xref: /openbmc/linux/drivers/spi/spi-fsl-espi.c (revision 160b8e75)
1 /*
2  * Freescale eSPI controller driver.
3  *
4  * Copyright 2010 Freescale Semiconductor, Inc.
5  *
6  * This program is free software; you can redistribute  it and/or modify it
7  * under  the terms of  the GNU General  Public License as published by the
8  * Free Software Foundation;  either version 2 of the  License, or (at your
9  * option) any later version.
10  */
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/fsl_devices.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/spi/spi.h>
23 #include <linux/pm_runtime.h>
24 #include <sysdev/fsl_soc.h>
25 
26 /* eSPI Controller registers */
27 #define ESPI_SPMODE	0x00	/* eSPI mode register */
28 #define ESPI_SPIE	0x04	/* eSPI event register */
29 #define ESPI_SPIM	0x08	/* eSPI mask register */
30 #define ESPI_SPCOM	0x0c	/* eSPI command register */
31 #define ESPI_SPITF	0x10	/* eSPI transmit FIFO access register*/
32 #define ESPI_SPIRF	0x14	/* eSPI receive FIFO access register*/
33 #define ESPI_SPMODE0	0x20	/* eSPI cs0 mode register */
34 
35 #define ESPI_SPMODEx(x)	(ESPI_SPMODE0 + (x) * 4)
36 
37 /* eSPI Controller mode register definitions */
38 #define SPMODE_ENABLE		BIT(31)
39 #define SPMODE_LOOP		BIT(30)
40 #define SPMODE_TXTHR(x)		((x) << 8)
41 #define SPMODE_RXTHR(x)		((x) << 0)
42 
43 /* eSPI Controller CS mode register definitions */
44 #define CSMODE_CI_INACTIVEHIGH	BIT(31)
45 #define CSMODE_CP_BEGIN_EDGECLK	BIT(30)
46 #define CSMODE_REV		BIT(29)
47 #define CSMODE_DIV16		BIT(28)
48 #define CSMODE_PM(x)		((x) << 24)
49 #define CSMODE_POL_1		BIT(20)
50 #define CSMODE_LEN(x)		((x) << 16)
51 #define CSMODE_BEF(x)		((x) << 12)
52 #define CSMODE_AFT(x)		((x) << 8)
53 #define CSMODE_CG(x)		((x) << 3)
54 
55 #define FSL_ESPI_FIFO_SIZE	32
56 #define FSL_ESPI_RXTHR		15
57 
58 /* Default mode/csmode for eSPI controller */
59 #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
60 #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
61 		| CSMODE_AFT(0) | CSMODE_CG(1))
62 
63 /* SPIE register values */
64 #define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
65 #define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
66 #define	SPIE_TXE		BIT(15)	/* TX FIFO empty */
67 #define	SPIE_DON		BIT(14)	/* TX done */
68 #define	SPIE_RXT		BIT(13)	/* RX FIFO threshold */
69 #define	SPIE_RXF		BIT(12)	/* RX FIFO full */
70 #define	SPIE_TXT		BIT(11)	/* TX FIFO threshold*/
71 #define	SPIE_RNE		BIT(9)	/* RX FIFO not empty */
72 #define	SPIE_TNF		BIT(8)	/* TX FIFO not full */
73 
74 /* SPIM register values */
75 #define	SPIM_TXE		BIT(15)	/* TX FIFO empty */
76 #define	SPIM_DON		BIT(14)	/* TX done */
77 #define	SPIM_RXT		BIT(13)	/* RX FIFO threshold */
78 #define	SPIM_RXF		BIT(12)	/* RX FIFO full */
79 #define	SPIM_TXT		BIT(11)	/* TX FIFO threshold*/
80 #define	SPIM_RNE		BIT(9)	/* RX FIFO not empty */
81 #define	SPIM_TNF		BIT(8)	/* TX FIFO not full */
82 
83 /* SPCOM register values */
84 #define SPCOM_CS(x)		((x) << 30)
85 #define SPCOM_DO		BIT(28) /* Dual output */
86 #define SPCOM_TO		BIT(27) /* TX only */
