1 // SPDX-License-Identifier: GPL-2.0+
2
3 /*
4 * Freescale QuadSPI driver.
5 *
6 * Copyright (C) 2013 Freescale Semiconductor, Inc.
7 * Copyright (C) 2018 Bootlin
8 * Copyright (C) 2018 exceet electronics GmbH
9 * Copyright (C) 2018 Kontron Electronics GmbH
10 *
11 * Transition to SPI MEM interface:
12 * Authors:
13 * Boris Brezillon <bbrezillon@kernel.org>
14 * Frieder Schrempf <frieder.schrempf@kontron.de>
15 * Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
16 * Suresh Gupta <suresh.gupta@nxp.com>
17 *
18 * Based on the original fsl-quadspi.c SPI NOR driver:
19 * Author: Freescale Semiconductor, Inc.
20 *
21 */
22
23 #include <linux/bitops.h>
24 #include <linux/clk.h>
25 #include <linux/completion.h>
26 #include <linux/delay.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/iopoll.h>
32 #include <linux/jiffies.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/mutex.h>
36 #include <linux/of.h>
37 #include <linux/platform_device.h>
38 #include <linux/pm_qos.h>
39 #include <linux/sizes.h>
40
41 #include <linux/spi/spi.h>
42 #include <linux/spi/spi-mem.h>
43
44 /*
45 * The driver only uses one single LUT entry, that is updated on
46 * each call of exec_op(). Index 0 is preset at boot with a basic
47 * read operation, so let's use the last entry (15).
48 */
49 #define SEQID_LUT 15
50
51 /* Registers used by the driver */
52 #define QUADSPI_MCR 0x00
53 #define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16)
54 #define QUADSPI_MCR_MDIS_MASK BIT(14)
55 #define QUADSPI_MCR_CLR_TXF_MASK BIT(11)
56 #define QUADSPI_MCR_CLR_RXF_MASK BIT(10)
57 #define QUADSPI_MCR_DDR_EN_MASK BIT(7)
58 #define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2)
59 #define QUADSPI_MCR_SWRSTHD_MASK BIT(1)
60 #define QUADSPI_MCR_SWRSTSD_MASK BIT(0)
61
62 #define QUADSPI_IPCR 0x08
63 #define QUADSPI_IPCR_SEQID(x) ((x) << 24)
64
65 #define QUADSPI_FLSHCR 0x0c
66 #define QUADSPI_FLSHCR_TCSS_MASK GENMASK(3, 0)
67 #define QUADSPI_FLSHCR_TCSH_MASK GENMASK(11, 8)
68 #define QUADSPI_FLSHCR_TDH_MASK GENMASK(17, 16)
69
70 #define QUADSPI_BUF0CR 0x10
71 #define QUADSPI_BUF1CR 0x14
72 #define QUADSPI_BUF2CR 0x18
73 #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
74
75 #define QUADSPI_BUF3CR 0x1c
76 #define QUADSPI_BUF3CR_ALLMST_MASK BIT(31)
77 #define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8)
78 #define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8)
79
80 #define QUADSPI_BFGENCR 0x20
81 #define QUADSPI_BFGENCR_SEQID(x) ((x) << 12)
82
83 #define QUADSPI_BUF0IND 0x30
84 #define QUADSPI_BUF1IND 0x34
85 #define QUADSPI_BUF2IND 0x38
86 #define QUADSPI_SFAR 0x100
87
88 #define QUADSPI_SMPR 0x108
89 #define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16)
90 #define QUADSPI_SMPR_FSDLY_MASK BIT(6)
91 #define QUADSPI_SMPR_FSPHS_MASK BIT(5)
92 #define QUADSPI_SMPR_HSENA_MASK BIT(0)
93
94 #define QUADSPI_RBCT 0x110
95 #define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0)
96 #define QUADSPI_RBCT_RXBRD_USEIPS BIT(8)
97
98 #define QUADSPI_TBDR 0x154
