xref: /openbmc/linux/drivers/spi/spi-fsl-espi.c (revision 278c48d2)
1 /*
2  * Freescale eSPI controller driver.
3  *
4  * Copyright 2010 Freescale Semiconductor, Inc.
5  *
6  * This program is free software; you can redistribute  it and/or modify it
7  * under  the terms of  the GNU General  Public License as published by the
8  * Free Software Foundation;  either version 2 of the  License, or (at your
9  * option) any later version.
10  */
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/fsl_devices.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/spi/spi.h>
23 #include <linux/pm_runtime.h>
24 #include <sysdev/fsl_soc.h>
25 
26 /* eSPI Controller registers */
27 #define ESPI_SPMODE	0x00	/* eSPI mode register */
28 #define ESPI_SPIE	0x04	/* eSPI event register */
29 #define ESPI_SPIM	0x08	/* eSPI mask register */
30 #define ESPI_SPCOM	0x0c	/* eSPI command register */
31 #define ESPI_SPITF	0x10	/* eSPI transmit FIFO access register*/
32 #define ESPI_SPIRF	0x14	/* eSPI receive FIFO access register*/
33 #define ESPI_SPMODE0	0x20	/* eSPI cs0 mode register */
34 
35 #define ESPI_SPMODEx(x)	(ESPI_SPMODE0 + (x) * 4)
36 
37 /* eSPI Controller mode register definitions */
38 #define SPMODE_ENABLE		BIT(31)
39 #define SPMODE_LOOP		BIT(30)
40 #define SPMODE_TXTHR(x)		((x) << 8)
41 #define SPMODE_RXTHR(x)		((x) << 0)
42 
43 /* eSPI Controller CS mode register definitions */
44 #define CSMODE_CI_INACTIVEHIGH	BIT(31)
45 #define CSMODE_CP_BEGIN_EDGECLK	BIT(30)
46 #define CSMODE_REV		BIT(29)
47 #define CSMODE_DIV16		BIT(28)
48 #define CSMODE_PM(x)		((x) << 24)
49 #define CSMODE_POL_1		BIT(20)
50 #define CSMODE_LEN(x)		((x) << 16)
51 #define CSMODE_BEF(x)		((x) << 12)
52 #define CSMODE_AFT(x)		((x) << 8)
53 #define CSMODE_CG(x)		((x) << 3)
54 
55 #define FSL_ESPI_FIFO_SIZE	32
56 #define FSL_ESPI_RXTHR		15
57 
58 /* Default mode/csmode for eSPI controller */
59 #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
60 #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
61 		| CSMODE_AFT(0) | CSMODE_CG(1))
62 
63 /* SPIE register values */
64 #define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
65 #define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
66 #define	SPIE_TXE		BIT(15)	/* TX FIFO empty */
67 #define	SPIE_DON		BIT(14)	/* TX done */
68 #define	SPIE_RXT		BIT(13)	/* RX FIFO threshold */
69 #define	SPIE_RXF		BIT(12)	/* RX FIFO full */
70 #define	SPIE_TXT		BIT(11)	/* TX FIFO threshold*/
71 #define	SPIE_RNE		BIT(9)	/* RX FIFO not empty */
72 #define	SPIE_TNF		BIT(8)	/* TX FIFO not full */
73 
74 /* SPIM register values */
75 #define	SPIM_TXE		BIT(15)	/* TX FIFO empty */
76 #define	SPIM_DON		BIT(14)	/* TX done */
77 #define	SPIM_RXT		BIT(13)	/* RX FIFO threshold */
78 #define	SPIM_RXF		BIT(12)	/* RX FIFO full */
79 #define	SPIM_TXT		BIT(11)	/* TX FIFO threshold*/
80 #define	SPIM_RNE		BIT(9)	/* RX FIFO not empty */
81 #define	SPIM_TNF		BIT(8)	/* TX FIFO not full */
82 
83 /* SPCOM register values */
84 #define SPCOM_CS(x)		((x) << 30)
85 #define SPCOM_DO		BIT(28) /* Dual output */
86 #define SPCOM_TO		BIT(27) /* TX only */
87 #define SPCOM_RXSKIP(x)		((x) << 16)
88 #define SPCOM_TRANLEN(x)	((x) << 0)
89 
90 #define	SPCOM_TRANLEN_MAX	0x10000	/* Max transaction length */
91 
92 #define AUTOSUSPEND_TIMEOUT 2000
93 
94 struct fsl_espi {
95 	struct device *dev;
96 	void __iomem *reg_base;
97 
98 	const void *tx;
99 	void *rx;
100 
101 	unsigned int rx_len;
102 	unsigned int tx_len;
103 	unsigned int rxskip;
104 
105 	u8 *local_buf;
106 	spinlock_t lock;
107 
108 	u32 spibrg;             /* SPIBRG input clock */
109 
110 	struct completion done;
111 };
