1 /* 2 * Freescale eSPI controller driver. 3 * 4 * Copyright 2010 Freescale Semiconductor, Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the 8 * Free Software Foundation; either version 2 of the License, or (at your 9 * option) any later version. 10 */ 11 #include <linux/module.h> 12 #include <linux/delay.h> 13 #include <linux/irq.h> 14 #include <linux/spi/spi.h> 15 #include <linux/platform_device.h> 16 #include <linux/fsl_devices.h> 17 #include <linux/mm.h> 18 #include <linux/of.h> 19 #include <linux/of_address.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_platform.h> 22 #include <linux/interrupt.h> 23 #include <linux/err.h> 24 #include <sysdev/fsl_soc.h> 25 26 #include "spi-fsl-lib.h" 27 28 /* eSPI Controller registers */ 29 struct fsl_espi_reg { 30 __be32 mode; /* 0x000 - eSPI mode register */ 31 __be32 event; /* 0x004 - eSPI event register */ 32 __be32 mask; /* 0x008 - eSPI mask register */ 33 __be32 command; /* 0x00c - eSPI command register */ 34 __be32 transmit; /* 0x010 - eSPI transmit FIFO access register*/ 35 __be32 receive; /* 0x014 - eSPI receive FIFO access register*/ 36 u8 res[8]; /* 0x018 - 0x01c reserved */ 37 __be32 csmode[4]; /* 0x020 - 0x02c eSPI cs mode register */ 38 }; 39 40 struct fsl_espi_transfer { 41 const void *tx_buf; 42 void *rx_buf; 43 unsigned len; 44 unsigned n_tx; 45 unsigned n_rx; 46 unsigned actual_length; 47 int status; 48 }; 49 50 /* eSPI Controller mode register definitions */ 51 #define SPMODE_ENABLE (1 << 31) 52 #define SPMODE_LOOP (1 << 30) 53 #define SPMODE_TXTHR(x) ((x) << 8) 54 #define SPMODE_RXTHR(x) ((x) << 0) 55 56 /* eSPI Controller CS mode register definitions */ 57 #define CSMODE_CI_INACTIVEHIGH (1 << 31) 58 #define CSMODE_CP_BEGIN_EDGECLK (1 << 30) 59 #define CSMODE_REV (1 << 29) 60 #define CSMODE_DIV16 (1 << 28) 61 #define CSMODE_PM(x) ((x) << 24) 62 #define CSMODE_POL_1 (1 << 20) 63 #define CSMODE_LEN(x) ((x) << 16) 64 #define CSMODE_BEF(x) ((x) << 12) 65 #define CSMODE_AFT(x) ((x) << 8) 66 #define CSMODE_CG(x) ((x) << 3) 67 68 /* Default mode/csmode for eSPI controller */ 69 #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3)) 70 #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \ 71 | CSMODE_AFT(0) | CSMODE_CG(1)) 72 73 /* SPIE register values */ 74 #define SPIE_NE 0x00000200 /* Not empty */ 75 #define SPIE_NF 0x00000100 /* Not full */ 76 77 /* SPIM register values */ 78 #define SPIM_NE 0x00000200 /* Not empty */ 79 #define SPIM_NF 0x00000100 /* Not full */ 80 #define SPIE_RXCNT(reg) ((reg >> 24) & 0x3F) 81 #define SPIE_TXCNT(reg) ((reg >> 16) & 0x3F) 82 83 /* SPCOM register values */ 84 #define SPCOM_CS(x) ((x) << 30) 85 #define SPCOM_TRANLEN(x) ((x) << 0) 86 #define SPCOM_TRANLEN_MAX 0xFFFF /* Max transaction length */ 87 88 static void fsl_espi_change_mode(struct spi_device *spi) 89 { 90 struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master); 91 struct spi_mpc8xxx_cs *cs = spi->controller_state; 92 struct fsl_espi_reg *reg_base = mspi->reg_base; 93 __be32 __iomem *mode = ®_base->csmode[spi->chip_select]; 94 __be32 __iomem *espi_mode = ®_base->mode; 95 u32 tmp; 96 unsigned long flags; 97 98 /* Turn off IRQs locally to minimize time that SPI is disabled. */ 99 local_irq_save(flags); 100 101 /* Turn off SPI unit prior changing mode */ 102 tmp = mpc8xxx_spi_read_reg(espi_mode); 