99
100 #define QUADSPI_SR 0x15c
101 #define QUADSPI_SR_IP_ACC_MASK BIT(1)
102 #define QUADSPI_SR_AHB_ACC_MASK BIT(2)
103
104 #define QUADSPI_FR 0x160
105 #define QUADSPI_FR_TFF_MASK BIT(0)
106
107 #define QUADSPI_RSER 0x164
108 #define QUADSPI_RSER_TFIE BIT(0)
109
110 #define QUADSPI_SPTRCLR 0x16c
111 #define QUADSPI_SPTRCLR_IPPTRC BIT(8)
112 #define QUADSPI_SPTRCLR_BFPTRC BIT(0)
113
114 #define QUADSPI_SFA1AD 0x180
115 #define QUADSPI_SFA2AD 0x184
116 #define QUADSPI_SFB1AD 0x188
117 #define QUADSPI_SFB2AD 0x18c
118 #define QUADSPI_RBDR(x) (0x200 + ((x) * 4))
119
120 #define QUADSPI_LUTKEY 0x300
121 #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
122
123 #define QUADSPI_LCKCR 0x304
124 #define QUADSPI_LCKER_LOCK BIT(0)
125 #define QUADSPI_LCKER_UNLOCK BIT(1)
126
127 #define QUADSPI_LUT_BASE 0x310
128 #define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
129 #define QUADSPI_LUT_REG(idx) \
130 (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
131
132 /* Instruction set for the LUT register */
133 #define LUT_STOP 0
134 #define LUT_CMD 1
135 #define LUT_ADDR 2
136 #define LUT_DUMMY 3
137 #define LUT_MODE 4
138 #define LUT_MODE2 5
139 #define LUT_MODE4 6
140 #define LUT_FSL_READ 7
141 #define LUT_FSL_WRITE 8
142 #define LUT_JMP_ON_CS 9
143 #define LUT_ADDR_DDR 10
144 #define LUT_MODE_DDR 11
145 #define LUT_MODE2_DDR 12
146 #define LUT_MODE4_DDR 13
147 #define LUT_FSL_READ_DDR 14
148 #define LUT_FSL_WRITE_DDR 15
149 #define LUT_DATA_LEARN 16
150
151 /*
152 * The PAD definitions for LUT register.
153 *
154 * The pad stands for the number of IO lines [0:3].
155 * For example, the quad read needs four IO lines,
156 * so you should use LUT_PAD(4).
157 */
158 #define LUT_PAD(x) (fls(x) - 1)
159
160 /*
161 * Macro for constructing the LUT entries with the following
162 * register layout:
163 *
164 * ---------------------------------------------------
165 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
166 * ---------------------------------------------------
167 */
168 #define LUT_DEF(idx, ins, pad, opr) \
169 ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
170
171 /* Controller needs driver to swap endianness */
172 #define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0)
173
174 /* Controller needs 4x internal clock */
175 #define QUADSPI_QUIRK_4X_INT_CLK BIT(1)
176
177 /*
178 * TKT253890, the controller needs the driver to fill the txfifo with
179 * 16 bytes at least to trigger a data transfer, even though the extra
180 * data won't be transferred.
181 */
182 #define QUADSPI_QUIRK_TKT253890 BIT(2)
183
184 /* TKT245618, the controller cannot wake up from wait mode */
185 #define QUADSPI_QUIRK_TKT245618 BIT(3)
186
187 /*
188 * Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
189 * internally. No need to add it when setting SFXXAD and SFAR registers
190 */
191 #define QUADSPI_QUIRK_BASE_INTERNAL BIT(4)
192
193 /*
194 * Controller uses TDH bits in register QUADSPI_FLSHCR.
195 * They need to be set in accordance with the DDR/SDR mode.
