xref: /openbmc/linux/drivers/spi/spi-fsl-spi.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  * Freescale SPI controller driver.
3  *
4  * Maintainer: Kumar Gala
5  *
6  * Copyright (C) 2006 Polycom, Inc.
7  * Copyright 2010 Freescale Semiconductor, Inc.
8  *
9  * CPM SPI and QE buffer descriptors mode support:
10  * Copyright (c) 2009  MontaVista Software, Inc.
11  * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
12  *
13  * This program is free software; you can redistribute  it and/or modify it
14  * under  the terms of  the GNU General  Public License as published by the
15  * Free Software Foundation;  either version 2 of the  License, or (at your
16  * option) any later version.
17  */
18 #include <linux/module.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/irq.h>
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spi_bitbang.h>
26 #include <linux/platform_device.h>
27 #include <linux/fsl_devices.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/mm.h>
30 #include <linux/mutex.h>
31 #include <linux/of.h>
32 #include <linux/of_platform.h>
33 #include <linux/gpio.h>
34 #include <linux/of_gpio.h>
35 
36 #include <sysdev/fsl_soc.h>
37 #include <asm/cpm.h>
38 #include <asm/qe.h>
39 
40 #include "spi-fsl-lib.h"
41 
42 /* CPM1 and CPM2 are mutually exclusive. */
43 #ifdef CONFIG_CPM1
44 #include <asm/cpm1.h>
45 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_CH_SPI, 0)
46 #else
47 #include <asm/cpm2.h>
48 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_SPI_PAGE, CPM_CR_SPI_SBLOCK, 0, 0)
49 #endif
50 
51 /* SPI Controller registers */
52 struct fsl_spi_reg {
53 	u8 res1[0x20];
54 	__be32 mode;
55 	__be32 event;
56 	__be32 mask;
57 	__be32 command;
58 	__be32 transmit;
59 	__be32 receive;
60 };
61 
62 /* SPI Controller mode register definitions */
63 #define	SPMODE_LOOP		(1 << 30)
64 #define	SPMODE_CI_INACTIVEHIGH	(1 << 29)
65 #define	SPMODE_CP_BEGIN_EDGECLK	(1 << 28)
66 #define	SPMODE_DIV16		(1 << 27)
67 #define	SPMODE_REV		(1 << 26)
68 #define	SPMODE_MS		(1 << 25)
69 #define	SPMODE_ENABLE		(1 << 24)
70 #define	SPMODE_LEN(x)		((x) << 20)
71 #define	SPMODE_PM(x)		((x) << 16)
72 #define	SPMODE_OP		(1 << 14)
73 #define	SPMODE_CG(x)		((x) << 7)
74 
75 /*
76  * Default for SPI Mode:
77  *	SPI MODE 0 (inactive low, phase middle, MSB, 8-bit length, slow clk
78  */
79 #define	SPMODE_INIT_VAL (SPMODE_CI_INACTIVEHIGH | SPMODE_DIV16 | SPMODE_REV | \
80 			 SPMODE_MS | SPMODE_LEN(7) | SPMODE_PM(0xf))
81 
82 /* SPIE register values */
83 #define	SPIE_NE		0x00000200	/* Not empty */
84 #define	SPIE_NF		0x00000100	/* Not full */
85 
86 /* SPIM register values */
87 #define	SPIM_NE		0x00000200	/* Not empty */
88 #define	SPIM_NF		0x00000100	/* Not full */
89 
90 #define	SPIE_TXB	0x00000200	/* Last char is written to tx fifo */
91 #define	SPIE_RXB	0x00000100	/* Last char is written to rx buf */
92 
93 /* SPCOM register values */
94 #define	SPCOM_STR	(1 << 23)	/* Start transmit */
95 
96 #define	SPI_PRAM_SIZE	0x100
97 #define	SPI_MRBLR	((unsigned int)PAGE_SIZE)
98 
99 static void *fsl_dummy_rx;
100 static DEFINE_MUTEX(fsl_dummy_rx_lock);
101 static int fsl_dummy_rx_refcnt;
102 
103 static void fsl_spi_change_mode(struct spi_device *spi)
104 {
105 	struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
106 	struct spi_mpc8xxx_cs *cs = spi->controller_state;
107 	struct fsl_spi_reg *reg_base = mspi->reg_base;
108 	__be32 __iomem *mode = &reg_base->mode;
109 	unsigned long flags;
110 
111 	if (cs->hw_mode == mpc8xxx_spi_read_reg(mode))
112 		return;
113 
114 	/* Turn off IRQs locally to minimize time that SPI is disabled. */
115 	local_irq_save(flags);
116 
117 	/* Turn off SPI unit prior changing mode */
118 	mpc8xxx_spi_write_reg(mode, cs->hw_mode & ~SPMODE_ENABLE);
119 
120 	/* When in CPM mode, we need to reinit tx and rx. */
121 	if (mspi->flags & SPI_CPM_MODE) {
122 		if (mspi->flags & SPI_QE) {
123 			qe_issue_cmd(QE_INIT_TX_RX, mspi->subblock,
124 				     QE_CR_PROTOCOL_UNSPECIFIED, 0);
125 		} else {
126 			cpm_command(CPM_SPI_CMD, CPM_CR_INIT_TRX);
127 			if (mspi->flags & SPI_CPM1) {
128 				out_be16(&mspi->pram->rbptr,
129 					 in_be16(&mspi->pram->rbase));
130 				out_be16(&mspi->pram->tbptr,