103 mpc8xxx_spi_write_reg(espi_mode, tmp & ~SPMODE_ENABLE); 104 mpc8xxx_spi_write_reg(mode, cs->hw_mode); 105 mpc8xxx_spi_write_reg(espi_mode, tmp); 106 107 local_irq_restore(flags); 108 } 109 110 static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi) 111 { 112 u32 data; 113 u16 data_h; 114 u16 data_l; 115 const u32 *tx = mpc8xxx_spi->tx; 116 117 if (!tx) 118 return 0; 119 120 data = *tx++ << mpc8xxx_spi->tx_shift; 121 data_l = data & 0xffff; 122 data_h = (data >> 16) & 0xffff; 123 swab16s(&data_l); 124 swab16s(&data_h); 125 data = data_h | data_l; 126 127 mpc8xxx_spi->tx = tx; 128 return data; 129 } 130 131 static int fsl_espi_setup_transfer(struct spi_device *spi, 132 struct spi_transfer *t) 133 { 134 struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master); 135 int bits_per_word = 0; 136 u8 pm; 137 u32 hz = 0; 138 struct spi_mpc8xxx_cs *cs = spi->controller_state; 139 140 if (t) { 141 bits_per_word = t->bits_per_word; 142 hz = t->speed_hz; 143 } 144 145 /* spi_transfer level calls that work per-word */ 146 if (!bits_per_word) 147 bits_per_word = spi->bits_per_word; 148 149 if (!hz) 150 hz = spi->max_speed_hz; 151 152 cs->rx_shift = 0; 153 cs->tx_shift = 0; 154 cs->get_rx = mpc8xxx_spi_rx_buf_u32; 155 cs->get_tx = mpc8xxx_spi_tx_buf_u32; 156 if (bits_per_word <= 8) { 157 cs->rx_shift = 8 - bits_per_word; 158 } else { 159 cs->rx_shift = 16 - bits_per_word; 160 if (spi->mode & SPI_LSB_FIRST) 161 cs->get_tx = fsl_espi_tx_buf_lsb; 162 } 163 164 mpc8xxx_spi->rx_shift = cs->rx_shift; 165 mpc8xxx_spi->tx_shift = cs->tx_shift; 166 mpc8xxx_spi->get_rx = cs->get_rx; 167 mpc8xxx_spi->get_tx = cs->get_tx; 168 169 bits_per_word = bits_per_word - 1; 170 171 /* mask out bits we are going to set */ 172 cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF)); 173 174 cs->hw_mode |= CSMODE_LEN(bits_per_word); 175 176 if ((mpc8xxx_spi->spibrg / hz) > 64) { 177 cs->hw_mode |= CSMODE_DIV16; 178 pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4); 179 180 WARN_ONCE(pm > 33, "%s: Requested speed is too low: %d Hz. " 181 "Will use %d Hz instead.\n", dev_name(&spi->dev), 182 hz, mpc8xxx_spi->spibrg / (4 * 16 * (32 + 1))); 183 if (pm > 33) 184 pm = 33; 185 } else { 186 pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4); 187 } 188 if (pm) 189 pm--; 190 if (pm < 2) 191 pm = 2; 192 193 cs->hw_mode |= CSMODE_PM(pm); 194 195 fsl_espi_change_mode(spi); 196 return 0; 197 } 198 199 static int fsl_espi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t, 200 unsigned int len) 201 { 202 u32 word; 203 struct fsl_espi_reg *reg_base = mspi->reg_base; 204 205 mspi->count = len; 206 207 /* enable rx ints */ 208 mpc8xxx_spi_write_reg(®_base->mask, SPIM_NE); 209 210 /* transmit word */ 211 word = mspi->get_tx(mspi); 212 mpc8xxx_spi_write_reg(®_base->transmit, word); 213 214 return 0; 215 } 216 217 static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t) 218 { 219 struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master); 220 struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base; 221 unsigned int len = t->len; 222 u8 bits_per_word; 223 int ret; 224 225 bits_per_word = spi->bits_per_word; 226 if (t->bits_per_word) 227 bits_per_word = t->bits_per_word; 228 229 mpc8xxx_spi->len = t->len; 230 len = roundup(len, 4) / 4; 231 232 