112 
113 struct fsl_espi_cs {
114 	u32 hw_mode;
115 };
116 
117 static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
118 {
119 	return ioread32be(espi->reg_base + offset);
120 }
121 
122 static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
123 {
124 	return ioread8(espi->reg_base + offset);
125 }
126 
127 static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
128 				      u32 val)
129 {
130 	iowrite32be(val, espi->reg_base + offset);
131 }
132 
133 static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
134 				       u8 val)
135 {
136 	iowrite8(val, espi->reg_base + offset);
137 }
138 
139 static void fsl_espi_memcpy_swab(void *to, const void *from,
140 				 struct spi_message *m,
141 				 struct spi_transfer *t)
142 {
143 	unsigned int len = t->len;
144 
145 	if (!(m->spi->mode & SPI_LSB_FIRST) || t->bits_per_word <= 8) {
146 		memcpy(to, from, len);
147 		return;
148 	}
149 
150 	/* In case of LSB-first and bits_per_word > 8 byte-swap all words */
151 	while (len)
152 		if (len >= 4) {
153 			*(u32 *)to = swahb32p(from);
154 			to += 4;
155 			from += 4;
156 			len -= 4;
157 		} else {
158 			*(u16 *)to = swab16p(from);
159 			to += 2;
160 			from += 2;
161 			len -= 2;
162 		}
163 }
164 
165 static void fsl_espi_copy_to_buf(struct spi_message *m,
166 				 struct fsl_espi *espi)
167 {
168 	struct spi_transfer *t;
169 	u8 *buf = espi->local_buf;
170 
171 	list_for_each_entry(t, &m->transfers, transfer_list) {
172 		if (t->tx_buf)
173 			fsl_espi_memcpy_swab(buf, t->tx_buf, m, t);
174 		/* In RXSKIP mode controller shifts out zeros internally */
175 		else if (!espi->rxskip)
176 			memset(buf, 0, t->len);
177 		buf += t->len;
178 	}
179 }
180 
181 static void fsl_espi_copy_from_buf(struct spi_message *m,
182 				   struct fsl_espi *espi)
183 {
184 	struct spi_transfer *t;
185 	u8 *buf = espi->local_buf;
186 
187 	list_for_each_entry(t, &m->transfers, transfer_list) {
188 		if (t->rx_buf)
189 			fsl_espi_memcpy_swab(t->rx_buf, buf, m, t);
190 		buf += t->len;
191 	}
192 }
193 
194 static int fsl_espi_check_message(struct spi_message *m)
195 {
196 	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
197 	struct spi_transfer *t, *first;
198 
199 	if (m->frame_length > SPCOM_TRANLEN_MAX) {
200 		dev_err(espi->dev, "message too long, size is %u bytes\n",
201 			m->frame_length);
202 		return -EMSGSIZE;
203 	}
204 
205 	first = list_first_entry(&m->transfers, struct spi_transfer,
206 				 transfer_list);
207 
208 	list_for_each_entry(t, &m->transfers, transfer_list) {
209 		if (first->bits_per_word != t->bits_per_word ||
210 		    first->speed_hz != t->speed_hz) {
211 			dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
212 			return -EINVAL;
213 		}
214 	}
215 
216 	/* ESPI supports MSB-first transfers for word size 8 / 16 only */
217 	if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
218 	    first->bits_per_word != 16) {
219 		dev_err(espi->dev,
220 			"MSB-first transfer not supported for wordsize %u\n",
221 			first->bits_per_word);
222 		return -EINVAL;
223 	}
224 
225 	return 0;
226 }
227 
228 static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
229 {
230 	struct spi_transfer *t;
231 	unsigned int i = 0, rxskip = 0;
232 
233 	/*
234 	 * prerequisites for ESPI rxskip mode:
235 	 * - message has two transfers
236 	 * - first transfer is a write and second is a read
237 	 *
238 	 * In addition the current low-level transfer mechanism requires
239 	 * that the rxskip bytes fit into the TX FIFO. Else the transfer
240 	 * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
241 	 * the TX FIFO isn't re-filled.