87 #define SPCOM_RXSKIP(x)		((x) << 16)
88 #define SPCOM_TRANLEN(x)	((x) << 0)
89 
90 #define	SPCOM_TRANLEN_MAX	0x10000	/* Max transaction length */
91 
92 #define AUTOSUSPEND_TIMEOUT 2000
93 
94 struct fsl_espi {
95 	struct device *dev;
96 	void __iomem *reg_base;
97 
98 	struct list_head *m_transfers;
99 	struct spi_transfer *tx_t;
100 	unsigned int tx_pos;
101 	bool tx_done;
102 	struct spi_transfer *rx_t;
103 	unsigned int rx_pos;
104 	bool rx_done;
105 
106 	bool swab;
107 	unsigned int rxskip;
108 
109 	spinlock_t lock;
110 
111 	u32 spibrg;             /* SPIBRG input clock */
112 
113 	struct completion done;
114 };
115 
116 struct fsl_espi_cs {
117 	u32 hw_mode;
118 };
119 
120 static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
121 {
122 	return ioread32be(espi->reg_base + offset);
123 }
124 
125 static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
126 {
127 	return ioread16be(espi->reg_base + offset);
128 }
129 
130 static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
131 {
132 	return ioread8(espi->reg_base + offset);
133 }
134 
135 static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
136 				      u32 val)
137 {
138 	iowrite32be(val, espi->reg_base + offset);
139 }
140 
141 static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
142 					u16 val)
143 {
144 	iowrite16be(val, espi->reg_base + offset);
145 }
146 
147 static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
148 				       u8 val)
149 {
150 	iowrite8(val, espi->reg_base + offset);
151 }
152 
153 static int fsl_espi_check_message(struct spi_message *m)
154 {
155 	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
156 	struct spi_transfer *t, *first;
157 
158 	if (m->frame_length > SPCOM_TRANLEN_MAX) {
159 		dev_err(espi->dev, "message too long, size is %u bytes\n",
160 			m->frame_length);
161 		return -EMSGSIZE;
162 	}
163 
164 	first = list_first_entry(&m->transfers, struct spi_transfer,
165 				 transfer_list);
166 
167 	list_for_each_entry(t, &m->transfers, transfer_list) {
168 		if (first->bits_per_word != t->bits_per_word ||
169 		    first->speed_hz != t->speed_hz) {
170 			dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
171 			return -EINVAL;
172 		}
173 	}
174 
175 	/* ESPI supports MSB-first transfers for word size 8 / 16 only */
176 	if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
177 	    first->bits_per_word != 16) {
178 		dev_err(espi->dev,
179 			"MSB-first transfer not supported for wordsize %u\n",
180 			first->bits_per_word);
181 		return -EINVAL;
182 	}
183 
184 	return 0;
185 }
186 
187 static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
188 {
189 	struct spi_transfer *t;
190 	unsigned int i = 0, rxskip = 0;
191 
192 	/*
193 	 * prerequisites for ESPI rxskip mode:
194 	 * - message has two transfers
195 	 * - first transfer is a write and second is a read
196 	 *
197 	 * In addition the current low-level transfer mechanism requires
198 	 * that the rxskip bytes fit into the TX FIFO. Else the transfer
199 	 * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
200 	 * the TX FIFO isn't re-filled.
