803 readl(se->base + SE_GENI_RX_FIFOn); 804 return; 805 } 806 807 if (mas->rx_rem_bytes < rx_bytes) 808 rx_bytes = mas->rx_rem_bytes; 809 810 rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes; 811 while (i < rx_bytes) { 812 u32 fifo_word = 0; 813 u8 *fifo_byte = (u8 *)&fifo_word; 814 unsigned int bytes_to_read; 815 unsigned int j; 816 817 bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i); 818 ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1); 819 for (j = 0; j < bytes_to_read; j++) 820 rx_buf[i++] = fifo_byte[j]; 821 } 822 mas->rx_rem_bytes -= rx_bytes; 823 } 824 825 static int setup_se_xfer(struct spi_transfer *xfer, 826 struct spi_geni_master *mas, 827 u16 mode, struct spi_master *spi) 828 { 829 u32 m_cmd = 0; 830 u32 len; 831 struct geni_se *se = &mas->se; 832 int ret; 833 834 /* 835 * Ensure that our interrupt handler isn't still running from some 836 * prior command before we start messing with the hardware behind 837 * its back. We don't need to _keep_ the lock here since we're only 838 * worried about racing with out interrupt handler. The SPI core 839 * already handles making sure that we're not trying to do two 840 * transfers at once or setting a chip select and doing a transfer 841 * concurrently. 842 * 843 * NOTE: we actually _can't_ hold the lock here because possibly we 844 * might call clk_set_rate() which needs to be able to sleep. 845 */ 846 spin_lock_irq(&mas->lock); 847 spin_unlock_irq(&mas->lock); 848 849 if (xfer->bits_per_word != mas->cur_bits_per_word) { 850 spi_setup_word_len(mas, mode, xfer->bits_per_word); 851 mas->cur_bits_per_word = xfer->bits_per_word; 852 } 853 854 /* Speed and bits per word can be overridden per transfer */ 855 ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz); 856 if (ret) 857 return ret; 858 859 mas->tx_rem_bytes = 0; 860 mas->rx_rem_bytes = 0; 861 862 len = get_xfer_len_in_words(xfer, mas); 863 864 mas->cur_xfer = xfer; 865 if (xfer->tx_buf) { 866 m_cmd |= SPI_TX_ONLY; 867 mas->tx_rem_bytes = xfer->len; 868 writel(len, se->base + SE_SPI_TX_TRANS_LEN); 869 } 870 871 if (xfer->rx_buf) { 872 m_cmd |= SPI_RX_ONLY; 873 writel(len, se->base + SE_SPI_RX_TRANS_LEN); 874 mas->rx_rem_bytes = xfer->len; 875 } 876 877 /* 878 * Select DMA mode if sgt are present; and with only 1 entry 879 * This is not a serious limitation because the xfer buffers are 880 * expected to fit into in 1 entry almost always, and if any 881 * doesn't for any reason we fall back to FIFO mode anyway 882 */ 883 if (!xfer->tx_sg.nents && !xfer->rx_sg.nents) 884 mas->cur_xfer_mode = GENI_SE_FIFO; 885 else if (xfer->tx_sg.nents > 1 || xfer->rx_sg.nents > 1) { 886 dev_warn_once(mas->dev, "Doing FIFO, cannot handle tx_nents-%d, rx_nents-%d\n", 887 xfer->tx_sg.nents, xfer->rx_sg.nents); 888 mas->cur_xfer_mode = GENI_SE_FIFO; 889 } else 890 mas->cur_xfer_mode = GENI_SE_DMA; 891 geni_se_select_mode(se, mas->cur_xfer_mode); 892 893 /* 894 * Lock around right before we start the transfer since our 895 * interrupt could come in at any time now. 896 */ 897 spin_lock_irq(&mas->lock); 898 geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION); 899 900 if (mas->cur_xfer_mode == GENI_SE_DMA) { 901 if (m_cmd & SPI_RX_ONLY) 902 geni_se_rx_init_dma(se, sg_dma_address(xfer->rx_sg.sgl), 903 sg_dma_len(xfer->rx_sg.sgl)); 904 if (m_cmd & SPI_TX_ONLY) 905 geni_se_tx_init_dma(se, sg_dma_address(xfer->tx_sg.sgl), 906 sg_dma_len(xfer->tx_sg.sgl)); 907 } else if (m_cmd & SPI_TX_ONLY) { 908 if (geni_spi_handle_tx(mas)) 909 writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG); 910 } 911 912 