131 					 in_be16(&mspi->pram->tbase));
132 			}
133 		}
134 	}
135 	mpc8xxx_spi_write_reg(mode, cs->hw_mode);
136 	local_irq_restore(flags);
137 }
138 
139 static void fsl_spi_chipselect(struct spi_device *spi, int value)
140 {
141 	struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
142 	struct fsl_spi_platform_data *pdata;
143 	bool pol = spi->mode & SPI_CS_HIGH;
144 	struct spi_mpc8xxx_cs	*cs = spi->controller_state;
145 
146 	pdata = spi->dev.parent->parent->platform_data;
147 
148 	if (value == BITBANG_CS_INACTIVE) {
149 		if (pdata->cs_control)
150 			pdata->cs_control(spi, !pol);
151 	}
152 
153 	if (value == BITBANG_CS_ACTIVE) {
154 		mpc8xxx_spi->rx_shift = cs->rx_shift;
155 		mpc8xxx_spi->tx_shift = cs->tx_shift;
156 		mpc8xxx_spi->get_rx = cs->get_rx;
157 		mpc8xxx_spi->get_tx = cs->get_tx;
158 
159 		fsl_spi_change_mode(spi);
160 
161 		if (pdata->cs_control)
162 			pdata->cs_control(spi, pol);
163 	}
164 }
165 
166 static int mspi_apply_cpu_mode_quirks(struct spi_mpc8xxx_cs *cs,
167 				struct spi_device *spi,
168 				struct mpc8xxx_spi *mpc8xxx_spi,
169 				int bits_per_word)
170 {
171 	cs->rx_shift = 0;
172 	cs->tx_shift = 0;
173 	if (bits_per_word <= 8) {
174 		cs->get_rx = mpc8xxx_spi_rx_buf_u8;
175 		cs->get_tx = mpc8xxx_spi_tx_buf_u8;
176 		if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
177 			cs->rx_shift = 16;
178 			cs->tx_shift = 24;
179 		}
180 	} else if (bits_per_word <= 16) {
181 		cs->get_rx = mpc8xxx_spi_rx_buf_u16;
182 		cs->get_tx = mpc8xxx_spi_tx_buf_u16;
183 		if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
184 			cs->rx_shift = 16;
185 			cs->tx_shift = 16;
186 		}
187 	} else if (bits_per_word <= 32) {
188 		cs->get_rx = mpc8xxx_spi_rx_buf_u32;
189 		cs->get_tx = mpc8xxx_spi_tx_buf_u32;
190 	} else
191 		return -EINVAL;
192 
193 	if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE &&
194 	    spi->mode & SPI_LSB_FIRST) {
195 		cs->tx_shift = 0;
196 		if (bits_per_word <= 8)
197 			cs->rx_shift = 8;
198 		else
199 			cs->rx_shift = 0;
200 	}
201 	mpc8xxx_spi->rx_shift = cs->rx_shift;
202 	mpc8xxx_spi->tx_shift = cs->tx_shift;
203 	mpc8xxx_spi->get_rx = cs->get_rx;
204 	mpc8xxx_spi->get_tx = cs->get_tx;
205 
206 	return bits_per_word;
207 }
208 
209 static int mspi_apply_qe_mode_quirks(struct spi_mpc8xxx_cs *cs,
210 				struct spi_device *spi,
211 				int bits_per_word)
212 {
213 	/* QE uses Little Endian for words > 8
214 	 * so transform all words > 8 into 8 bits
215 	 * Unfortnatly that doesn't work for LSB so
216 	 * reject these for now */
217 	/* Note: 32 bits word, LSB works iff
218 	 * tfcr/rfcr is set to CPMFCR_GBL */
219 	if (spi->mode & SPI_LSB_FIRST &&
220 	    bits_per_word > 8)
221 		return -EINVAL;
222 	if (bits_per_word > 8)
223 		return 8; /* pretend its 8 bits */
224 	return bits_per_word;
225 }
226 
227 static int fsl_spi_setup_transfer(struct spi_device *spi,
228 					struct spi_transfer *t)
229 {
230 	struct mpc8xxx_spi *mpc8xxx_spi;
231 	int bits_per_word = 0;
232 	u8 pm;
233 	u32 hz = 0;
234 	struct spi_mpc8xxx_cs	*cs = spi->controller_state;
235 
236 	mpc8xxx_spi = spi_master_get_devdata(spi->master);
237 
238 	if (t) {
239 		bits_per_word = t->bits_per_word;
240 		hz = t->speed_hz;
241 	}
242 
243 	/* spi_transfer level calls that work per-word */
244 	if (!bits_per_word)
245 		bits_per_word = spi->bits_per_word;
246 
247 	/* Make sure its a bit width we support [4..16, 32] */
248 	if ((bits_per_word < 4)
249 	    || ((bits_per_word > 16) && (bits_per_word != 32)))
250 		return -EINVAL;
251 
252 	if (!hz)
253 		hz = spi->max_speed_hz;
254 
255 	if (!(mpc8xxx_spi->flags & SPI_CPM_MODE))
256 		bits_per_word = mspi_apply_cpu_mode_quirks(cs, spi,
257 							   mpc8xxx_spi,
258 							   bits_per_word);
259 	else if (mpc8xxx_spi->flags & SPI_QE)
260 		bits_per_word = mspi_apply_qe_mode_quirks(cs, spi,
261 							  bits_per_word);
262 
263 	if (bits_per_word < 0)
264 		return bits_per_word;
265 
266 	if (bits_per_word == 32)
267 		bits_per_word = 0;
268 	else
269 		bits_per_word = bits_per_word - 1;
270 
271 	/* mask out bits we are going to set */
272 	cs->hw_mode &= ~(SPMODE_LEN(0xF) | SPMODE_DIV16
273 				  | SPMODE_PM(0xF));