242 	 */
243 	list_for_each_entry(t, &m->transfers, transfer_list) {
244 		if (i == 0) {
245 			if (!t->tx_buf || t->rx_buf ||
246 			    t->len > FSL_ESPI_FIFO_SIZE)
247 				return 0;
248 			rxskip = t->len;
249 		} else if (i == 1) {
250 			if (t->tx_buf || !t->rx_buf)
251 				return 0;
252 		}
253 		i++;
254 	}
255 
256 	return i == 2 ? rxskip : 0;
257 }
258 
259 static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
260 {
261 	u32 tx_fifo_avail;
262 
263 	/* if events is zero transfer has not started and tx fifo is empty */
264 	tx_fifo_avail = events ? SPIE_TXCNT(events) :  FSL_ESPI_FIFO_SIZE;
265 
266 	while (tx_fifo_avail >= min(4U, espi->tx_len) && espi->tx_len)
267 		if (espi->tx_len >= 4) {
268 			fsl_espi_write_reg(espi, ESPI_SPITF, *(u32 *)espi->tx);
269 			espi->tx += 4;
270 			espi->tx_len -= 4;
271 			tx_fifo_avail -= 4;
272 		} else {
273 			fsl_espi_write_reg8(espi, ESPI_SPITF, *(u8 *)espi->tx);
274 			espi->tx += 1;
275 			espi->tx_len -= 1;
276 			tx_fifo_avail -= 1;
277 		}
278 }
279 
280 static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
281 {
282 	u32 rx_fifo_avail = SPIE_RXCNT(events);
283 
284 	while (rx_fifo_avail >= min(4U, espi->rx_len) && espi->rx_len)
285 		if (espi->rx_len >= 4) {
286 			*(u32 *)espi->rx = fsl_espi_read_reg(espi, ESPI_SPIRF);
287 			espi->rx += 4;
288 			espi->rx_len -= 4;
289 			rx_fifo_avail -= 4;
290 		} else {
291 			*(u8 *)espi->rx = fsl_espi_read_reg8(espi, ESPI_SPIRF);
292 			espi->rx += 1;
293 			espi->rx_len -= 1;
294 			rx_fifo_avail -= 1;
295 		}
296 }
297 
298 static void fsl_espi_setup_transfer(struct spi_device *spi,
299 					struct spi_transfer *t)
300 {
301 	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
302 	int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
303 	u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
304 	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
305 	u32 hw_mode_old = cs->hw_mode;
306 
307 	/* mask out bits we are going to set */
308 	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
309 
310 	cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
311 
312 	pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
313 
314 	if (pm > 15) {
315 		cs->hw_mode |= CSMODE_DIV16;
316 		pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
317 
318 		WARN_ONCE(pm > 15,
319 			  "%s: Requested speed is too low: %u Hz. Will use %u Hz instead.\n",
320 			  dev_name(&spi->dev), hz,
321 			  espi->spibrg / (4 * 16 * (15 + 1)));
322 		if (pm > 15)
323 			pm = 15;
324 	}
325 
326 	cs->hw_mode |= CSMODE_PM(pm);
327 
328 	/* don't write the mode register if the mode doesn't change */
329 	if (cs->hw_mode != hw_mode_old)
330 		fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
331 				   cs->hw_mode);
332 }
333 
334 static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
335 {
336 	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
337 	u32 mask, spcom;
338 	int ret;
339 
340 	espi->rx_len = t->len;
341 	espi->tx_len = t->len;
342 
343 	espi->tx = t->tx_buf;
344 	espi->rx = t->rx_buf;
345 
346 	reinit_completion(&espi->done);
347 
348 	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
349 	spcom = SPCOM_CS(spi->chip_select);
350 	spcom |= SPCOM_TRANLEN(t->len - 1);
351 
352 	/* configure RXSKIP mode */
353 	if (espi->rxskip) {