spin_unlock_irq(&mas->lock); 913 return ret; 914 } 915 916 static int spi_geni_transfer_one(struct spi_master *spi, 917 struct spi_device *slv, 918 struct spi_transfer *xfer) 919 { 920 struct spi_geni_master *mas = spi_master_get_devdata(spi); 921 int ret; 922 923 if (spi_geni_is_abort_still_pending(mas)) 924 return -EBUSY; 925 926 /* Terminate and return success for 0 byte length transfer */ 927 if (!xfer->len) 928 return 0; 929 930 if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) { 931 ret = setup_se_xfer(xfer, mas, slv->mode, spi); 932 /* SPI framework expects +ve ret code to wait for transfer complete */ 933 if (!ret) 934 ret = 1; 935 return ret; 936 } 937 return setup_gsi_xfer(xfer, mas, slv, spi); 938 } 939 940 static irqreturn_t geni_spi_isr(int irq, void *data) 941 { 942 struct spi_master *spi = data; 943 struct spi_geni_master *mas = spi_master_get_devdata(spi); 944 struct geni_se *se = &mas->se; 945 u32 m_irq; 946 947 m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS); 948 if (!m_irq) 949 return IRQ_NONE; 950 951 if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN | 952 M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN | 953 M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN)) 954 dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq); 955 956 spin_lock(&mas->lock); 957 958 if (mas->cur_xfer_mode == GENI_SE_FIFO) { 959 if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN)) 960 geni_spi_handle_rx(mas); 961 962 if (m_irq & M_TX_FIFO_WATERMARK_EN) 963 geni_spi_handle_tx(mas); 964 965 if (m_irq & M_CMD_DONE_EN) { 966 if (mas->cur_xfer) { 967 spi_finalize_current_transfer(spi); 968 mas->cur_xfer = NULL; 969 /* 970 * If this happens, then a CMD_DONE came before all the 971 * Tx buffer bytes were sent out. This is unusual, log 972 * this condition and disable the WM interrupt to 973 * prevent the system from stalling due an interrupt 974 * storm. 975 * 976 * If this happens when all Rx bytes haven't been 977 * received, log the condition. The only known time 978 * this can happen is if bits_per_word != 8 and some 979 * registers that expect xfer lengths in num spi_words 980 * weren't written correctly. 981 */ 982 if (mas->tx_rem_bytes) { 983 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 984 dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n", 985 mas->tx_rem_bytes, mas->cur_bits_per_word); 986 } 987 if (mas->rx_rem_bytes) 988 dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n", 989 mas->rx_rem_bytes, mas->cur_bits_per_word); 990 } else { 991 complete(&mas->cs_done); 992 } 993 } 994 } else if (mas->cur_xfer_mode == GENI_SE_DMA) { 995 const struct spi_transfer *xfer = mas->cur_xfer; 996 u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT); 997 u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT); 998 999 if (dma_tx_status) 1000 writel(dma_tx_status, se->base + SE_DMA_TX_IRQ_CLR); 1001 if (dma_rx_status) 1002 writel(dma_rx_status, se->base + SE_DMA_RX_IRQ_CLR); 1003 if (dma_tx_status & TX_DMA_DONE) 1004 mas->tx_rem_bytes = 0; 1005 if (dma_rx_status & RX_DMA_DONE) 1006 mas->rx_rem_bytes = 0; 1007 if (dma_tx_status & TX_RESET_DONE) 1008 complete(&mas->tx_reset_done); 1009 if (dma_rx_status & RX_RESET_DONE) 1010 complete(&mas->rx_reset_done); 1011 if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) { 1012 spi_finalize_current_transfer(spi); 1013 mas->cur_xfer = NULL; 1014 } 1015 } 1016 1017 if (m_irq & M_CMD_CANCEL_EN) 1018 complete(&mas->cancel_done); 1019 if (m_irq & M_CMD_ABORT_EN) 1020 complete(&mas->abort_done); 1021 1022 /* 1023 * It's safe or a good idea to Ack all of our interrupts at the end 1024 * of the function. Specifically: 1025 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and 1026 * clearing Acks. Clearing at the end relies on nobody else having 1027 * started a new transfer yet or else we could be clearing _their_ 1028 * done bit, but everyone grabs the spinlock before starting a new 1029 * transfer. 