201 	 */
202 	list_for_each_entry(t, &m->transfers, transfer_list) {
203 		if (i == 0) {
204 			if (!t->tx_buf || t->rx_buf ||
205 			    t->len > FSL_ESPI_FIFO_SIZE)
206 				return 0;
207 			rxskip = t->len;
208 		} else if (i == 1) {
209 			if (t->tx_buf || !t->rx_buf)
210 				return 0;
211 		}
212 		i++;
213 	}
214 
215 	return i == 2 ? rxskip : 0;
216 }
217 
218 static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
219 {
220 	u32 tx_fifo_avail;
221 	unsigned int tx_left;
222 	const void *tx_buf;
223 
224 	/* if events is zero transfer has not started and tx fifo is empty */
225 	tx_fifo_avail = events ? SPIE_TXCNT(events) :  FSL_ESPI_FIFO_SIZE;
226 start:
227 	tx_left = espi->tx_t->len - espi->tx_pos;
228 	tx_buf = espi->tx_t->tx_buf;
229 	while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
230 		if (tx_left >= 4) {
231 			if (!tx_buf)
232 				fsl_espi_write_reg(espi, ESPI_SPITF, 0);
233 			else if (espi->swab)
234 				fsl_espi_write_reg(espi, ESPI_SPITF,
235 					swahb32p(tx_buf + espi->tx_pos));
236 			else
237 				fsl_espi_write_reg(espi, ESPI_SPITF,
238 					*(u32 *)(tx_buf + espi->tx_pos));
239 			espi->tx_pos += 4;
240 			tx_left -= 4;
241 			tx_fifo_avail -= 4;
242 		} else if (tx_left >= 2 && tx_buf && espi->swab) {
243 			fsl_espi_write_reg16(espi, ESPI_SPITF,
244 					swab16p(tx_buf + espi->tx_pos));
245 			espi->tx_pos += 2;
246 			tx_left -= 2;
247 			tx_fifo_avail -= 2;
248 		} else {
249 			if (!tx_buf)
250 				fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
251 			else
252 				fsl_espi_write_reg8(espi, ESPI_SPITF,
253 					*(u8 *)(tx_buf + espi->tx_pos));
254 			espi->tx_pos += 1;
255 			tx_left -= 1;
256 			tx_fifo_avail -= 1;
257 		}
258 	}
259 
260 	if (!tx_left) {
261 		/* Last transfer finished, in rxskip mode only one is needed */
262 		if (list_is_last(&espi->tx_t->transfer_list,
263 		    espi->m_transfers) || espi->rxskip) {
264 			espi->tx_done = true;
265 			return;
266 		}
267 		espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
268 		espi->tx_pos = 0;
269 		/* continue with next transfer if tx fifo is not full */
270 		if (tx_fifo_avail)
271 			goto start;
272 	}
273 }
274 
275 static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
276 {
277 	u32 rx_fifo_avail = SPIE_RXCNT(events);
278 	unsigned int rx_left;
279 	void *rx_buf;
280 
281 start:
282 	rx_left = espi->rx_t->len - espi->rx_pos;
283 	rx_buf = espi->rx_t->rx_buf;
284 	while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
285 		if (rx_left >= 4) {
286 			u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
287 
288 			if (rx_buf && espi->swab)
289 				*(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
290 			else if (rx_buf)
291 				*(u32 *)(rx_buf + espi->rx_pos) = val;
292 			espi->rx_pos += 4;
293 			rx_left -= 4;
294 			rx_fifo_avail -= 4;
295 		} else if (rx_left >= 2 && rx_buf && espi->swab) {
296 			u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
297 
298 			*(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
299 			espi->rx_pos += 2;
300 			rx_left -= 2;
301 			rx_fifo_avail -= 2;
302 		} else {
303 			u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
304 
305 			if (rx_buf)
306 				*(u8 *)(rx_buf + espi->rx_pos) = val;
307 			espi->rx_pos += 1;
308 			rx_left -= 1;
309 			rx_fifo_avail -= 1;
310 		}
311 	}
312 
313 	if (!rx_left) {
314 		if (list_is_last(&espi->rx_t->transfer_list,
315 		    espi->m_transfers)) {
316 			espi->rx_done = true;
317 			return;
318 		}
319 		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
320 		espi->rx_pos = 0;
321 		/* continue with next transfer if rx fifo is not empty */
322 		if (rx_fifo_avail)
323 			goto start;
324 	}
325 }
326 