196 */
197 #define QUADSPI_QUIRK_USE_TDH_SETTING BIT(5)
198
199 struct fsl_qspi_devtype_data {
200 unsigned int rxfifo;
201 unsigned int txfifo;
202 int invalid_mstrid;
203 unsigned int ahb_buf_size;
204 unsigned int quirks;
205 bool little_endian;
206 };
207
208 static const struct fsl_qspi_devtype_data vybrid_data = {
209 .rxfifo = SZ_128,
210 .txfifo = SZ_64,
211 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
212 .ahb_buf_size = SZ_1K,
213 .quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
214 .little_endian = true,
215 };
216
217 static const struct fsl_qspi_devtype_data imx6sx_data = {
218 .rxfifo = SZ_128,
219 .txfifo = SZ_512,
220 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
221 .ahb_buf_size = SZ_1K,
222 .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
223 .little_endian = true,
224 };
225
226 static const struct fsl_qspi_devtype_data imx7d_data = {
227 .rxfifo = SZ_128,
228 .txfifo = SZ_512,
229 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
230 .ahb_buf_size = SZ_1K,
231 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
232 QUADSPI_QUIRK_USE_TDH_SETTING,
233 .little_endian = true,
234 };
235
236 static const struct fsl_qspi_devtype_data imx6ul_data = {
237 .rxfifo = SZ_128,
238 .txfifo = SZ_512,
239 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
240 .ahb_buf_size = SZ_1K,
241 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
242 QUADSPI_QUIRK_USE_TDH_SETTING,
243 .little_endian = true,
244 };
245
246 static const struct fsl_qspi_devtype_data ls1021a_data = {
247 .rxfifo = SZ_128,
248 .txfifo = SZ_64,
249 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
250 .ahb_buf_size = SZ_1K,
251 .quirks = 0,
252 .little_endian = false,
253 };
254
255 static const struct fsl_qspi_devtype_data ls2080a_data = {
256 .rxfifo = SZ_128,
257 .txfifo = SZ_64,
258 .ahb_buf_size = SZ_1K,
259 .invalid_mstrid = 0x0,
260 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
261 .little_endian = true,
262 };
263
264 struct fsl_qspi {
265 void __iomem *iobase;
266 void __iomem *ahb_addr;
267 u32 memmap_phy;
268 struct clk *clk, *clk_en;
269 struct device *dev;
270 struct completion c;
271 const struct fsl_qspi_devtype_data *devtype_data;
272 struct mutex lock;
273 struct pm_qos_request pm_qos_req;
274 int selected;
275 };
276
needs_swap_endian(struct fsl_qspi * q)277 static inline int needs_swap_endian(struct fsl_qspi *q)
278 {
279 return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
280 }
281
needs_4x_clock(struct fsl_qspi * q)282 static inline int needs_4x_clock(struct fsl_qspi *q)
283 {
284 return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
285 }
286
needs_fill_txfifo(struct fsl_qspi * q)287 static inline int needs_fill_txfifo(struct fsl_qspi *q)
288 {
289 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
290 }
291
needs_wakeup_wait_mode(struct fsl_qspi * q)292 static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
293 {
294 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
295 }
296
needs_amba_base_offset(struct fsl_qspi * q)297 static inline int needs_amba_base_offset(struct fsl_qspi *q)
298 {
299 return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
300 }
301
needs_tdh_setting(struct fsl_qspi * q)302 static inline int needs_tdh_setting(struct fsl_qspi *q)
303 {
304 return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING;
305 }
306
307 /*
308 * An IC bug makes it necessary to rearrange the 32-bit data.
309 * Later chips, such as IMX6SLX, have fixed this bug.
310 */
fsl_qspi_endian_xchg(struct fsl_qspi * q,u32 a)311 static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
312 {
313 return needs_swap_endian(q) ? __swab32(a) : a;
314 }
315
316 /*
317 * R/W functions for big- or little-endian registers:
318 * The QSPI controller's endianness is independent of
319 * the CPU core's endianness. So far, although the CPU
320 * core is little-endian the QSPI controller can use
321 * big-endian or little-endian.