1030 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear 1031 * to be "latched level" interrupts so it's important to clear them 1032 * _after_ you've handled the condition and always safe to do so 1033 * since they'll re-assert if they're still happening. 1034 */ 1035 writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR); 1036 1037 spin_unlock(&mas->lock); 1038 1039 return IRQ_HANDLED; 1040 } 1041 1042 static int spi_geni_probe(struct platform_device *pdev) 1043 { 1044 int ret, irq; 1045 struct spi_master *spi; 1046 struct spi_geni_master *mas; 1047 void __iomem *base; 1048 struct clk *clk; 1049 struct device *dev = &pdev->dev; 1050 1051 irq = platform_get_irq(pdev, 0); 1052 if (irq < 0) 1053 return irq; 1054 1055 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 1056 if (ret) 1057 return dev_err_probe(dev, ret, "could not set DMA mask\n"); 1058 1059 base = devm_platform_ioremap_resource(pdev, 0); 1060 if (IS_ERR(base)) 1061 return PTR_ERR(base); 1062 1063 clk = devm_clk_get(dev, "se"); 1064 if (IS_ERR(clk)) 1065 return PTR_ERR(clk); 1066 1067 spi = devm_spi_alloc_master(dev, sizeof(*mas)); 1068 if (!spi) 1069 return -ENOMEM; 1070 1071 platform_set_drvdata(pdev, spi); 1072 mas = spi_master_get_devdata(spi); 1073 mas->irq = irq; 1074 mas->dev = dev; 1075 mas->se.dev = dev; 1076 mas->se.wrapper = dev_get_drvdata(dev->parent); 1077 mas->se.base = base; 1078 mas->se.clk = clk; 1079 1080 ret = devm_pm_opp_set_clkname(&pdev->dev, "se"); 1081 if (ret) 1082 return ret; 1083 /* OPP table is optional */ 1084 ret = devm_pm_opp_of_add_table(&pdev->dev); 1085 if (ret && ret != -ENODEV) { 1086 dev_err(&pdev->dev, "invalid OPP table in device tree\n"); 1087 return ret; 1088 } 1089 1090 spi->bus_num = -1; 1091 spi->dev.of_node = dev->of_node; 1092 spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH; 1093 spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1094 spi->num_chipselect = 4; 1095 spi->max_speed_hz = 50000000; 1096 spi->max_dma_len = 0xffff0; /* 24 bits for tx/rx dma length */ 1097 spi->prepare_message = spi_geni_prepare_message; 1098 spi->transfer_one = spi_geni_transfer_one; 1099 spi->can_dma = geni_can_dma; 1100 spi->dma_map_dev = dev->parent; 1101 spi->auto_runtime_pm = true; 1102 spi->handle_err = spi_geni_handle_err; 1103 spi->use_gpio_descriptors = true; 1104 1105 init_completion(&mas->cs_done); 1106 init_completion(&mas->cancel_done); 1107 init_completion(&mas->abort_done); 1108 init_completion(&mas->tx_reset_done); 1109 init_completion(&mas->rx_reset_done); 1110 spin_lock_init(&mas->lock); 1111 pm_runtime_use_autosuspend(&pdev->dev); 1112 pm_runtime_set_autosuspend_delay(&pdev->dev, 250); 1113 ret = devm_pm_runtime_enable(dev); 1114 if (ret) 1115 return ret; 1116 1117 if (device_property_read_bool(&pdev->dev, "spi-slave")) 1118 spi->slave = true; 1119 1120 ret = geni_icc_get(&mas->se, NULL); 1121 if (ret) 1122 return ret; 1123 /* Set the bus quota to a reasonable value for register access */ 1124 mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ); 1125 mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW; 1126 1127 ret = geni_icc_set_bw(&mas->se); 1128 if (ret) 1129 return ret; 1130 1131 ret = spi_geni_init(mas); 1132 if (ret) 1133 return ret; 1134 1135 /* 1136 * check the mode supported and set_cs for fifo mode only 1137 * for dma (gsi) mode, the gsi will set cs based on params passed in 1138 * TRE 1139 */ 1140 if (!spi->slave && mas->cur_xfer_mode == GENI_SE_FIFO) 1141 spi->set_cs = spi_geni_set_cs; 1142 1143 /* 1144 * TX is required per GSI spec, see setup_gsi_xfer(). 