327 static void fsl_espi_setup_transfer(struct spi_device *spi,
328 					struct spi_transfer *t)
329 {
330 	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
331 	int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
332 	u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
333 	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
334 	u32 hw_mode_old = cs->hw_mode;
335 
336 	/* mask out bits we are going to set */
337 	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
338 
339 	cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
340 
341 	pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
342 
343 	if (pm > 15) {
344 		cs->hw_mode |= CSMODE_DIV16;
345 		pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
346 	}
347 
348 	cs->hw_mode |= CSMODE_PM(pm);
349 
350 	/* don't write the mode register if the mode doesn't change */
351 	if (cs->hw_mode != hw_mode_old)
352 		fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
353 				   cs->hw_mode);
354 }
355 
356 static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
357 {
358 	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
359 	unsigned int rx_len = t->len;
360 	u32 mask, spcom;
361 	int ret;
362 
363 	reinit_completion(&espi->done);
364 
365 	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
366 	spcom = SPCOM_CS(spi->chip_select);
367 	spcom |= SPCOM_TRANLEN(t->len - 1);
368 
369 	/* configure RXSKIP mode */
370 	if (espi->rxskip) {
371 		spcom |= SPCOM_RXSKIP(espi->rxskip);
372 		rx_len = t->len - espi->rxskip;
373 		if (t->rx_nbits == SPI_NBITS_DUAL)
374 			spcom |= SPCOM_DO;
375 	}
376 
377 	fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
378 
379 	/* enable interrupts */
380 	mask = SPIM_DON;
381 	if (rx_len > FSL_ESPI_FIFO_SIZE)
382 		mask |= SPIM_RXT;
383 	fsl_espi_write_reg(espi, ESPI_SPIM, mask);
384 
385 	/* Prevent filling the fifo from getting interrupted */
386 	spin_lock_irq(&espi->lock);
387 	fsl_espi_fill_tx_fifo(espi, 0);
388 	spin_unlock_irq(&espi->lock);
389 
390 	/* Won't hang up forever, SPI bus sometimes got lost interrupts... */
391 	ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
392 	if (ret == 0)
393 		dev_err(espi->dev, "Transfer timed out!\n");
394 
395 	/* disable rx ints */
396 	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
397 
398 	return ret == 0 ? -ETIMEDOUT : 0;
399 }
400 
401 static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
402 {
403 	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
404 	struct spi_device *spi = m->spi;
405 	int ret;
406 
407 	/* In case of LSB-first and bits_per_word > 8 byte-swap all words */
408 	espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
409 
410 	espi->m_transfers = &m->transfers;
411 	espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
412 				      transfer_list);
413 	espi->tx_pos = 0;
414 	espi->tx_done = false;
415 	espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
416 				      transfer_list);
417 	espi->rx_pos = 0;
418 	espi->rx_done = false;
419 
420 	espi->rxskip = fsl_espi_check_rxskip_mode(m);
421 	if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
422 		dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
423 		return -EINVAL;
424 	}
425 
426 	/* In RXSKIP mode skip first transfer for reads */
427 	if (espi->rxskip)
428 		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
429 
430 	fsl_espi_setup_transfer(spi, trans);
431 
432 	ret = fsl_espi_bufs(spi, trans);
433 
434 	if (trans->delay_usecs)
435 		udelay(trans->delay_usecs);
436 
437 	return ret;
438 }
439 
440 static int fsl_espi_do_one_msg(struct spi_master *master,
441 			       struct spi_message *m)
442 {
443 	unsigned int delay_usecs = 0, rx_nbits = 0;