322 */
qspi_writel(struct fsl_qspi * q,u32 val,void __iomem * addr)323 static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
324 {
325 if (q->devtype_data->little_endian)
326 iowrite32(val, addr);
327 else
328 iowrite32be(val, addr);
329 }
330
qspi_readl(struct fsl_qspi * q,void __iomem * addr)331 static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
332 {
333 if (q->devtype_data->little_endian)
334 return ioread32(addr);
335
336 return ioread32be(addr);
337 }
338
fsl_qspi_irq_handler(int irq,void * dev_id)339 static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
340 {
341 struct fsl_qspi *q = dev_id;
342 u32 reg;
343
344 /* clear interrupt */
345 reg = qspi_readl(q, q->iobase + QUADSPI_FR);
346 qspi_writel(q, reg, q->iobase + QUADSPI_FR);
347
348 if (reg & QUADSPI_FR_TFF_MASK)
349 complete(&q->c);
350
351 dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
352 return IRQ_HANDLED;
353 }
354
fsl_qspi_check_buswidth(struct fsl_qspi * q,u8 width)355 static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
356 {
357 switch (width) {
358 case 1:
359 case 2:
360 case 4:
361 return 0;
362 }
363
364 return -ENOTSUPP;
365 }
366
fsl_qspi_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)367 static bool fsl_qspi_supports_op(struct spi_mem *mem,
368 const struct spi_mem_op *op)
369 {
370 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
371 int ret;
372
373 ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
374
375 if (op->addr.nbytes)
376 ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
377
378 if (op->dummy.nbytes)
379 ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
380
381 if (op->data.nbytes)
382 ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
383
384 if (ret)
385 return false;
386
387 /*
388 * The number of instructions needed for the op, needs
389 * to fit into a single LUT entry.
390 */
391 if (op->addr.nbytes +
392 (op->dummy.nbytes ? 1:0) +
393 (op->data.nbytes ? 1:0) > 6)
394 return false;
395
396 /* Max 64 dummy clock cycles supported */
397 if (op->dummy.nbytes &&
398 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
399 return false;
400
401 /* Max data length, check controller limits and alignment */
402 if (op->data.dir == SPI_MEM_DATA_IN &&
403 (op->data.nbytes > q->devtype_data->ahb_buf_size ||
404 (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
405 !IS_ALIGNED(op->data.nbytes, 8))))
406 return false;
407
408 if (op->data.dir == SPI_MEM_DATA_OUT &&
409 op->data.nbytes > q->devtype_data->txfifo)
410 return false;
411
412 return spi_mem_default_supports_op(mem, op);
413 }
414
fsl_qspi_prepare_lut(struct fsl_qspi * q,const struct spi_mem_op * op)415 static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
416 const struct spi_mem_op *op)
417 {
418 void __iomem *base = q->iobase;
419 u32 lutval[4] = {};
420 int lutidx = 1, i;
421
422 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
423 op->cmd.opcode);
424
425 /*
426 * For some unknown reason, using LUT_ADDR doesn't work in some
427 * cases (at least with only one byte long addresses), so
428 * let's use LUT_MODE to write the address bytes one by one
429 */
430 for (i = 0; i < op->addr.nbytes; i++) {
431 u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
432
433 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
434 LUT_PAD(op->addr.buswidth),
435 addrbyte);
436 lutidx++;
437 }
438
439 if (op->dummy.nbytes) {
440 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
441 LUT_PAD(op->dummy.buswidth),
442 op->dummy.nbytes * 8 /
443 op->dummy.buswidth);
444 lutidx++;
445 }
446
447 if (op->data.nbytes) {
448 lutval[lutidx / 2] |= LUT_DEF(lutidx,
449 op->data.dir == SPI_MEM_DATA_IN ?
450 LUT_FSL_READ : LUT_FSL_WRITE,
451 LUT_PAD(op->data.buswidth),
452 0);
453 lutidx++;
454 }
455
456 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
457
458 /* unlock LUT */
459 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
460 qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
461
462 /* fill LUT */
463 for (i = 0; i < ARRAY_SIZE(lutval); i++)
464 qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
465
466 /* lock LUT */
467 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
468 qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
469 }
470
fsl_qspi_clk_prep_enable(struct fsl_qspi * q)471 static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
472 {
473 int ret;
474
475 ret = clk_prepare_enable(q->clk_en);
476 if (ret)
477 return ret;
478
479 ret = clk_prepare_enable(q->clk);
480 if (ret) {
481 clk_disable_unprepare(q->clk_en);
482 return ret;
483 }
484
485 if (needs_wakeup_wait_mode(q))
486 cpu_latency_qos_add_request(&q->pm_qos_req, 0);
487
488 return 0;
489 }
490
fsl_qspi_clk_disable_unprep(struct fsl_qspi * q)491 static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
492 {
493 if (needs_wakeup_wait_mode(q))
494 cpu_latency_qos_remove_request(&q->pm_qos_req);
495
496 clk_disable_unprepare(q->clk);
497 clk_disable_unprepare(q->clk_en);
498 }
499
500 /*
501 * If we have changed the content of the flash by writing or erasing, or if we
502 * read from flash with a different offset into the page buffer, we need to
503 * invalidate the AHB buffer. If we do not do so, we may read out the wrong
504 * data. The spec tells us reset the AHB domain and Serial Flash domain at
505 * the same time.