mpc8xxx_spi->tx = t->tx_buf; 233 mpc8xxx_spi->rx = t->rx_buf; 234 235 reinit_completion(&mpc8xxx_spi->done); 236 237 /* Set SPCOM[CS] and SPCOM[TRANLEN] field */ 238 if ((t->len - 1) > SPCOM_TRANLEN_MAX) { 239 dev_err(mpc8xxx_spi->dev, "Transaction length (%d)" 240 " beyond the SPCOM[TRANLEN] field\n", t->len); 241 return -EINVAL; 242 } 243 mpc8xxx_spi_write_reg(®_base->command, 244 (SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1))); 245 246 ret = fsl_espi_cpu_bufs(mpc8xxx_spi, t, len); 247 if (ret) 248 return ret; 249 250 wait_for_completion(&mpc8xxx_spi->done); 251 252 /* disable rx ints */ 253 mpc8xxx_spi_write_reg(®_base->mask, 0); 254 255 return mpc8xxx_spi->count; 256 } 257 258 static inline void fsl_espi_addr2cmd(unsigned int addr, u8 *cmd) 259 { 260 if (cmd) { 261 cmd[1] = (u8)(addr >> 16); 262 cmd[2] = (u8)(addr >> 8); 263 cmd[3] = (u8)(addr >> 0); 264 } 265 } 266 267 static inline unsigned int fsl_espi_cmd2addr(u8 *cmd) 268 { 269 if (cmd) 270 return cmd[1] << 16 | cmd[2] << 8 | cmd[3] << 0; 271 272 return 0; 273 } 274 275 static void fsl_espi_do_trans(struct spi_message *m, 276 struct fsl_espi_transfer *tr) 277 { 278 struct spi_device *spi = m->spi; 279 struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master); 280 struct fsl_espi_transfer *espi_trans = tr; 281 struct spi_message message; 282 struct spi_transfer *t, *first, trans; 283 int status = 0; 284 285 spi_message_init(&message); 286 memset(&trans, 0, sizeof(trans)); 287 288 first = list_first_entry(&m->transfers, struct spi_transfer, 289 transfer_list); 290 list_for_each_entry(t, &m->transfers, transfer_list) { 291 if ((first->bits_per_word != t->bits_per_word) || 292 (first->speed_hz != t->speed_hz)) { 293 espi_trans->status = -EINVAL; 294 dev_err(mspi->dev, 295 "bits_per_word/speed_hz should be same for the same SPI transfer\n"); 296 return; 297 } 298 299 trans.speed_hz = t->speed_hz; 300 trans.bits_per_word = t->bits_per_word; 301 trans.delay_usecs = max(first->delay_usecs, t->delay_usecs); 302 } 303 304 trans.len = espi_trans->len; 305 trans.tx_buf = espi_trans->tx_buf; 306 trans.rx_buf = espi_trans->rx_buf; 307 spi_message_add_tail(&trans, &message); 308 309 list_for_each_entry(t, &message.transfers, transfer_list) { 310 if (t->bits_per_word || t->speed_hz) { 311 status = -EINVAL; 312 313 status = fsl_espi_setup_transfer(spi, t); 314 if (status < 0) 315 break; 316 } 317 318 if (t->len) 319 status = fsl_espi_bufs(spi, t); 320 321 if (status) { 322 status = -EMSGSIZE; 323 break; 324 } 325 326 if (t->delay_usecs) 327 udelay(t->delay_usecs); 328 } 329 330 espi_trans->status = status; 331 fsl_espi_setup_transfer(spi, NULL); 332 } 333 334 static void fsl_espi_cmd_trans(struct spi_message *m, 335 struct fsl_espi_transfer *trans, u8 *rx_buff) 336 { 337 struct spi_transfer *t; 338 u8 *local_buf; 339 int i = 0; 340 struct fsl_espi_transfer *espi_trans = trans; 341 342 local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL); 343 if (!local_buf) { 344 espi_trans->status = -ENOMEM; 345 return; 346 } 347 348 list_for_each_entry(t, &m->transfers, transfer_list) { 349 if (t->tx_buf) { 350 memcpy(local_buf + i, t->tx_buf, t->len); 351 i += t->len; 352 } 353 } 354 355 espi_trans->tx_buf = local_buf; 356 espi_trans->rx_buf = local_buf + espi_trans->n_tx; 357 fsl_espi_do_trans(m, espi_trans); 