274 
275 	cs->hw_mode |= SPMODE_LEN(bits_per_word);
276 
277 	if ((mpc8xxx_spi->spibrg / hz) > 64) {
278 		cs->hw_mode |= SPMODE_DIV16;
279 		pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1;
280 
281 		WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. "
282 			  "Will use %d Hz instead.\n", dev_name(&spi->dev),
283 			  hz, mpc8xxx_spi->spibrg / 1024);
284 		if (pm > 16)
285 			pm = 16;
286 	} else {
287 		pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1;
288 	}
289 	if (pm)
290 		pm--;
291 
292 	cs->hw_mode |= SPMODE_PM(pm);
293 
294 	fsl_spi_change_mode(spi);
295 	return 0;
296 }
297 
298 static void fsl_spi_cpm_bufs_start(struct mpc8xxx_spi *mspi)
299 {
300 	struct cpm_buf_desc __iomem *tx_bd = mspi->tx_bd;
301 	struct cpm_buf_desc __iomem *rx_bd = mspi->rx_bd;
302 	unsigned int xfer_len = min(mspi->count, SPI_MRBLR);
303 	unsigned int xfer_ofs;
304 	struct fsl_spi_reg *reg_base = mspi->reg_base;
305 
306 	xfer_ofs = mspi->xfer_in_progress->len - mspi->count;
307 
308 	if (mspi->rx_dma == mspi->dma_dummy_rx)
309 		out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma);
310 	else
311 		out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma + xfer_ofs);
312 	out_be16(&rx_bd->cbd_datlen, 0);
313 	out_be16(&rx_bd->cbd_sc, BD_SC_EMPTY | BD_SC_INTRPT | BD_SC_WRAP);
314 
315 	if (mspi->tx_dma == mspi->dma_dummy_tx)
316 		out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma);
317 	else
318 		out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma + xfer_ofs);
319 	out_be16(&tx_bd->cbd_datlen, xfer_len);
320 	out_be16(&tx_bd->cbd_sc, BD_SC_READY | BD_SC_INTRPT | BD_SC_WRAP |
321 				 BD_SC_LAST);
322 
323 	/* start transfer */
324 	mpc8xxx_spi_write_reg(&reg_base->command, SPCOM_STR);
325 }
326 
327 static int fsl_spi_cpm_bufs(struct mpc8xxx_spi *mspi,
328 				struct spi_transfer *t, bool is_dma_mapped)
329 {
330 	struct device *dev = mspi->dev;
331 	struct fsl_spi_reg *reg_base = mspi->reg_base;
332 
333 	if (is_dma_mapped) {
334 		mspi->map_tx_dma = 0;
335 		mspi->map_rx_dma = 0;
336 	} else {
337 		mspi->map_tx_dma = 1;
338 		mspi->map_rx_dma = 1;
339 	}
340 
341 	if (!t->tx_buf) {
342 		mspi->tx_dma = mspi->dma_dummy_tx;
343 		mspi->map_tx_dma = 0;
344 	}
345 
346 	if (!t->rx_buf) {
347 		mspi->rx_dma = mspi->dma_dummy_rx;
348 		mspi->map_rx_dma = 0;
349 	}
350 
351 	if (mspi->map_tx_dma) {
352 		void *nonconst_tx = (void *)mspi->tx; /* shut up gcc */
353 
354 		mspi->tx_dma = dma_map_single(dev, nonconst_tx, t->len,
355 					      DMA_TO_DEVICE);
356 		if (dma_mapping_error(dev, mspi->tx_dma)) {
357 			dev_err(dev, "unable to map tx dma\n");
358 			return -ENOMEM;
359 		}
360 	} else if (t->tx_buf) {
361 		mspi->tx_dma = t->tx_dma;
362 	}
363 
364 	if (mspi->map_rx_dma) {
365 		mspi->rx_dma = dma_map_single(dev, mspi->rx, t->len,
366 					      DMA_FROM_DEVICE);
367 		if (dma_mapping_error(dev, mspi->rx_dma)) {
368 			dev_err(dev, "unable to map rx dma\n");
369 			goto err_rx_dma;
370 		}
371 	} else if (t->rx_buf) {
372 		mspi->rx_dma = t->rx_dma;
373 	}
374 
375 	/* enable rx ints */
376 	mpc8xxx_spi_write_reg(&reg_base->mask, SPIE_RXB);
377 
378 	mspi->xfer_in_progress = t;
379 	mspi->count = t->len;
380 
381 	/* start CPM transfers */
382 	fsl_spi_cpm_bufs_start(mspi);
383 
384 	return 0;
385 
386 err_rx_dma:
387 	if (mspi->map_tx_dma)
388 		dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
389 	return -ENOMEM;
390 }
391 
392 static void fsl_spi_cpm_bufs_complete(struct mpc8xxx_spi *mspi)
393 {
394 	struct device *dev = mspi->dev;
395 	struct spi_transfer *t = mspi->xfer_in_progress;
396 
397 	if (mspi->map_tx_dma)
398 		dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
399 	if (mspi->map_rx_dma)
400 		dma_unmap_single(dev, mspi->rx_dma, t->len, DMA_FROM_DEVICE);
401 	mspi->xfer_in_progress = NULL;
402 }
403 
404 static int fsl_spi_cpu_bufs(struct mpc8xxx_spi *mspi,
405 				struct spi_transfer *t, unsigned int len)
406 {
407 	u32 word;
408 	struct fsl_spi_reg *reg_base = mspi->reg_base;
409 
410 	mspi->count = len;
411 
412 	/* enable rx ints */
413 	mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);
414 
415 	/* transmit word */
416 	word = mspi->get_tx(mspi);