354 		spcom |= SPCOM_RXSKIP(espi->rxskip);
355 		espi->tx_len = espi->rxskip;
356 		espi->rx_len = t->len - espi->rxskip;
357 		espi->rx = t->rx_buf + espi->rxskip;
358 		if (t->rx_nbits == SPI_NBITS_DUAL)
359 			spcom |= SPCOM_DO;
360 	}
361 
362 	fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
363 
364 	/* enable interrupts */
365 	mask = SPIM_DON;
366 	if (espi->rx_len > FSL_ESPI_FIFO_SIZE)
367 		mask |= SPIM_RXT;
368 	fsl_espi_write_reg(espi, ESPI_SPIM, mask);
369 
370 	/* Prevent filling the fifo from getting interrupted */
371 	spin_lock_irq(&espi->lock);
372 	fsl_espi_fill_tx_fifo(espi, 0);
373 	spin_unlock_irq(&espi->lock);
374 
375 	/* Won't hang up forever, SPI bus sometimes got lost interrupts... */
376 	ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
377 	if (ret == 0)
378 		dev_err(espi->dev,
379 			"Transaction hanging up (left %u tx bytes, %u rx bytes)\n",
380 			espi->tx_len, espi->rx_len);
381 
382 	/* disable rx ints */
383 	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
384 
385 	return ret == 0 ? -ETIMEDOUT : 0;
386 }
387 
388 static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
389 {
390 	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
391 	struct spi_device *spi = m->spi;
392 	int ret;
393 
394 	espi->rxskip = fsl_espi_check_rxskip_mode(m);
395 	if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
396 		dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
397 		return -EINVAL;
398 	}
399 
400 	fsl_espi_copy_to_buf(m, espi);
401 	fsl_espi_setup_transfer(spi, trans);
402 
403 	ret = fsl_espi_bufs(spi, trans);
404 
405 	if (trans->delay_usecs)
406 		udelay(trans->delay_usecs);
407 
408 	if (!ret)
409 		fsl_espi_copy_from_buf(m, espi);
410 
411 	return ret;
412 }
413 
414 static int fsl_espi_do_one_msg(struct spi_master *master,
415 			       struct spi_message *m)
416 {
417 	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
418 	unsigned int delay_usecs = 0, rx_nbits = 0;
419 	struct spi_transfer *t, trans = {};
420 	int ret;
421 
422 	ret = fsl_espi_check_message(m);
423 	if (ret)
424 		goto out;
425 
426 	list_for_each_entry(t, &m->transfers, transfer_list) {
427 		if (t->delay_usecs > delay_usecs)
428 			delay_usecs = t->delay_usecs;
429 		if (t->rx_nbits > rx_nbits)
430 			rx_nbits = t->rx_nbits;
431 	}
432 
433 	t = list_first_entry(&m->transfers, struct spi_transfer,
434 			     transfer_list);
435 
436 	trans.len = m->frame_length;
437 	trans.speed_hz = t->speed_hz;
438 	trans.bits_per_word = t->bits_per_word;
439 	trans.delay_usecs = delay_usecs;
440 	trans.tx_buf = espi->local_buf;
441 	trans.rx_buf = espi->local_buf;
442 	trans.rx_nbits = rx_nbits;
443 
444 	if (trans.len)
445 		ret = fsl_espi_trans(m, &trans);
446 
447 	m->actual_length = ret ? 0 : trans.len;
448 out:
449 	if (m->status == -EINPROGRESS)
450 		m->status = ret;
451 
452 	spi_finalize_current_message(master);
453 
454 	return ret;
455 }
456 
457 static int fsl_espi_setup(struct spi_device *spi)
458 {
459 	struct fsl_espi *espi;
460 	u32 loop_mode;
461 	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
462 
463 	if (!spi->max_speed_hz)
464 		return -EINVAL;
465 
466 	if (!cs) {
467 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
468 		if (!cs)
469 			return -ENOMEM;
470 		spi_set_ctldata(spi, cs);
