xref: /openbmc/linux/drivers/spi/spi-fsl-dspi.c (revision e7bae9bb)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 // Copyright 2020 NXP
5 //
6 // Freescale DSPI driver
7 // This file contains a driver for the Freescale DSPI
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/regmap.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-fsl-dspi.h>
21 
22 #define DRIVER_NAME			"fsl-dspi"
23 
24 #define SPI_MCR				0x00
25 #define SPI_MCR_MASTER			BIT(31)
26 #define SPI_MCR_PCSIS(x)		((x) << 16)
27 #define SPI_MCR_CLR_TXF			BIT(11)
28 #define SPI_MCR_CLR_RXF			BIT(10)
29 #define SPI_MCR_XSPI			BIT(3)
30 #define SPI_MCR_DIS_TXF			BIT(13)
31 #define SPI_MCR_DIS_RXF			BIT(12)
32 #define SPI_MCR_HALT			BIT(0)
33 
34 #define SPI_TCR				0x08
35 #define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
36 
37 #define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
38 #define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
39 #define SPI_CTAR_CPOL			BIT(26)
40 #define SPI_CTAR_CPHA			BIT(25)
41 #define SPI_CTAR_LSBFE			BIT(24)
42 #define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
43 #define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
44 #define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
45 #define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
46 #define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
47 #define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
48 #define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
49 #define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
50 #define SPI_CTAR_SCALE_BITS		0xf
51 
52 #define SPI_CTAR0_SLAVE			0x0c
53 
54 #define SPI_SR				0x2c
55 #define SPI_SR_TCFQF			BIT(31)
56 #define SPI_SR_EOQF			BIT(28)
57 #define SPI_SR_TFUF			BIT(27)
58 #define SPI_SR_TFFF			BIT(25)
59 #define SPI_SR_CMDTCF			BIT(23)
60 #define SPI_SR_SPEF			BIT(21)
61 #define SPI_SR_RFOF			BIT(19)
62 #define SPI_SR_TFIWF			BIT(18)
63 #define SPI_SR_RFDF			BIT(17)
64 #define SPI_SR_CMDFFF			BIT(16)
65 #define SPI_SR_CLEAR			(SPI_SR_TCFQF | SPI_SR_EOQF | \
66 					SPI_SR_TFUF | SPI_SR_TFFF | \
67 					SPI_SR_CMDTCF | SPI_SR_SPEF | \
68 					SPI_SR_RFOF | SPI_SR_TFIWF | \
69 					SPI_SR_RFDF | SPI_SR_CMDFFF)
70 
71 #define SPI_RSER_TFFFE			BIT(25)
72 #define SPI_RSER_TFFFD			BIT(24)
73 #define SPI_RSER_RFDFE			BIT(17)
74 #define SPI_RSER_RFDFD			BIT(16)
75 
76 #define SPI_RSER			0x30
77 #define SPI_RSER_TCFQE			BIT(31)
78 #define SPI_RSER_EOQFE			BIT(28)
79 #define SPI_RSER_CMDTCFE		BIT(23)
80 
81 #define SPI_PUSHR			0x34
82 #define SPI_PUSHR_CMD_CONT		BIT(15)
83 #define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
84 #define SPI_PUSHR_CMD_EOQ		BIT(11)
85 #define SPI_PUSHR_CMD_CTCNT		BIT(10)
86 #define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
87 
88 #define SPI_PUSHR_SLAVE			0x34
89 
90 #define SPI_POPR			0x38
91 
92 #define SPI_TXFR0			0x3c
93 #define SPI_TXFR1			0x40
94 #define SPI_TXFR2			0x44
95 #define SPI_TXFR3			0x48
96 #define SPI_RXFR0			0x7c
97 #define SPI_RXFR1			0x80
98 #define SPI_RXFR2			0x84
99 #define SPI_RXFR3			0x88
100 
101 #define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
102 #define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
103 #define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
104 
105 #define SPI_SREX			0x13c
106 
107 #define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
108 #define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
109 
110 #define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
111 
112 struct chip_data {
113 	u32			ctar_val;
114 };
115 
116 enum dspi_trans_mode {
117 	DSPI_EOQ_MODE = 0,
118 	DSPI_XSPI_MODE,
119 	DSPI_DMA_MODE,
120 };
121 