417 	mpc8xxx_spi_write_reg(&reg_base->transmit, word);
418 
419 	return 0;
420 }
421 
422 static int fsl_spi_bufs(struct spi_device *spi, struct spi_transfer *t,
423 			    bool is_dma_mapped)
424 {
425 	struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
426 	struct fsl_spi_reg *reg_base;
427 	unsigned int len = t->len;
428 	u8 bits_per_word;
429 	int ret;
430 
431 	reg_base = mpc8xxx_spi->reg_base;
432 	bits_per_word = spi->bits_per_word;
433 	if (t->bits_per_word)
434 		bits_per_word = t->bits_per_word;
435 
436 	if (bits_per_word > 8) {
437 		/* invalid length? */
438 		if (len & 1)
439 			return -EINVAL;
440 		len /= 2;
441 	}
442 	if (bits_per_word > 16) {
443 		/* invalid length? */
444 		if (len & 1)
445 			return -EINVAL;
446 		len /= 2;
447 	}
448 
449 	mpc8xxx_spi->tx = t->tx_buf;
450 	mpc8xxx_spi->rx = t->rx_buf;
451 
452 	INIT_COMPLETION(mpc8xxx_spi->done);
453 
454 	if (mpc8xxx_spi->flags & SPI_CPM_MODE)
455 		ret = fsl_spi_cpm_bufs(mpc8xxx_spi, t, is_dma_mapped);
456 	else
457 		ret = fsl_spi_cpu_bufs(mpc8xxx_spi, t, len);
458 	if (ret)
459 		return ret;
460 
461 	wait_for_completion(&mpc8xxx_spi->done);
462 
463 	/* disable rx ints */
464 	mpc8xxx_spi_write_reg(&reg_base->mask, 0);
465 
466 	if (mpc8xxx_spi->flags & SPI_CPM_MODE)
467 		fsl_spi_cpm_bufs_complete(mpc8xxx_spi);
468 
469 	return mpc8xxx_spi->count;
470 }
471 
472 static void fsl_spi_do_one_msg(struct spi_message *m)
473 {
474 	struct spi_device *spi = m->spi;
475 	struct spi_transfer *t;
476 	unsigned int cs_change;
477 	const int nsecs = 50;
478 	int status;
479 
480 	cs_change = 1;
481 	status = 0;
482 	list_for_each_entry(t, &m->transfers, transfer_list) {
483 		if (t->bits_per_word || t->speed_hz) {
484 			/* Don't allow changes if CS is active */
485 			status = -EINVAL;
486 
487 			if (cs_change)
488 				status = fsl_spi_setup_transfer(spi, t);
489 			if (status < 0)
490 				break;
491 		}
492 
493 		if (cs_change) {
494 			fsl_spi_chipselect(spi, BITBANG_CS_ACTIVE);
495 			ndelay(nsecs);
496 		}
497 		cs_change = t->cs_change;
498 		if (t->len)
499 			status = fsl_spi_bufs(spi, t, m->is_dma_mapped);
500 		if (status) {
501 			status = -EMSGSIZE;
502 			break;
503 		}
504 		m->actual_length += t->len;
505 
506 		if (t->delay_usecs)
507 			udelay(t->delay_usecs);
508 
509 		if (cs_change) {
510 			ndelay(nsecs);
511 			fsl_spi_chipselect(spi, BITBANG_CS_INACTIVE);
512 			ndelay(nsecs);
513 		}
514 	}
515 
516 	m->status = status;
517 	m->complete(m->context);
518 
519 	if (status || !cs_change) {
520 		ndelay(nsecs);
521 		fsl_spi_chipselect(spi, BITBANG_CS_INACTIVE);
522 	}
523 
524 	fsl_spi_setup_transfer(spi, NULL);
525 }
526 
527 static int fsl_spi_setup(struct spi_device *spi)
528 {
529 	struct mpc8xxx_spi *mpc8xxx_spi;
530 	struct fsl_spi_reg *reg_base;
531 	int retval;
532 	u32 hw_mode;
533 	struct spi_mpc8xxx_cs	*cs = spi->controller_state;
534 
535 	if (!spi->max_speed_hz)
536 		return -EINVAL;
537 
538 	if (!cs) {
539 		cs = kzalloc(sizeof *cs, GFP_KERNEL);
540 		if (!cs)
541 			return -ENOMEM;
542 		spi->controller_state = cs;
543 	}
544 	mpc8xxx_spi = spi_master_get_devdata(spi->master);
545 
546 	reg_base = mpc8xxx_spi->reg_base;
547 
548 	hw_mode = cs->hw_mode; /* Save original settings */
549 	cs->hw_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
550 	/* mask out bits we are going to set */
551 	cs->hw_mode &= ~(SPMODE_CP_BEGIN_EDGECLK | SPMODE_CI_INACTIVEHIGH
552 			 | SPMODE_REV | SPMODE_LOOP);
553 
554 	if (spi->mode & SPI_CPHA)
555 		cs->hw_mode |= SPMODE_CP_BEGIN_EDGECLK;
556 	if (spi->mode & SPI_CPOL)
557 		cs->hw_mode |= SPMODE_CI_INACTIVEHIGH;
558 	if (!(spi->mode & SPI_LSB_FIRST))
559 		cs->hw_mode |= SPMODE_REV;
560 	if (spi->mode & SPI_LOOP)
561 		cs->hw_mode |= SPMODE_LOOP;
562 
563 	retval = fsl_spi_setup_transfer(spi, NULL);
564 	if (retval < 0) {
565 		cs->hw_mode = hw_mode; /* Restore settings */
566 		return retval;
567 	}
568 	return 0;
569 }
570 
571 static void fsl_spi_cpm_irq(struct mpc8xxx_spi *mspi, u32 events)
572 {
573 	u16 len;
574 	struct fsl_spi_reg *reg_base = mspi->reg_base;
575 
576 	dev_dbg(mspi->dev, "%s: bd datlen %d, count %d\n", __func__,