471 	}
472 
473 	espi = spi_master_get_devdata(spi->master);
474 
475 	pm_runtime_get_sync(espi->dev);
476 
477 	cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
478 	/* mask out bits we are going to set */
479 	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
480 			 | CSMODE_REV);
481 
482 	if (spi->mode & SPI_CPHA)
483 		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
484 	if (spi->mode & SPI_CPOL)
485 		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
486 	if (!(spi->mode & SPI_LSB_FIRST))
487 		cs->hw_mode |= CSMODE_REV;
488 
489 	/* Handle the loop mode */
490 	loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
491 	loop_mode &= ~SPMODE_LOOP;
492 	if (spi->mode & SPI_LOOP)
493 		loop_mode |= SPMODE_LOOP;
494 	fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
495 
496 	fsl_espi_setup_transfer(spi, NULL);
497 
498 	pm_runtime_mark_last_busy(espi->dev);
499 	pm_runtime_put_autosuspend(espi->dev);
500 
501 	return 0;
502 }
503 
504 static void fsl_espi_cleanup(struct spi_device *spi)
505 {
506 	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
507 
508 	kfree(cs);
509 	spi_set_ctldata(spi, NULL);
510 }
511 
512 static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
513 {
514 	if (espi->rx_len)
515 		fsl_espi_read_rx_fifo(espi, events);
516 
517 	if (espi->tx_len)
518 		fsl_espi_fill_tx_fifo(espi, events);
519 
520 	if (espi->tx_len || espi->rx_len)
521 		return;
522 
523 	/* we're done, but check for errors before returning */
524 	events = fsl_espi_read_reg(espi, ESPI_SPIE);
525 
526 	if (!(events & SPIE_DON))
527 		dev_err(espi->dev,
528 			"Transfer done but SPIE_DON isn't set!\n");
529 
530 	if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE)
531 		dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
532 
533 	complete(&espi->done);
534 }
535 
536 static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
537 {
538 	struct fsl_espi *espi = context_data;
539 	u32 events;
540 
541 	spin_lock(&espi->lock);
542 
543 	/* Get interrupt events(tx/rx) */
544 	events = fsl_espi_read_reg(espi, ESPI_SPIE);
545 	if (!events) {
546 		spin_unlock(&espi->lock);
547 		return IRQ_NONE;
548 	}
549 
550 	dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
551 
552 	fsl_espi_cpu_irq(espi, events);
553 
554 	/* Clear the events */
555 	fsl_espi_write_reg(espi, ESPI_SPIE, events);
556 
557 	spin_unlock(&espi->lock);
558 
559 	return IRQ_HANDLED;
560 }
561 
562 #ifdef CONFIG_PM
563 static int fsl_espi_runtime_suspend(struct device *dev)
564 {
565 	struct spi_master *master = dev_get_drvdata(dev);
566 	struct fsl_espi *espi = spi_master_get_devdata(master);
567 	u32 regval;
568 
569 	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
570 	regval &= ~SPMODE_ENABLE;
571 	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
572 
573 	return 0;
574 }
575 
576 static int fsl_espi_runtime_resume(struct device *dev)
577 {
578 	struct spi_master *master = dev_get_drvdata(dev);
579 	struct fsl_espi *espi = spi_master_get_devdata(master);
580 	u32 regval;
581 
582 	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
583 	regval |= SPMODE_ENABLE;
584 	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
585 
586 	return 0;
587 }
588 #endif
589 
590 static size_t fsl_espi_max_message_size(struct spi_device *spi)