506 */
fsl_qspi_invalidate(struct fsl_qspi * q)507 static void fsl_qspi_invalidate(struct fsl_qspi *q)
508 {
509 u32 reg;
510
511 reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
512 reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
513 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
514
515 /*
516 * The minimum delay : 1 AHB + 2 SFCK clocks.
517 * Delay 1 us is enough.
518 */
519 udelay(1);
520
521 reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
522 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
523 }
524
fsl_qspi_select_mem(struct fsl_qspi * q,struct spi_device * spi)525 static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi)
526 {
527 unsigned long rate = spi->max_speed_hz;
528 int ret;
529
530 if (q->selected == spi_get_chipselect(spi, 0))
531 return;
532
533 if (needs_4x_clock(q))
534 rate *= 4;
535
536 fsl_qspi_clk_disable_unprep(q);
537
538 ret = clk_set_rate(q->clk, rate);
539 if (ret)
540 return;
541
542 ret = fsl_qspi_clk_prep_enable(q);
543 if (ret)
544 return;
545
546 q->selected = spi_get_chipselect(spi, 0);
547
548 fsl_qspi_invalidate(q);
549 }
550
fsl_qspi_read_ahb(struct fsl_qspi * q,const struct spi_mem_op * op)551 static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
552 {
553 memcpy_fromio(op->data.buf.in,
554 q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size,
555 op->data.nbytes);
556 }
557
fsl_qspi_fill_txfifo(struct fsl_qspi * q,const struct spi_mem_op * op)558 static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
559 const struct spi_mem_op *op)
560 {
561 void __iomem *base = q->iobase;
562 int i;
563 u32 val;
564
565 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
566 memcpy(&val, op->data.buf.out + i, 4);
567 val = fsl_qspi_endian_xchg(q, val);
568 qspi_writel(q, val, base + QUADSPI_TBDR);
569 }
570
571 if (i < op->data.nbytes) {
572 memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
573 val = fsl_qspi_endian_xchg(q, val);
574 qspi_writel(q, val, base + QUADSPI_TBDR);
575 }
576
577 if (needs_fill_txfifo(q)) {
578 for (i = op->data.nbytes; i < 16; i += 4)
579 qspi_writel(q, 0, base + QUADSPI_TBDR);
580 }
581 }
582
fsl_qspi_read_rxfifo(struct fsl_qspi * q,const struct spi_mem_op * op)583 static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
584 const struct spi_mem_op *op)
585 {
586 void __iomem *base = q->iobase;
587 int i;
588 u8 *buf = op->data.buf.in;
589 u32 val;
590
591 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
592 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
593 val = fsl_qspi_endian_xchg(q, val);
594 memcpy(buf + i, &val, 4);
595 }
596
597 if (i < op->data.nbytes) {
598 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
599 val = fsl_qspi_endian_xchg(q, val);
600 memcpy(buf + i, &val, op->data.nbytes - i);
601 }
602 }
603
fsl_qspi_do_op(struct fsl_qspi * q,const struct spi_mem_op * op)604 static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
605 {
606 void __iomem *base = q->iobase;
607 int err = 0;
608
609 init_completion(&q->c);
610
611 /*
612 * Always start the sequence at the same index since we update
613 * the LUT at each exec_op() call. And also specify the DATA
614 * length, since it's has not been specified in the LUT.