358 359 espi_trans->actual_length = espi_trans->len; 360 kfree(local_buf); 361 } 362 363 static void fsl_espi_rw_trans(struct spi_message *m, 364 struct fsl_espi_transfer *trans, u8 *rx_buff) 365 { 366 struct fsl_espi_transfer *espi_trans = trans; 367 unsigned int n_tx = espi_trans->n_tx; 368 unsigned int n_rx = espi_trans->n_rx; 369 struct spi_transfer *t; 370 u8 *local_buf; 371 u8 *rx_buf = rx_buff; 372 unsigned int trans_len; 373 unsigned int addr; 374 int i, pos, loop; 375 376 local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL); 377 if (!local_buf) { 378 espi_trans->status = -ENOMEM; 379 return; 380 } 381 382 for (pos = 0, loop = 0; pos < n_rx; pos += trans_len, loop++) { 383 trans_len = n_rx - pos; 384 if (trans_len > SPCOM_TRANLEN_MAX - n_tx) 385 trans_len = SPCOM_TRANLEN_MAX - n_tx; 386 387 i = 0; 388 list_for_each_entry(t, &m->transfers, transfer_list) { 389 if (t->tx_buf) { 390 memcpy(local_buf + i, t->tx_buf, t->len); 391 i += t->len; 392 } 393 } 394 395 if (pos > 0) { 396 addr = fsl_espi_cmd2addr(local_buf); 397 addr += pos; 398 fsl_espi_addr2cmd(addr, local_buf); 399 } 400 401 espi_trans->n_tx = n_tx; 402 espi_trans->n_rx = trans_len; 403 espi_trans->len = trans_len + n_tx; 404 espi_trans->tx_buf = local_buf; 405 espi_trans->rx_buf = local_buf + n_tx; 406 fsl_espi_do_trans(m, espi_trans); 407 408 memcpy(rx_buf + pos, espi_trans->rx_buf + n_tx, trans_len); 409 410 if (loop > 0) 411 espi_trans->actual_length += espi_trans->len - n_tx; 412 else 413 espi_trans->actual_length += espi_trans->len; 414 } 415 416 kfree(local_buf); 417 } 418 419 static void fsl_espi_do_one_msg(struct spi_message *m) 420 { 421 struct spi_transfer *t; 422 u8 *rx_buf = NULL; 423 unsigned int n_tx = 0; 424 unsigned int n_rx = 0; 425 struct fsl_espi_transfer espi_trans; 426 427 list_for_each_entry(t, &m->transfers, transfer_list) { 428 if (t->tx_buf) 429 n_tx += t->len; 430 if (t->rx_buf) { 431 n_rx += t->len; 432 rx_buf = t->rx_buf; 433 } 434 } 435 436 espi_trans.n_tx = n_tx; 437 espi_trans.n_rx = n_rx; 438 espi_trans.len = n_tx + n_rx; 439 espi_trans.actual_length = 0; 440 espi_trans.status = 0; 441 442 if (!rx_buf) 443 fsl_espi_cmd_trans(m, &espi_trans, NULL); 444 else 445 fsl_espi_rw_trans(m, &espi_trans, rx_buf); 446 447 m->actual_length = espi_trans.actual_length; 448 m->status = espi_trans.status; 449 m->complete(m->context); 450 } 451 452 static int fsl_espi_setup(struct spi_device *spi) 453 { 454 struct mpc8xxx_spi *mpc8xxx_spi; 455 struct fsl_espi_reg *reg_base; 456 int retval; 457 u32 hw_mode; 458 u32 loop_mode; 459 struct spi_mpc8xxx_cs *cs = spi->controller_state; 460 461 if (!spi->max_speed_hz) 462 return -EINVAL; 463 464 if (!cs) { 465 cs = kzalloc(sizeof *cs, GFP_KERNEL); 466 if (!cs) 467 return -ENOMEM; 468 spi->controller_state = cs; 469 } 470 471 mpc8xxx_spi = spi_master_get_devdata(spi->master); 472 reg_base = mpc8xxx_spi->reg_base; 473 474 hw_mode = cs->hw_mode; /* Save original settings */ 475 cs->hw_mode = mpc8xxx_spi_read_reg( 476 ®_base->csmode[spi->chip_select]); 477 /* mask out bits we are going to set */ 478 cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH 479 | CSMODE_REV); 480 481 if (spi->mode & SPI_CPHA) 482 cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK; 483 if (spi->mode & SPI_CPOL) 484 cs->hw_mode |= CSMODE_CI_INACTIVEHIGH; 485 if (!