577 		in_be16(&mspi->rx_bd->cbd_datlen), mspi->count);
578 
579 	len = in_be16(&mspi->rx_bd->cbd_datlen);
580 	if (len > mspi->count) {
581 		WARN_ON(1);
582 		len = mspi->count;
583 	}
584 
585 	/* Clear the events */
586 	mpc8xxx_spi_write_reg(&reg_base->event, events);
587 
588 	mspi->count -= len;
589 	if (mspi->count)
590 		fsl_spi_cpm_bufs_start(mspi);
591 	else
592 		complete(&mspi->done);
593 }
594 
595 static void fsl_spi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
596 {
597 	struct fsl_spi_reg *reg_base = mspi->reg_base;
598 
599 	/* We need handle RX first */
600 	if (events & SPIE_NE) {
601 		u32 rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
602 
603 		if (mspi->rx)
604 			mspi->get_rx(rx_data, mspi);
605 	}
606 
607 	if ((events & SPIE_NF) == 0)
608 		/* spin until TX is done */
609 		while (((events =
610 			mpc8xxx_spi_read_reg(&reg_base->event)) &
611 						SPIE_NF) == 0)
612 			cpu_relax();
613 
614 	/* Clear the events */
615 	mpc8xxx_spi_write_reg(&reg_base->event, events);
616 
617 	mspi->count -= 1;
618 	if (mspi->count) {
619 		u32 word = mspi->get_tx(mspi);
620 
621 		mpc8xxx_spi_write_reg(&reg_base->transmit, word);
622 	} else {
623 		complete(&mspi->done);
624 	}
625 }
626 
627 static irqreturn_t fsl_spi_irq(s32 irq, void *context_data)
628 {
629 	struct mpc8xxx_spi *mspi = context_data;
630 	irqreturn_t ret = IRQ_NONE;
631 	u32 events;
632 	struct fsl_spi_reg *reg_base = mspi->reg_base;
633 
634 	/* Get interrupt events(tx/rx) */
635 	events = mpc8xxx_spi_read_reg(&reg_base->event);
636 	if (events)
637 		ret = IRQ_HANDLED;
638 
639 	dev_dbg(mspi->dev, "%s: events %x\n", __func__, events);
640 
641 	if (mspi->flags & SPI_CPM_MODE)
642 		fsl_spi_cpm_irq(mspi, events);
643 	else
644 		fsl_spi_cpu_irq(mspi, events);
645 
646 	return ret;
647 }
648 
649 static void *fsl_spi_alloc_dummy_rx(void)
650 {
651 	mutex_lock(&fsl_dummy_rx_lock);
652 
653 	if (!fsl_dummy_rx)
654 		fsl_dummy_rx = kmalloc(SPI_MRBLR, GFP_KERNEL);
655 	if (fsl_dummy_rx)
656 		fsl_dummy_rx_refcnt++;
657 
658 	mutex_unlock(&fsl_dummy_rx_lock);
659 
660 	return fsl_dummy_rx;
661 }
662 
663 static void fsl_spi_free_dummy_rx(void)
664 {
665 	mutex_lock(&fsl_dummy_rx_lock);
666 
667 	switch (fsl_dummy_rx_refcnt) {
668 	case 0:
669 		WARN_ON(1);
670 		break;
671 	case 1:
672 		kfree(fsl_dummy_rx);
673 		fsl_dummy_rx = NULL;
674 		/* fall through */
675 	default:
676 		fsl_dummy_rx_refcnt--;
677 		break;
678 	}
679 
680 	mutex_unlock(&fsl_dummy_rx_lock);
681 }
682 
683 static unsigned long fsl_spi_cpm_get_pram(struct mpc8xxx_spi *mspi)
684 {
685 	struct device *dev = mspi->dev;
686 	struct device_node *np = dev->of_node;
687 	const u32 *iprop;
688 	int size;
689 	void __iomem *spi_base;
690 	unsigned long pram_ofs = -ENOMEM;
691 
692 	/* Can't use of_address_to_resource(), QE muram isn't at 0. */
693 	iprop = of_get_property(np, "reg", &size);
694 
695 	/* QE with a fixed pram location? */
696 	if (mspi->flags & SPI_QE && iprop && size == sizeof(*iprop) * 4)
697 		return cpm_muram_alloc_fixed(iprop[2], SPI_PRAM_SIZE);
698 
699 	/* QE but with a dynamic pram location? */
700 	if (mspi->flags & SPI_QE) {
701 		pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
702 		qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, mspi->subblock,
703 				QE_CR_PROTOCOL_UNSPECIFIED, pram_ofs);
704 		return pram_ofs;
705 	}
706 
707 	spi_base = of_iomap(np, 1);
708 	if (spi_base == NULL)
709 		return -EINVAL;
710 
711 	if (mspi->flags & SPI_CPM2) {
712 		pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
713 		out_be16(spi_base, pram_ofs);
714 	} else {
715 		struct spi_pram __iomem *pram = spi_base;
716 		u16 rpbase = in_be16(&pram->rpbase);
717 
718 		/* Microcode relocation patch applied? */
719 		if (rpbase)
720 			pram_ofs = rpbase;
721 		else {
722 			pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
723 			out_be16(spi_base, pram_ofs);
724 		}
725 	}
726 
727 	iounmap(spi_base);
728 	return pram_ofs;
729 }
730 
731 static int fsl_spi_cpm_init(struct mpc8xxx_spi *mspi)
732 {
733 	struct device *dev = mspi->dev;
734 	struct device_node *np = dev->of_node;
735 	const u32 *iprop;
736 	int size;
737 	unsigned long pram_ofs;