615 */
616 qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
617 base + QUADSPI_IPCR);
618
619 /* Wait for the interrupt. */
620 if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
621 err = -ETIMEDOUT;
622
623 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
624 fsl_qspi_read_rxfifo(q, op);
625
626 return err;
627 }
628
fsl_qspi_readl_poll_tout(struct fsl_qspi * q,void __iomem * base,u32 mask,u32 delay_us,u32 timeout_us)629 static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
630 u32 mask, u32 delay_us, u32 timeout_us)
631 {
632 u32 reg;
633
634 if (!q->devtype_data->little_endian)
635 mask = (u32)cpu_to_be32(mask);
636
637 return readl_poll_timeout(base, reg, !(reg & mask), delay_us,
638 timeout_us);
639 }
640
fsl_qspi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)641 static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
642 {
643 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
644 void __iomem *base = q->iobase;
645 u32 addr_offset = 0;
646 int err = 0;
647 int invalid_mstrid = q->devtype_data->invalid_mstrid;
648
649 mutex_lock(&q->lock);
650
651 /* wait for the controller being ready */
652 fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
653 QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
654
655 fsl_qspi_select_mem(q, mem->spi);
656
657 if (needs_amba_base_offset(q))
658 addr_offset = q->memmap_phy;
659
660 qspi_writel(q,
661 q->selected * q->devtype_data->ahb_buf_size + addr_offset,
662 base + QUADSPI_SFAR);
663
664 qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
665 QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
666 base + QUADSPI_MCR);
667
668 qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
669 base + QUADSPI_SPTRCLR);
670
671 qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF0CR);
672 qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF1CR);
673 qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF2CR);
674
675 fsl_qspi_prepare_lut(q, op);
676
677 /*
678 * If we have large chunks of data, we read them through the AHB bus
679 * by accessing the mapped memory. In all other cases we use
680 * IP commands to access the flash.
681 */
682 if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
683 op->data.dir == SPI_MEM_DATA_IN) {
684 fsl_qspi_read_ahb(q, op);
685 } else {
686 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
687 QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
688
689 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
690 fsl_qspi_fill_txfifo(q, op);
691
692 err = fsl_qspi_do_op(q, op);
693 }
694
695 /* Invalidate the data in the AHB buffer. */
696 fsl_qspi_invalidate(q);
697
698 mutex_unlock(&q->lock);
699
700 return err;
701 }
702
fsl_qspi_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)703 static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
704 {
705 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
706
707 if (op->data.dir == SPI_MEM_DATA_OUT) {
708 if (op->data.nbytes > q->devtype_data->txfifo)
709 op->data.nbytes = q->devtype_data->txfifo;
710 } else {
711 if (op->data.nbytes > q->devtype_data->ahb_buf_size)
712 op->data.nbytes = q->devtype_data->ahb_buf_size;
713 else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
714 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
715 }
716
717 return 0;
718 }
719
fsl_qspi_default_setup(struct fsl_qspi * q)720 static int fsl_qspi_default_setup(struct fsl_qspi *q)
721 {
722 void __iomem *base = q->iobase;
723 u32 reg, addr_offset = 0;
724 int ret;
725
726 /* disable and unprepare clock to avoid glitch pass to controller */
727 fsl_qspi_clk_disable_unprep(q);
728
729 /* the default frequency, we will change it later if necessary. */
730 ret = clk_set_rate(q->clk, 66000000);
731 if (ret)
732 return ret;
733
734 ret = fsl_qspi_clk_prep_enable(q);
735 if (ret)
736 return ret;
737
738 /* Reset the module */
739 qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
740 base + QUADSPI_MCR);
741 udelay(1);
742
743 /* Disable the module */
744 qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
745 base + QUADSPI_MCR);
746
747 /*
748 * Previous boot stages (BootROM, bootloader) might have used DDR
749 * mode and did not clear the TDH bits. As we currently use SDR mode
750 * only, clear the TDH bits if necessary.