(spi->mode & SPI_LSB_FIRST)) 486 cs->hw_mode |= CSMODE_REV; 487 488 /* Handle the loop mode */ 489 loop_mode = mpc8xxx_spi_read_reg(®_base->mode); 490 loop_mode &= ~SPMODE_LOOP; 491 if (spi->mode & SPI_LOOP) 492 loop_mode |= SPMODE_LOOP; 493 mpc8xxx_spi_write_reg(®_base->mode, loop_mode); 494 495 retval = fsl_espi_setup_transfer(spi, NULL); 496 if (retval < 0) { 497 cs->hw_mode = hw_mode; /* Restore settings */ 498 return retval; 499 } 500 return 0; 501 } 502 503 void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events) 504 { 505 struct fsl_espi_reg *reg_base = mspi->reg_base; 506 507 /* We need handle RX first */ 508 if (events & SPIE_NE) { 509 u32 rx_data, tmp; 510 u8 rx_data_8; 511 512 /* Spin until RX is done */ 513 while (SPIE_RXCNT(events) < min(4, mspi->len)) { 514 cpu_relax(); 515 events = mpc8xxx_spi_read_reg(®_base->event); 516 } 517 518 if (mspi->len >= 4) { 519 rx_data = mpc8xxx_spi_read_reg(®_base->receive); 520 } else { 521 tmp = mspi->len; 522 rx_data = 0; 523 while (tmp--) { 524 rx_data_8 = in_8((u8 *)®_base->receive); 525 rx_data |= (rx_data_8 << (tmp * 8)); 526 } 527 528 rx_data <<= (4 - mspi->len) * 8; 529 } 530 531 mspi->len -= 4; 532 533 if (mspi->rx) 534 mspi->get_rx(rx_data, mspi); 535 } 536 537 if (!(events & SPIE_NF)) { 538 int ret; 539 540 /* spin until TX is done */ 541 ret = spin_event_timeout(((events = mpc8xxx_spi_read_reg( 542 ®_base->event)) & SPIE_NF) == 0, 1000, 0); 543 if (!ret) { 544 dev_err(mspi->dev, "tired waiting for SPIE_NF\n"); 545 return; 546 } 547 } 548 549 /* Clear the events */ 550 mpc8xxx_spi_write_reg(®_base->event, events); 551 552 mspi->count -= 1; 553 if (mspi->count) { 554 u32 word = mspi->get_tx(mspi); 555 556 mpc8xxx_spi_write_reg(®_base->transmit, word); 557 } else { 558 complete(&mspi->done); 559 } 560 } 561 562 static irqreturn_t fsl_espi_irq(s32 irq, void *context_data) 563 { 564 struct mpc8xxx_spi *mspi = context_data; 565 struct fsl_espi_reg *reg_base = mspi->reg_base; 566 irqreturn_t ret = IRQ_NONE; 567 u32 events; 568 569 /* Get interrupt events(tx/rx) */ 570 events = mpc8xxx_spi_read_reg(®_base->event); 571 if (events) 572 ret = IRQ_HANDLED; 573 574 dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events); 575 576 fsl_espi_cpu_irq(mspi, events); 577 578 return ret; 579 } 580 581 static void fsl_espi_remove(struct mpc8xxx_spi *mspi) 582 { 583 iounmap(mspi->reg_base); 584 } 585 586 static struct spi_master * fsl_espi_probe(struct device *dev, 587 struct resource *mem, unsigned int irq) 588 { 589 struct fsl_spi_platform_data *pdata = dev_get_platdata(dev); 590 struct spi_master *master; 591 struct mpc8xxx_spi *mpc8xxx_spi; 592 struct fsl_espi_reg *reg_base; 593 u32 regval; 594 int i, ret = 0; 595 596 master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi)); 597 if (!master) { 598 ret = -ENOMEM; 599 goto err; 600 } 601 602 dev_set_drvdata(dev, master); 603 604 ret = mpc8xxx_spi_probe(dev, mem, irq); 605 if (ret) 606 goto err_probe; 607 608 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 609 master->setup = fsl_espi_setup; 610 611 mpc8xxx_spi = spi_master_get_devdata(master); 612 mpc8xxx_spi->spi_do_one_msg = fsl_espi_do_one_msg; 613 mpc8xxx_spi->spi_remove = fsl_espi_remove; 614 615 mpc8xxx_spi->reg_base = ioremap(mem->start, resource_size(mem)); 