444 	struct spi_transfer *t, trans = {};
445 	int ret;
446 
447 	ret = fsl_espi_check_message(m);
448 	if (ret)
449 		goto out;
450 
451 	list_for_each_entry(t, &m->transfers, transfer_list) {
452 		if (t->delay_usecs > delay_usecs)
453 			delay_usecs = t->delay_usecs;
454 		if (t->rx_nbits > rx_nbits)
455 			rx_nbits = t->rx_nbits;
456 	}
457 
458 	t = list_first_entry(&m->transfers, struct spi_transfer,
459 			     transfer_list);
460 
461 	trans.len = m->frame_length;
462 	trans.speed_hz = t->speed_hz;
463 	trans.bits_per_word = t->bits_per_word;
464 	trans.delay_usecs = delay_usecs;
465 	trans.rx_nbits = rx_nbits;
466 
467 	if (trans.len)
468 		ret = fsl_espi_trans(m, &trans);
469 
470 	m->actual_length = ret ? 0 : trans.len;
471 out:
472 	if (m->status == -EINPROGRESS)
473 		m->status = ret;
474 
475 	spi_finalize_current_message(master);
476 
477 	return ret;
478 }
479 
480 static int fsl_espi_setup(struct spi_device *spi)
481 {
482 	struct fsl_espi *espi;
483 	u32 loop_mode;
484 	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
485 
486 	if (!cs) {
487 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
488 		if (!cs)
489 			return -ENOMEM;
490 		spi_set_ctldata(spi, cs);
491 	}
492 
493 	espi = spi_master_get_devdata(spi->master);
494 
495 	pm_runtime_get_sync(espi->dev);
496 
497 	cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
498 	/* mask out bits we are going to set */
499 	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
500 			 | CSMODE_REV);
501 
502 	if (spi->mode & SPI_CPHA)
503 		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
504 	if (spi->mode & SPI_CPOL)
505 		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
506 	if (!(spi->mode & SPI_LSB_FIRST))
507 		cs->hw_mode |= CSMODE_REV;
508 
509 	/* Handle the loop mode */
510 	loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
511 	loop_mode &= ~SPMODE_LOOP;
512 	if (spi->mode & SPI_LOOP)
513 		loop_mode |= SPMODE_LOOP;
514 	fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
515 
516 	fsl_espi_setup_transfer(spi, NULL);
517 
518 	pm_runtime_mark_last_busy(espi->dev);
519 	pm_runtime_put_autosuspend(espi->dev);
520 
521 	return 0;
522 }
523 
524 static void fsl_espi_cleanup(struct spi_device *spi)
525 {
526 	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
527 
528 	kfree(cs);
529 	spi_set_ctldata(spi, NULL);
530 }
531 
532 static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
533 {
534 	if (!espi->rx_done)
535 		fsl_espi_read_rx_fifo(espi, events);
536 
537 	if (!espi->tx_done)
538 		fsl_espi_fill_tx_fifo(espi, events);
539 
540 	if (!espi->tx_done || !espi->rx_done)
541 		return;
542 
543 	/* we're done, but check for errors before returning */
544 	events = fsl_espi_read_reg(espi, ESPI_SPIE);
545 
546 	if (!(events & SPIE_DON))
547 		dev_err(espi->dev,
548 			"Transfer done but SPIE_DON isn't set!\n");
549 
550 	if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE)
551 		dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
552 
553 	complete(&espi->done);
554 }
555 
556 static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
557 {
558 	struct fsl_espi *espi = context_data;
559 	u32 events;
560 
561 	spin_lock(&espi->lock);
562 
563 	/* Get interrupt events(tx/rx) */
564 	events = fsl_espi_read_reg(espi, ESPI_SPIE);
565 	if (!events) {
566 		spin_unlock(&espi->lock);
567 		return IRQ_NONE;
568 	}
569 
570 	dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
571 
572 	fsl_espi_cpu_irq(espi, events);
573 
574 	/* Clear the events */
575 	fsl_espi_write_reg(espi, ESPI_SPIE, events);
576 
577 	spin_unlock(&espi->lock);
578 
579 	return IRQ_HANDLED;
580 }
581 
582 #ifdef CONFIG_PM
583 static int fsl_espi_runtime_suspend(struct device *dev)