751 */
752 if (needs_tdh_setting(q))
753 qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) &
754 ~QUADSPI_FLSHCR_TDH_MASK,
755 base + QUADSPI_FLSHCR);
756
757 reg = qspi_readl(q, base + QUADSPI_SMPR);
758 qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
759 | QUADSPI_SMPR_FSPHS_MASK
760 | QUADSPI_SMPR_HSENA_MASK
761 | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
762
763 /* We only use the buffer3 for AHB read */
764 qspi_writel(q, 0, base + QUADSPI_BUF0IND);
765 qspi_writel(q, 0, base + QUADSPI_BUF1IND);
766 qspi_writel(q, 0, base + QUADSPI_BUF2IND);
767
768 qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
769 q->iobase + QUADSPI_BFGENCR);
770 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
771 qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
772 QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
773 base + QUADSPI_BUF3CR);
774
775 if (needs_amba_base_offset(q))
776 addr_offset = q->memmap_phy;
777
778 /*
779 * In HW there can be a maximum of four chips on two buses with
780 * two chip selects on each bus. We use four chip selects in SW
781 * to differentiate between the four chips.
782 * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
783 * SFB2AD accordingly.
784 */
785 qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset,
786 base + QUADSPI_SFA1AD);
787 qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset,
788 base + QUADSPI_SFA2AD);
789 qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset,
790 base + QUADSPI_SFB1AD);
791 qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset,
792 base + QUADSPI_SFB2AD);
793
794 q->selected = -1;
795
796 /* Enable the module */
797 qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
798 base + QUADSPI_MCR);
799
800 /* clear all interrupt status */
801 qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
802
803 /* enable the interrupt */
804 qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
805
806 return 0;
807 }
808
fsl_qspi_get_name(struct spi_mem * mem)809 static const char *fsl_qspi_get_name(struct spi_mem *mem)
810 {
811 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
812 struct device *dev = &mem->spi->dev;
813 const char *name;
814
815 /*
816 * In order to keep mtdparts compatible with the old MTD driver at
817 * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
818 * platform_device of the controller.
819 */
820 if (of_get_available_child_count(q->dev->of_node) == 1)
821 return dev_name(q->dev);
822
823 name = devm_kasprintf(dev, GFP_KERNEL,
824 "%s-%d", dev_name(q->dev),
825 spi_get_chipselect(mem->spi, 0));
826
827 if (!name) {
828 dev_err(dev, "failed to get memory for custom flash name\n");
829 return ERR_PTR(-ENOMEM);
830 }
831
832 return name;
833 }
834
835 static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
836 .adjust_op_size = fsl_qspi_adjust_op_size,
837 .supports_op = fsl_qspi_supports_op,
838 .exec_op = fsl_qspi_exec_op,
839 .get_name = fsl_qspi_get_name,
840 };
841
fsl_qspi_probe(struct platform_device * pdev)842 static int fsl_qspi_probe(struct platform_device *pdev)
843 {
844 struct spi_controller *ctlr;
845 struct device *dev = &pdev->dev;
846 struct device_node *np = dev->of_node;
847 struct resource *res;
848 struct fsl_qspi *q;
849 int ret;
850
851 ctlr = spi_alloc_host(&pdev->dev, sizeof(*q));
852 if (!ctlr)
853 return -ENOMEM;
854
855 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
856 SPI_TX_DUAL | SPI_TX_QUAD;
857
858 q = spi_controller_get_devdata(ctlr);
859 q->dev = dev;
860 q->devtype_data = of_device_get_match_data(dev);
861 if (!q->devtype_data) {
862 ret = -ENODEV;
863 goto err_put_ctrl;
864 }
865
866 platform_set_drvdata(pdev, q);
867
868 /* find the resources */
869 q->iobase = devm_platform_ioremap_resource_byname(pdev, "QuadSPI");
870 if (IS_ERR(q->iobase)) {