1145 */ 1146 if (mas->cur_xfer_mode == GENI_GPI_DMA) 1147 spi->flags = SPI_CONTROLLER_MUST_TX; 1148 1149 ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi); 1150 if (ret) 1151 goto spi_geni_release_dma; 1152 1153 ret = spi_register_master(spi); 1154 if (ret) 1155 goto spi_geni_probe_free_irq; 1156 1157 return 0; 1158 spi_geni_probe_free_irq: 1159 free_irq(mas->irq, spi); 1160 spi_geni_release_dma: 1161 spi_geni_release_dma_chan(mas); 1162 return ret; 1163 } 1164 1165 static void spi_geni_remove(struct platform_device *pdev) 1166 { 1167 struct spi_master *spi = platform_get_drvdata(pdev); 1168 struct spi_geni_master *mas = spi_master_get_devdata(spi); 1169 1170 /* Unregister _before_ disabling pm_runtime() so we stop transfers */ 1171 spi_unregister_master(spi); 1172 1173 free_irq(mas->irq, spi); 1174 1175 spi_geni_release_dma_chan(mas); 1176 } 1177 1178 static int __maybe_unused spi_geni_runtime_suspend(struct device *dev) 1179 { 1180 struct spi_master *spi = dev_get_drvdata(dev); 1181 struct spi_geni_master *mas = spi_master_get_devdata(spi); 1182 int ret; 1183 1184 /* Drop the performance state vote */ 1185 dev_pm_opp_set_rate(dev, 0); 1186 1187 ret = geni_se_resources_off(&mas->se); 1188 if (ret) 1189 return ret; 1190 1191 return geni_icc_disable(&mas->se); 1192 } 1193 1194 static int __maybe_unused spi_geni_runtime_resume(struct device *dev) 1195 { 1196 struct spi_master *spi = dev_get_drvdata(dev); 1197 struct spi_geni_master *mas = spi_master_get_devdata(spi); 1198 int ret; 1199 1200 ret = geni_icc_enable(&mas->se); 1201 if (ret) 1202 return ret; 1203 1204 ret = geni_se_resources_on(&mas->se); 1205 if (ret) 1206 return ret; 1207 1208 return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz); 1209 } 1210 1211 static int __maybe_unused spi_geni_suspend(struct device *dev) 1212 { 1213 struct spi_master *spi = dev_get_drvdata(dev); 1214 int ret; 1215 1216 ret = spi_master_suspend(spi); 1217 if (ret) 1218 return ret; 1219 1220 ret = pm_runtime_force_suspend(dev); 1221 if (ret) 1222 spi_master_resume(spi); 1223 1224 return ret; 1225 } 1226 1227 static int __maybe_unused spi_geni_resume(struct device *dev) 1228 { 1229 struct spi_master *spi = dev_get_drvdata(dev); 1230 int ret; 1231 1232 ret = pm_runtime_force_resume(dev); 1233 if (ret) 1234 return ret; 1235 1236 ret = spi_master_resume(spi); 1237 if (ret) 1238 pm_runtime_force_suspend(dev); 1239 1240 return ret; 1241 } 1242 1243 static const struct dev_pm_ops spi_geni_pm_ops = { 1244 SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend, 1245 spi_geni_runtime_resume, NULL) 1246 SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume) 1247 }; 1248 1249 static const struct of_device_id spi_geni_dt_match[] = { 1250 { .compatible = "qcom,geni-spi" }, 1251 {} 1252 }; 1253 MODULE_DEVICE_TABLE(of, spi_geni_dt_match); 1254 1255 static struct platform_driver spi_geni_driver = { 1256 .probe = spi_geni_probe, 1257 .remove_new = spi_geni_remove, 1258 .driver = { 1259 .name = "geni_spi", 1260 .pm = &spi_geni_pm_ops, 1261 .of_match_table = spi_geni_dt_match, 1262 }, 1263 }; 1264 module_platform_driver(spi_geni_driver); 1265 1266 MODULE_DESCRIPTION("SPI driver for GENI based QUP cores"); 1267 MODULE_LICENSE("GPL v2"); 1268