738 	unsigned long bds_ofs;
739 
740 	if (!(mspi->flags & SPI_CPM_MODE))
741 		return 0;
742 
743 	if (!fsl_spi_alloc_dummy_rx())
744 		return -ENOMEM;
745 
746 	if (mspi->flags & SPI_QE) {
747 		iprop = of_get_property(np, "cell-index", &size);
748 		if (iprop && size == sizeof(*iprop))
749 			mspi->subblock = *iprop;
750 
751 		switch (mspi->subblock) {
752 		default:
753 			dev_warn(dev, "cell-index unspecified, assuming SPI1");
754 			/* fall through */
755 		case 0:
756 			mspi->subblock = QE_CR_SUBBLOCK_SPI1;
757 			break;
758 		case 1:
759 			mspi->subblock = QE_CR_SUBBLOCK_SPI2;
760 			break;
761 		}
762 	}
763 
764 	pram_ofs = fsl_spi_cpm_get_pram(mspi);
765 	if (IS_ERR_VALUE(pram_ofs)) {
766 		dev_err(dev, "can't allocate spi parameter ram\n");
767 		goto err_pram;
768 	}
769 
770 	bds_ofs = cpm_muram_alloc(sizeof(*mspi->tx_bd) +
771 				  sizeof(*mspi->rx_bd), 8);
772 	if (IS_ERR_VALUE(bds_ofs)) {
773 		dev_err(dev, "can't allocate bds\n");
774 		goto err_bds;
775 	}
776 
777 	mspi->dma_dummy_tx = dma_map_single(dev, empty_zero_page, PAGE_SIZE,
778 					    DMA_TO_DEVICE);
779 	if (dma_mapping_error(dev, mspi->dma_dummy_tx)) {
780 		dev_err(dev, "unable to map dummy tx buffer\n");
781 		goto err_dummy_tx;
782 	}
783 
784 	mspi->dma_dummy_rx = dma_map_single(dev, fsl_dummy_rx, SPI_MRBLR,
785 					    DMA_FROM_DEVICE);
786 	if (dma_mapping_error(dev, mspi->dma_dummy_rx)) {
787 		dev_err(dev, "unable to map dummy rx buffer\n");
788 		goto err_dummy_rx;
789 	}
790 
791 	mspi->pram = cpm_muram_addr(pram_ofs);
792 
793 	mspi->tx_bd = cpm_muram_addr(bds_ofs);
794 	mspi->rx_bd = cpm_muram_addr(bds_ofs + sizeof(*mspi->tx_bd));
795 
796 	/* Initialize parameter ram. */
797 	out_be16(&mspi->pram->tbase, cpm_muram_offset(mspi->tx_bd));
798 	out_be16(&mspi->pram->rbase, cpm_muram_offset(mspi->rx_bd));
799 	out_8(&mspi->pram->tfcr, CPMFCR_EB | CPMFCR_GBL);
800 	out_8(&mspi->pram->rfcr, CPMFCR_EB | CPMFCR_GBL);
801 	out_be16(&mspi->pram->mrblr, SPI_MRBLR);
802 	out_be32(&mspi->pram->rstate, 0);
803 	out_be32(&mspi->pram->rdp, 0);
804 	out_be16(&mspi->pram->rbptr, 0);
805 	out_be16(&mspi->pram->rbc, 0);
806 	out_be32(&mspi->pram->rxtmp, 0);
807 	out_be32(&mspi->pram->tstate, 0);
808 	out_be32(&mspi->pram->tdp, 0);
809 	out_be16(&mspi->pram->tbptr, 0);
810 	out_be16(&mspi->pram->tbc, 0);
811 	out_be32(&mspi->pram->txtmp, 0);
812 
813 	return 0;
814 
815 err_dummy_rx:
816 	dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
817 err_dummy_tx:
818 	cpm_muram_free(bds_ofs);
819 err_bds:
820 	cpm_muram_free(pram_ofs);
821 err_pram:
822 	fsl_spi_free_dummy_rx();
823 	return -ENOMEM;
824 }
825 
826 static void fsl_spi_cpm_free(struct mpc8xxx_spi *mspi)
827 {
828 	struct device *dev = mspi->dev;
829 
830 	if (!(mspi->flags & SPI_CPM_MODE))
831 		return;
832 
833 	dma_unmap_single(dev, mspi->dma_dummy_rx, SPI_MRBLR, DMA_FROM_DEVICE);
834 	dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
835 	cpm_muram_free(cpm_muram_offset(mspi->tx_bd));
836 	cpm_muram_free(cpm_muram_offset(mspi->pram));
837 	fsl_spi_free_dummy_rx();
838 }
839 
840 static void fsl_spi_remove(struct mpc8xxx_spi *mspi)
841 {
842 	iounmap(mspi->reg_base);
843 	fsl_spi_cpm_free(mspi);
844 }
845 
846 static struct spi_master * __devinit fsl_spi_probe(struct device *dev,
847 		struct resource *mem, unsigned int irq)
848 {
849 	struct fsl_spi_platform_data *pdata = dev->platform_data;
850 	struct spi_master *master;
851 	struct mpc8xxx_spi *mpc8xxx_spi;
852 	struct fsl_spi_reg *reg_base;
853 	u32 regval;
854 	int ret = 0;
855 
856 	master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
857 	if (master == NULL) {
858 		ret = -ENOMEM;
859 		goto err;
860 	}
861 
862 	dev_set_drvdata(dev, master);
863 
864 	ret = mpc8xxx_spi_probe(dev, mem, irq);
865 	if (ret)
866 		goto err_probe;
867 
868 	master->setup = fsl_spi_setup;
869 
870 	mpc8xxx_spi = spi_master_get_devdata(master);
871 	mpc8xxx_spi->spi_do_one_msg = fsl_spi_do_one_msg;
872 	mpc8xxx_spi->spi_remove = fsl_spi_remove;
873 
874 
875 	ret = fsl_spi_cpm_init(mpc8xxx_spi);
876 	if (ret)
877 		goto err_cpm_init;
878 
879 	if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
880 		mpc8xxx_spi->rx_shift = 16;