871 ret = PTR_ERR(q->iobase);
872 goto err_put_ctrl;
873 }
874
875 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
876 "QuadSPI-memory");
877 if (!res) {
878 ret = -EINVAL;
879 goto err_put_ctrl;
880 }
881 q->memmap_phy = res->start;
882 /* Since there are 4 cs, map size required is 4 times ahb_buf_size */
883 q->ahb_addr = devm_ioremap(dev, q->memmap_phy,
884 (q->devtype_data->ahb_buf_size * 4));
885 if (!q->ahb_addr) {
886 ret = -ENOMEM;
887 goto err_put_ctrl;
888 }
889
890 /* find the clocks */
891 q->clk_en = devm_clk_get(dev, "qspi_en");
892 if (IS_ERR(q->clk_en)) {
893 ret = PTR_ERR(q->clk_en);
894 goto err_put_ctrl;
895 }
896
897 q->clk = devm_clk_get(dev, "qspi");
898 if (IS_ERR(q->clk)) {
899 ret = PTR_ERR(q->clk);
900 goto err_put_ctrl;
901 }
902
903 ret = fsl_qspi_clk_prep_enable(q);
904 if (ret) {
905 dev_err(dev, "can not enable the clock\n");
906 goto err_put_ctrl;
907 }
908
909 /* find the irq */
910 ret = platform_get_irq(pdev, 0);
911 if (ret < 0)
912 goto err_disable_clk;
913
914 ret = devm_request_irq(dev, ret,
915 fsl_qspi_irq_handler, 0, pdev->name, q);
916 if (ret) {
917 dev_err(dev, "failed to request irq: %d\n", ret);
918 goto err_disable_clk;
919 }
920
921 mutex_init(&q->lock);
922
923 ctlr->bus_num = -1;
924 ctlr->num_chipselect = 4;
925 ctlr->mem_ops = &fsl_qspi_mem_ops;
926
927 fsl_qspi_default_setup(q);
928
929 ctlr->dev.of_node = np;
930
931 ret = devm_spi_register_controller(dev, ctlr);
932 if (ret)
933 goto err_destroy_mutex;
934
935 return 0;
936
937 err_destroy_mutex:
938 mutex_destroy(&q->lock);
939
940 err_disable_clk:
941 fsl_qspi_clk_disable_unprep(q);
942
943 err_put_ctrl:
944 spi_controller_put(ctlr);
945
946 dev_err(dev, "Freescale QuadSPI probe failed\n");
947 return ret;
948 }
949
fsl_qspi_remove(struct platform_device * pdev)950 static void fsl_qspi_remove(struct platform_device *pdev)
951 {
952 struct fsl_qspi *q = platform_get_drvdata(pdev);
953
954 /* disable the hardware */
955 qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
956 qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
957
958 fsl_qspi_clk_disable_unprep(q);
959
960 mutex_destroy(&q->lock);
961 }
962
fsl_qspi_suspend(struct device * dev)963 static int fsl_qspi_suspend(struct device *dev)
964 {
965 return 0;
966 }
967
fsl_qspi_resume(struct device * dev)968 static int fsl_qspi_resume(struct device *dev)
969 {
970 struct fsl_qspi *q = dev_get_drvdata(dev);
971
972 fsl_qspi_default_setup(q);
973
974 return 0;
975 }
976
977 static const struct of_device_id fsl_qspi_dt_ids[] = {
978 { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
979 { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
980 { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
981 { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
982 { .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
983 { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
984 { /* sentinel */ }
985 };
986 MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
987
988 static const struct dev_pm_ops fsl_qspi_pm_ops = {
989 .suspend = fsl_qspi_suspend,
990 .resume = fsl_qspi_resume,
991 };
992
993 static struct platform_driver fsl_qspi_driver = {
994 .driver = {
995 .name = "fsl-quadspi",
996 .of_match_table = fsl_qspi_dt_ids,
997 .pm = &fsl_qspi_pm_ops,
998 },
999 .probe = fsl_qspi_probe,
1000 .remove_new = fsl_qspi_remove,
1001 };
1002 module_platform_driver(fsl_qspi_driver);
1003
1004 MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
1005 MODULE_AUTHOR("Freescale Semiconductor Inc.");
1006 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1007 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1008 MODULE_AUTHOR("Yogesh Gaur <yogeshnarayan.gaur@nxp.com>");
1009 MODULE_AUTHOR("Suresh Gupta <suresh.gupta@nxp.com>");
1010 MODULE_LICENSE("GPL v2");
1011