591 {
592 	return SPCOM_TRANLEN_MAX;
593 }
594 
595 static void fsl_espi_init_regs(struct device *dev, bool initial)
596 {
597 	struct spi_master *master = dev_get_drvdata(dev);
598 	struct fsl_espi *espi = spi_master_get_devdata(master);
599 	struct device_node *nc;
600 	u32 csmode, cs, prop;
601 	int ret;
602 
603 	/* SPI controller initializations */
604 	fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
605 	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
606 	fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
607 	fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
608 
609 	/* Init eSPI CS mode register */
610 	for_each_available_child_of_node(master->dev.of_node, nc) {
611 		/* get chip select */
612 		ret = of_property_read_u32(nc, "reg", &cs);
613 		if (ret || cs >= master->num_chipselect)
614 			continue;
615 
616 		csmode = CSMODE_INIT_VAL;
617 
618 		/* check if CSBEF is set in device tree */
619 		ret = of_property_read_u32(nc, "fsl,csbef", &prop);
620 		if (!ret) {
621 			csmode &= ~(CSMODE_BEF(0xf));
622 			csmode |= CSMODE_BEF(prop);
623 		}
624 
625 		/* check if CSAFT is set in device tree */
626 		ret = of_property_read_u32(nc, "fsl,csaft", &prop);
627 		if (!ret) {
628 			csmode &= ~(CSMODE_AFT(0xf));
629 			csmode |= CSMODE_AFT(prop);
630 		}
631 
632 		fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
633 
634 		if (initial)
635 			dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
636 	}
637 
638 	/* Enable SPI interface */
639 	fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
640 }
641 
642 static int fsl_espi_probe(struct device *dev, struct resource *mem,
643 			  unsigned int irq, unsigned int num_cs)
644 {
645 	struct spi_master *master;
646 	struct fsl_espi *espi;
647 	int ret;
648 
649 	master = spi_alloc_master(dev, sizeof(struct fsl_espi));
650 	if (!master)
651 		return -ENOMEM;
652 
653 	dev_set_drvdata(dev, master);
654 
655 	master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
656 			    SPI_LSB_FIRST | SPI_LOOP;
657 	master->dev.of_node = dev->of_node;
658 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
659 	master->setup = fsl_espi_setup;
660 	master->cleanup = fsl_espi_cleanup;
661 	master->transfer_one_message = fsl_espi_do_one_msg;
662 	master->auto_runtime_pm = true;
663 	master->max_message_size = fsl_espi_max_message_size;
664 	master->num_chipselect = num_cs;
665 
666 	espi = spi_master_get_devdata(master);
667 	spin_lock_init(&espi->lock);
668 
669 	espi->dev = dev;
670 	espi->spibrg = fsl_get_sys_freq();
671 	if (espi->spibrg == -1) {
672 		dev_err(dev, "Can't get sys frequency!\n");
673 		ret = -EINVAL;
674 		goto err_probe;
675 	}
676 
677 	init_completion(&espi->done);
678 
679 	espi->local_buf = devm_kmalloc(dev, SPCOM_TRANLEN_MAX, GFP_KERNEL);
680 	if (!espi->local_buf) {
681 		ret = -ENOMEM;
682 		goto err_probe;
683 	}
684 
685 	espi->reg_base = devm_ioremap_resource(dev, mem);
686 	if (IS_ERR(espi->reg_base)) {
687 		ret = PTR_ERR(espi->reg_base);
688 		goto err_probe;
689 	}
690 
691 	/* Register for SPI Interrupt */
692 	ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
693 	if (ret)
694 		goto err_probe;
695 
696 	fsl_espi_init_regs(dev, true);
697 
698 	pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
699 	pm_runtime_use_autosuspend(dev);