616 if (!mpc8xxx_spi->reg_base) { 617 ret = -ENOMEM; 618 goto err_probe; 619 } 620 621 reg_base = mpc8xxx_spi->reg_base; 622 623 /* Register for SPI Interrupt */ 624 ret = request_irq(mpc8xxx_spi->irq, fsl_espi_irq, 625 0, "fsl_espi", mpc8xxx_spi); 626 if (ret) 627 goto free_irq; 628 629 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) { 630 mpc8xxx_spi->rx_shift = 16; 631 mpc8xxx_spi->tx_shift = 24; 632 } 633 634 /* SPI controller initializations */ 635 mpc8xxx_spi_write_reg(®_base->mode, 0); 636 mpc8xxx_spi_write_reg(®_base->mask, 0); 637 mpc8xxx_spi_write_reg(®_base->command, 0); 638 mpc8xxx_spi_write_reg(®_base->event, 0xffffffff); 639 640 /* Init eSPI CS mode register */ 641 for (i = 0; i < pdata->max_chipselect; i++) 642 mpc8xxx_spi_write_reg(®_base->csmode[i], CSMODE_INIT_VAL); 643 644 /* Enable SPI interface */ 645 regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE; 646 647 mpc8xxx_spi_write_reg(®_base->mode, regval); 648 649 ret = spi_register_master(master); 650 if (ret < 0) 651 goto unreg_master; 652 653 dev_info(dev, "at 0x%p (irq = %d)\n", reg_base, mpc8xxx_spi->irq); 654 655 return master; 656 657 unreg_master: 658 free_irq(mpc8xxx_spi->irq, mpc8xxx_spi); 659 free_irq: 660 iounmap(mpc8xxx_spi->reg_base); 661 err_probe: 662 spi_master_put(master); 663 err: 664 return ERR_PTR(ret); 665 } 666 667 static int of_fsl_espi_get_chipselects(struct device *dev) 668 { 669 struct device_node *np = dev->of_node; 670 struct fsl_spi_platform_data *pdata = dev_get_platdata(dev); 671 const u32 *prop; 672 int len; 673 674 prop = of_get_property(np, "fsl,espi-num-chipselects", &len); 675 if (!prop || len < sizeof(*prop)) { 676 dev_err(dev, "No 'fsl,espi-num-chipselects' property\n"); 677 return -EINVAL; 678 } 679 680 pdata->max_chipselect = *prop; 681 pdata->cs_control = NULL; 682 683 return 0; 684 } 685 686 static int of_fsl_espi_probe(struct platform_device *ofdev) 687 { 688 struct device *dev = &ofdev->dev; 689 struct device_node *np = ofdev->dev.of_node; 690 struct spi_master *master; 691 struct resource mem; 692 unsigned int irq; 693 int ret = -ENOMEM; 694 695 ret = of_mpc8xxx_spi_probe(ofdev); 696 if (ret) 697 return ret; 698 699 ret = of_fsl_espi_get_chipselects(dev); 700 if (ret) 701 goto err; 702 703 ret = of_address_to_resource(np, 0, &mem); 704 if (ret) 705 goto err; 706 707 irq = irq_of_parse_and_map(np, 0); 708 if (!ret) { 709 ret = -EINVAL; 710 goto err; 711 } 712 713 master = fsl_espi_probe(dev, &mem, irq); 714 if (IS_ERR(master)) { 715 ret = PTR_ERR(master); 716 goto err; 717 } 718 719 return 0; 720 721 err: 722 return ret; 723 } 724 725 static int of_fsl_espi_remove(struct platform_device *dev) 726 { 727 return mpc8xxx_spi_remove(&dev->dev); 728 } 729 730 static const struct of_device_id of_fsl_espi_match[] = { 731 { .compatible = "fsl,mpc8536-espi" }, 732 {} 733 }; 734 MODULE_DEVICE_TABLE(of, of_fsl_espi_match); 735 736 static struct platform_driver fsl_espi_driver = { 737 .driver = { 738 .name = "fsl_espi", 739 .owner = THIS_MODULE, 740 .of_match_table = of_fsl_espi_match, 741 }, 742 .probe = of_fsl_espi_probe, 743 .remove = of_fsl_espi_remove, 744 }; 745 module_platform_driver(fsl_espi_driver); 746 747 MODULE_AUTHOR("Mingkai Hu"); 748 MODULE_DESCRIPTION("Enhanced Freescale SPI Driver"); 749 MODULE_LICENSE("GPL"); 750