584 {
585 	struct spi_master *master = dev_get_drvdata(dev);
586 	struct fsl_espi *espi = spi_master_get_devdata(master);
587 	u32 regval;
588 
589 	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
590 	regval &= ~SPMODE_ENABLE;
591 	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
592 
593 	return 0;
594 }
595 
596 static int fsl_espi_runtime_resume(struct device *dev)
597 {
598 	struct spi_master *master = dev_get_drvdata(dev);
599 	struct fsl_espi *espi = spi_master_get_devdata(master);
600 	u32 regval;
601 
602 	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
603 	regval |= SPMODE_ENABLE;
604 	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
605 
606 	return 0;
607 }
608 #endif
609 
610 static size_t fsl_espi_max_message_size(struct spi_device *spi)
611 {
612 	return SPCOM_TRANLEN_MAX;
613 }
614 
615 static void fsl_espi_init_regs(struct device *dev, bool initial)
616 {
617 	struct spi_master *master = dev_get_drvdata(dev);
618 	struct fsl_espi *espi = spi_master_get_devdata(master);
619 	struct device_node *nc;
620 	u32 csmode, cs, prop;
621 	int ret;
622 
623 	/* SPI controller initializations */
624 	fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
625 	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
626 	fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
627 	fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
628 
629 	/* Init eSPI CS mode register */
630 	for_each_available_child_of_node(master->dev.of_node, nc) {
631 		/* get chip select */
632 		ret = of_property_read_u32(nc, "reg", &cs);
633 		if (ret || cs >= master->num_chipselect)
634 			continue;
635 
636 		csmode = CSMODE_INIT_VAL;
637 
638 		/* check if CSBEF is set in device tree */
639 		ret = of_property_read_u32(nc, "fsl,csbef", &prop);
640 		if (!ret) {
641 			csmode &= ~(CSMODE_BEF(0xf));
642 			csmode |= CSMODE_BEF(prop);
643 		}
644 
645 		/* check if CSAFT is set in device tree */
646 		ret = of_property_read_u32(nc, "fsl,csaft", &prop);
647 		if (!ret) {
648 			csmode &= ~(CSMODE_AFT(0xf));
649 			csmode |= CSMODE_AFT(prop);
650 		}
651 
652 		fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
653 
654 		if (initial)
655 			dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
656 	}
657 
658 	/* Enable SPI interface */
659 	fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
660 }
661 
662 static int fsl_espi_probe(struct device *dev, struct resource *mem,
663 			  unsigned int irq, unsigned int num_cs)
664 {
665 	struct spi_master *master;
666 	struct fsl_espi *espi;
667 	int ret;
668 
669 	master = spi_alloc_master(dev, sizeof(struct fsl_espi));
670 	if (!master)
671 		return -ENOMEM;
672 
673 	dev_set_drvdata(dev, master);
674 
675 	master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
676 			    SPI_LSB_FIRST | SPI_LOOP;
677 	master->dev.of_node = dev->of_node;
678 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
679 	master->setup = fsl_espi_setup;
680 	master->cleanup = fsl_espi_cleanup;
681 	master->transfer_one_message = fsl_espi_do_one_msg;
682 	master->auto_runtime_pm = true;
683 	master->max_message_size = fsl_espi_max_message_size;
684 	master->num_chipselect = num_cs;
685 
686 	espi = spi_master_get_devdata(master);
687 	spin_lock_init(&espi->lock);
688 
689 	espi->dev = dev;
690 	espi->spibrg = fsl_get_sys_freq();
691 	if (espi->spibrg == -1) {
692 		dev_err(dev, "Can't get sys frequency!\n");
693 		ret = -EINVAL;
694 		goto err_probe;
695 	}
696 	/* determined by clock divider fields DIV16/PM in register SPMODEx */
697 	master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
698 	master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
699 