881 		mpc8xxx_spi->tx_shift = 24;
882 	}
883 
884 	mpc8xxx_spi->reg_base = ioremap(mem->start, resource_size(mem));
885 	if (mpc8xxx_spi->reg_base == NULL) {
886 		ret = -ENOMEM;
887 		goto err_ioremap;
888 	}
889 
890 	/* Register for SPI Interrupt */
891 	ret = request_irq(mpc8xxx_spi->irq, fsl_spi_irq,
892 			  0, "fsl_spi", mpc8xxx_spi);
893 
894 	if (ret != 0)
895 		goto free_irq;
896 
897 	reg_base = mpc8xxx_spi->reg_base;
898 
899 	/* SPI controller initializations */
900 	mpc8xxx_spi_write_reg(&reg_base->mode, 0);
901 	mpc8xxx_spi_write_reg(&reg_base->mask, 0);
902 	mpc8xxx_spi_write_reg(&reg_base->command, 0);
903 	mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
904 
905 	/* Enable SPI interface */
906 	regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
907 	if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE)
908 		regval |= SPMODE_OP;
909 
910 	mpc8xxx_spi_write_reg(&reg_base->mode, regval);
911 
912 	ret = spi_register_master(master);
913 	if (ret < 0)
914 		goto unreg_master;
915 
916 	dev_info(dev, "at 0x%p (irq = %d), %s mode\n", reg_base,
917 		 mpc8xxx_spi->irq, mpc8xxx_spi_strmode(mpc8xxx_spi->flags));
918 
919 	return master;
920 
921 unreg_master:
922 	free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
923 free_irq:
924 	iounmap(mpc8xxx_spi->reg_base);
925 err_ioremap:
926 	fsl_spi_cpm_free(mpc8xxx_spi);
927 err_cpm_init:
928 err_probe:
929 	spi_master_put(master);
930 err:
931 	return ERR_PTR(ret);
932 }
933 
934 static void fsl_spi_cs_control(struct spi_device *spi, bool on)
935 {
936 	struct device *dev = spi->dev.parent;
937 	struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(dev->platform_data);
938 	u16 cs = spi->chip_select;
939 	int gpio = pinfo->gpios[cs];
940 	bool alow = pinfo->alow_flags[cs];
941 
942 	gpio_set_value(gpio, on ^ alow);
943 }
944 
945 static int of_fsl_spi_get_chipselects(struct device *dev)
946 {
947 	struct device_node *np = dev->of_node;
948 	struct fsl_spi_platform_data *pdata = dev->platform_data;
949 	struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
950 	unsigned int ngpios;
951 	int i = 0;
952 	int ret;
953 
954 	ngpios = of_gpio_count(np);
955 	if (!ngpios) {
956 		/*
957 		 * SPI w/o chip-select line. One SPI device is still permitted
958 		 * though.
959 		 */
960 		pdata->max_chipselect = 1;
961 		return 0;
962 	}
963 
964 	pinfo->gpios = kmalloc(ngpios * sizeof(*pinfo->gpios), GFP_KERNEL);
965 	if (!pinfo->gpios)
966 		return -ENOMEM;
967 	memset(pinfo->gpios, -1, ngpios * sizeof(*pinfo->gpios));
968 
969 	pinfo->alow_flags = kzalloc(ngpios * sizeof(*pinfo->alow_flags),
970 				    GFP_KERNEL);
971 	if (!pinfo->alow_flags) {
972 		ret = -ENOMEM;
973 		goto err_alloc_flags;
974 	}
975 
976 	for (; i < ngpios; i++) {
977 		int gpio;
978 		enum of_gpio_flags flags;
979 
980 		gpio = of_get_gpio_flags(np, i, &flags);
981 		if (!gpio_is_valid(gpio)) {
982 			dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
983 			ret = gpio;
984 			goto err_loop;
985 		}
986 
987 		ret = gpio_request(gpio, dev_name(dev));
988 		if (ret) {
989 			dev_err(dev, "can't request gpio #%d: %d\n", i, ret);
990 			goto err_loop;
991 		}
992 
993 		pinfo->gpios[i] = gpio;
994 		pinfo->alow_flags[i] = flags & OF_GPIO_ACTIVE_LOW;
995 
996 		ret = gpio_direction_output(pinfo->gpios[i],
997 					    pinfo->alow_flags[i]);
998 		if (ret) {
999 			dev_err(dev, "can't set output direction for gpio "
1000 				"#%d: %d\n", i, ret);
1001 			goto err_loop;
1002 		}
1003 	}
1004 
1005 	pdata->max_chipselect = ngpios;
1006 	pdata->cs_control = fsl_spi_cs_control;
1007 
1008 	return 0;
1009 
1010 err_loop:
1011 	while (i >= 0) {
1012 		if (gpio_is_valid(pinfo->gpios[i]))
1013 			gpio_free(pinfo->gpios[i]);
1014 		i--;
1015 	}
1016 
1017 	kfree(pinfo->alow_flags);
1018 	pinfo->alow_flags = NULL;
1019 err_alloc_flags:
1020 	kfree(pinfo->gpios);
1021 	pinfo->gpios = NULL;
1022 	return ret;
1023 }
1024 
1025 static int of_fsl_spi_free_chipselects(struct device *dev)
1026 {
1027 	struct fsl_spi_platform_data *pdata = dev->platform_data;
1028 	struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
1029 	int i;
1030 
1031 	if (!pinfo->gpios)
1032 		return 0;