700 	pm_runtime_set_active(dev);
701 	pm_runtime_enable(dev);
702 	pm_runtime_get_sync(dev);
703 
704 	ret = devm_spi_register_master(dev, master);
705 	if (ret < 0)
706 		goto err_pm;
707 
708 	dev_info(dev, "at 0x%p (irq = %u)\n", espi->reg_base, irq);
709 
710 	pm_runtime_mark_last_busy(dev);
711 	pm_runtime_put_autosuspend(dev);
712 
713 	return 0;
714 
715 err_pm:
716 	pm_runtime_put_noidle(dev);
717 	pm_runtime_disable(dev);
718 	pm_runtime_set_suspended(dev);
719 err_probe:
720 	spi_master_put(master);
721 	return ret;
722 }
723 
724 static int of_fsl_espi_get_chipselects(struct device *dev)
725 {
726 	struct device_node *np = dev->of_node;
727 	u32 num_cs;
728 	int ret;
729 
730 	ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
731 	if (ret) {
732 		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
733 		return 0;
734 	}
735 
736 	return num_cs;
737 }
738 
739 static int of_fsl_espi_probe(struct platform_device *ofdev)
740 {
741 	struct device *dev = &ofdev->dev;
742 	struct device_node *np = ofdev->dev.of_node;
743 	struct resource mem;
744 	unsigned int irq, num_cs;
745 	int ret;
746 
747 	if (of_property_read_bool(np, "mode")) {
748 		dev_err(dev, "mode property is not supported on ESPI!\n");
749 		return -EINVAL;
750 	}
751 
752 	num_cs = of_fsl_espi_get_chipselects(dev);
753 	if (!num_cs)
754 		return -EINVAL;
755 
756 	ret = of_address_to_resource(np, 0, &mem);
757 	if (ret)
758 		return ret;
759 
760 	irq = irq_of_parse_and_map(np, 0);
761 	if (!irq)
762 		return -EINVAL;
763 
764 	return fsl_espi_probe(dev, &mem, irq, num_cs);
765 }
766 
767 static int of_fsl_espi_remove(struct platform_device *dev)
768 {
769 	pm_runtime_disable(&dev->dev);
770 
771 	return 0;
772 }
773 
774 #ifdef CONFIG_PM_SLEEP
775 static int of_fsl_espi_suspend(struct device *dev)
776 {
777 	struct spi_master *master = dev_get_drvdata(dev);
778 	int ret;
779 
780 	ret = spi_master_suspend(master);
781 	if (ret) {
782 		dev_warn(dev, "cannot suspend master\n");
783 		return ret;
784 	}
785 
786 	ret = pm_runtime_force_suspend(dev);
787 	if (ret < 0)
788 		return ret;
789 
790 	return 0;
791 }
792 
793 static int of_fsl_espi_resume(struct device *dev)
794 {
795 	struct spi_master *master = dev_get_drvdata(dev);
796 	int ret;
797 
798 	fsl_espi_init_regs(dev, false);
799 
800 	ret = pm_runtime_force_resume(dev);
801 	if (ret < 0)
802 		return ret;
803 
804 	return spi_master_resume(master);
805 }
806 #endif /* CONFIG_PM_SLEEP */
807 
808 static const struct dev_pm_ops espi_pm = {
809 	SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
810 			   fsl_espi_runtime_resume, NULL)
811 	SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
812 };
813 
814 static const struct of_device_id of_fsl_espi_match[] = {
815 	{ .compatible = "fsl,mpc8536-espi" },
816 	{}
817 };
818 MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
819 
820 static struct platform_driver fsl_espi_driver = {
821 	.driver = {
822 		.name = "fsl_espi",
823 		.of_match_table = of_fsl_espi_match,
824 		.pm = &espi_pm,
825 	},
826 	.probe		= of_fsl_espi_probe,
827 	.remove		= of_fsl_espi_remove,
828 };
829 module_platform_driver(fsl_espi_driver);
830 
831 MODULE_AUTHOR("Mingkai Hu");
832 MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
833 MODULE_LICENSE("GPL");
834