700 	init_completion(&espi->done);
701 
702 	espi->reg_base = devm_ioremap_resource(dev, mem);
703 	if (IS_ERR(espi->reg_base)) {
704 		ret = PTR_ERR(espi->reg_base);
705 		goto err_probe;
706 	}
707 
708 	/* Register for SPI Interrupt */
709 	ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
710 	if (ret)
711 		goto err_probe;
712 
713 	fsl_espi_init_regs(dev, true);
714 
715 	pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
716 	pm_runtime_use_autosuspend(dev);
717 	pm_runtime_set_active(dev);
718 	pm_runtime_enable(dev);
719 	pm_runtime_get_sync(dev);
720 
721 	ret = devm_spi_register_master(dev, master);
722 	if (ret < 0)
723 		goto err_pm;
724 
725 	dev_info(dev, "at 0x%p (irq = %u)\n", espi->reg_base, irq);
726 
727 	pm_runtime_mark_last_busy(dev);
728 	pm_runtime_put_autosuspend(dev);
729 
730 	return 0;
731 
732 err_pm:
733 	pm_runtime_put_noidle(dev);
734 	pm_runtime_disable(dev);
735 	pm_runtime_set_suspended(dev);
736 err_probe:
737 	spi_master_put(master);
738 	return ret;
739 }
740 
741 static int of_fsl_espi_get_chipselects(struct device *dev)
742 {
743 	struct device_node *np = dev->of_node;
744 	u32 num_cs;
745 	int ret;
746 
747 	ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
748 	if (ret) {
749 		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
750 		return 0;
751 	}
752 
753 	return num_cs;
754 }
755 
756 static int of_fsl_espi_probe(struct platform_device *ofdev)
757 {
758 	struct device *dev = &ofdev->dev;
759 	struct device_node *np = ofdev->dev.of_node;
760 	struct resource mem;
761 	unsigned int irq, num_cs;
762 	int ret;
763 
764 	if (of_property_read_bool(np, "mode")) {
765 		dev_err(dev, "mode property is not supported on ESPI!\n");
766 		return -EINVAL;
767 	}
768 
769 	num_cs = of_fsl_espi_get_chipselects(dev);
770 	if (!num_cs)
771 		return -EINVAL;
772 
773 	ret = of_address_to_resource(np, 0, &mem);
774 	if (ret)
775 		return ret;
776 
777 	irq = irq_of_parse_and_map(np, 0);
778 	if (!irq)
779 		return -EINVAL;
780 
781 	return fsl_espi_probe(dev, &mem, irq, num_cs);
782 }
783 
784 static int of_fsl_espi_remove(struct platform_device *dev)
785 {
786 	pm_runtime_disable(&dev->dev);
787 
788 	return 0;
789 }
790 
791 #ifdef CONFIG_PM_SLEEP
792 static int of_fsl_espi_suspend(struct device *dev)
793 {
794 	struct spi_master *master = dev_get_drvdata(dev);
795 	int ret;
796 
797 	ret = spi_master_suspend(master);
798 	if (ret) {
799 		dev_warn(dev, "cannot suspend master\n");
800 		return ret;
801 	}
802 
803 	return pm_runtime_force_suspend(dev);
804 }
805 
806 static int of_fsl_espi_resume(struct device *dev)
807 {
808 	struct spi_master *master = dev_get_drvdata(dev);
809 	int ret;
810 
811 	fsl_espi_init_regs(dev, false);
812 
813 	ret = pm_runtime_force_resume(dev);
814 	if (ret < 0)
815 		return ret;
816 
817 	return spi_master_resume(master);
818 }
819 #endif /* CONFIG_PM_SLEEP */
820 
821 static const struct dev_pm_ops espi_pm = {
822 	SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
823 			   fsl_espi_runtime_resume, NULL)
824 	SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
825 };
826 
827 static const struct of_device_id of_fsl_espi_match[] = {
828 	{ .compatible = "fsl,mpc8536-espi" },
829 	{}
830 };
831 MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
832 
833 static struct platform_driver fsl_espi_driver = {
834 	.driver = {
835 		.name = "fsl_espi",
836 		.of_match_table = of_fsl_espi_match,
837 		.pm = &espi_pm,
838 	},
839 	.probe		= of_fsl_espi_probe,
840 	.remove		= of_fsl_espi_remove,
841 };
842 module_platform_driver(fsl_espi_driver);
843 
844 MODULE_AUTHOR("Mingkai Hu");
845 MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
846 MODULE_LICENSE("GPL");
847