1033 
1034 	for (i = 0; i < pdata->max_chipselect; i++) {
1035 		if (gpio_is_valid(pinfo->gpios[i]))
1036 			gpio_free(pinfo->gpios[i]);
1037 	}
1038 
1039 	kfree(pinfo->gpios);
1040 	kfree(pinfo->alow_flags);
1041 	return 0;
1042 }
1043 
1044 static int __devinit of_fsl_spi_probe(struct platform_device *ofdev)
1045 {
1046 	struct device *dev = &ofdev->dev;
1047 	struct device_node *np = ofdev->dev.of_node;
1048 	struct spi_master *master;
1049 	struct resource mem;
1050 	struct resource irq;
1051 	int ret = -ENOMEM;
1052 
1053 	ret = of_mpc8xxx_spi_probe(ofdev);
1054 	if (ret)
1055 		return ret;
1056 
1057 	ret = of_fsl_spi_get_chipselects(dev);
1058 	if (ret)
1059 		goto err;
1060 
1061 	ret = of_address_to_resource(np, 0, &mem);
1062 	if (ret)
1063 		goto err;
1064 
1065 	ret = of_irq_to_resource(np, 0, &irq);
1066 	if (!ret) {
1067 		ret = -EINVAL;
1068 		goto err;
1069 	}
1070 
1071 	master = fsl_spi_probe(dev, &mem, irq.start);
1072 	if (IS_ERR(master)) {
1073 		ret = PTR_ERR(master);
1074 		goto err;
1075 	}
1076 
1077 	return 0;
1078 
1079 err:
1080 	of_fsl_spi_free_chipselects(dev);
1081 	return ret;
1082 }
1083 
1084 static int __devexit of_fsl_spi_remove(struct platform_device *ofdev)
1085 {
1086 	int ret;
1087 
1088 	ret = mpc8xxx_spi_remove(&ofdev->dev);
1089 	if (ret)
1090 		return ret;
1091 	of_fsl_spi_free_chipselects(&ofdev->dev);
1092 	return 0;
1093 }
1094 
1095 static const struct of_device_id of_fsl_spi_match[] = {
1096 	{ .compatible = "fsl,spi" },
1097 	{}
1098 };
1099 MODULE_DEVICE_TABLE(of, of_fsl_spi_match);
1100 
1101 static struct platform_driver of_fsl_spi_driver = {
1102 	.driver = {
1103 		.name = "fsl_spi",
1104 		.owner = THIS_MODULE,
1105 		.of_match_table = of_fsl_spi_match,
1106 	},
1107 	.probe		= of_fsl_spi_probe,
1108 	.remove		= __devexit_p(of_fsl_spi_remove),
1109 };
1110 
1111 #ifdef CONFIG_MPC832x_RDB
1112 /*
1113  * XXX XXX XXX
1114  * This is "legacy" platform driver, was used by the MPC8323E-RDB boards
1115  * only. The driver should go away soon, since newer MPC8323E-RDB's device
1116  * tree can work with OpenFirmware driver. But for now we support old trees
1117  * as well.
1118  */
1119 static int __devinit plat_mpc8xxx_spi_probe(struct platform_device *pdev)
1120 {
1121 	struct resource *mem;
1122 	int irq;
1123 	struct spi_master *master;
1124 
1125 	if (!pdev->dev.platform_data)
1126 		return -EINVAL;
1127 
1128 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1129 	if (!mem)
1130 		return -EINVAL;
1131 
1132 	irq = platform_get_irq(pdev, 0);
1133 	if (irq <= 0)
1134 		return -EINVAL;
1135 
1136 	master = fsl_spi_probe(&pdev->dev, mem, irq);
1137 	if (IS_ERR(master))
1138 		return PTR_ERR(master);
1139 	return 0;
1140 }
1141 
1142 static int __devexit plat_mpc8xxx_spi_remove(struct platform_device *pdev)
1143 {
1144 	return mpc8xxx_spi_remove(&pdev->dev);
1145 }
1146 
1147 MODULE_ALIAS("platform:mpc8xxx_spi");
1148 static struct platform_driver mpc8xxx_spi_driver = {
1149 	.probe = plat_mpc8xxx_spi_probe,
1150 	.remove = __devexit_p(plat_mpc8xxx_spi_remove),
1151 	.driver = {
1152 		.name = "mpc8xxx_spi",
1153 		.owner = THIS_MODULE,
1154 	},
1155 };
1156 
1157 static bool legacy_driver_failed;
1158 
1159 static void __init legacy_driver_register(void)
1160 {
1161 	legacy_driver_failed = platform_driver_register(&mpc8xxx_spi_driver);
1162 }
1163 
1164 static void __exit legacy_driver_unregister(void)
1165 {
1166 	if (legacy_driver_failed)
1167 		return;
1168 	platform_driver_unregister(&mpc8xxx_spi_driver);
1169 }
1170 #else
1171 static void __init legacy_driver_register(void) {}
1172 static void __exit legacy_driver_unregister(void) {}
1173 #endif /* CONFIG_MPC832x_RDB */
1174 
1175 static int __init fsl_spi_init(void)
1176 {
1177 	legacy_driver_register();
1178 	return platform_driver_register(&of_fsl_spi_driver);
1179 }
1180 module_init(fsl_spi_init);
1181 
1182 static void __exit fsl_spi_exit(void)
1183 {
1184 	platform_driver_unregister(&of_fsl_spi_driver);
1185 	legacy_driver_unregister();
1186 }
1187 module_exit(fsl_spi_exit);
1188 
1189 MODULE_AUTHOR("Kumar Gala");
1190 MODULE_DESCRIPTION("Simple Freescale SPI Driver");
1191 MODULE_LICENSE("GPL");
1192