122 struct fsl_dspi_devtype_data {
123 	enum dspi_trans_mode	trans_mode;
124 	u8			max_clock_factor;
125 	int			fifo_size;
126 };
127 
128 enum {
129 	LS1021A,
130 	LS1012A,
131 	LS1028A,
132 	LS1043A,
133 	LS1046A,
134 	LS2080A,
135 	LS2085A,
136 	LX2160A,
137 	MCF5441X,
138 	VF610,
139 };
140 
141 static const struct fsl_dspi_devtype_data devtype_data[] = {
142 	[VF610] = {
143 		.trans_mode		= DSPI_DMA_MODE,
144 		.max_clock_factor	= 2,
145 		.fifo_size		= 4,
146 	},
147 	[LS1021A] = {
148 		/* Has A-011218 DMA erratum */
149 		.trans_mode		= DSPI_XSPI_MODE,
150 		.max_clock_factor	= 8,
151 		.fifo_size		= 4,
152 	},
153 	[LS1012A] = {
154 		/* Has A-011218 DMA erratum */
155 		.trans_mode		= DSPI_XSPI_MODE,
156 		.max_clock_factor	= 8,
157 		.fifo_size		= 16,
158 	},
159 	[LS1028A] = {
160 		.trans_mode		= DSPI_XSPI_MODE,
161 		.max_clock_factor	= 8,
162 		.fifo_size		= 4,
163 	},
164 	[LS1043A] = {
165 		/* Has A-011218 DMA erratum */
166 		.trans_mode		= DSPI_XSPI_MODE,
167 		.max_clock_factor	= 8,
168 		.fifo_size		= 16,
169 	},
170 	[LS1046A] = {
171 		/* Has A-011218 DMA erratum */
172 		.trans_mode		= DSPI_XSPI_MODE,
173 		.max_clock_factor	= 8,
174 		.fifo_size		= 16,
175 	},
176 	[LS2080A] = {
177 		.trans_mode		= DSPI_XSPI_MODE,
178 		.max_clock_factor	= 8,
179 		.fifo_size		= 4,
180 	},
181 	[LS2085A] = {
182 		.trans_mode		= DSPI_XSPI_MODE,
183 		.max_clock_factor	= 8,
184 		.fifo_size		= 4,
185 	},
186 	[LX2160A] = {
187 		.trans_mode		= DSPI_XSPI_MODE,
188 		.max_clock_factor	= 8,
189 		.fifo_size		= 4,
190 	},
191 	[MCF5441X] = {
192 		.trans_mode		= DSPI_EOQ_MODE,
193 		.max_clock_factor	= 8,
194 		.fifo_size		= 16,
195 	},
196 };
197 
198 struct fsl_dspi_dma {
199 	u32					*tx_dma_buf;
200 	struct dma_chan				*chan_tx;
201 	dma_addr_t				tx_dma_phys;
202 	struct completion			cmd_tx_complete;
203 	struct dma_async_tx_descriptor		*tx_desc;
204 
205 	u32					*rx_dma_buf;
206 	struct dma_chan				*chan_rx;
207 	dma_addr_t				rx_dma_phys;
208 	struct completion			cmd_rx_complete;
209 	struct dma_async_tx_descriptor		*rx_desc;
210 };
211 
212 struct fsl_dspi {
213 	struct spi_controller			*ctlr;
214 	struct platform_device			*pdev;
215 
216 	struct regmap				*regmap;
217 	struct regmap				*regmap_pushr;
218 	int					irq;
219 	struct clk				*clk;
220 
221 	struct spi_transfer			*cur_transfer;
222 	struct spi_message			*cur_msg;
223 	struct chip_data			*cur_chip;
224 	size_t					progress;
225 	size_t					len;
226 	const void				*tx;
227 	void					*rx;
228 	u16					tx_cmd;
229 	const struct fsl_dspi_devtype_data	*devtype_data;
230 
231 	struct completion			xfer_done;
232 
233 	struct fsl_dspi_dma			*dma;
234 
235 	int					oper_word_size;
236 	int					oper_bits_per_word;
237 
238 	int					words_in_flight;
239 
240 	/*
241 	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
242 	 * individually (in XSPI mode)
243 	 */
244 	int					pushr_cmd;
245 	int					pushr_tx;
246 
247 	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
248 	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
249 };
250 
251 static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
252 {
253 	switch (dspi->oper_word_size) {
254 	case 1:
255 		*txdata = *(u8 *)dspi->tx;
256 		break;
257 	case 2:
258 		*txdata = *(u16 *)dspi->tx;
259 		break;
260 	case 4:
261 		*txdata = *(u32 *)dspi->tx;
262 		break;
263 	}
264 	dspi->tx += dspi->oper_word_size;
265 }
266 
267 static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
268 {
269 	switch (dspi->oper_word_size) {
270 	case 1:
271 		*(u8 *)dspi->rx = rxdata;
272 		break;
273 	case 2:
274 		*(u16 *)dspi->rx = rxdata;
275 		break;
276 	case 4:
277 		*(u32 *)dspi->rx = rxdata;
278 		break;
279 	}
280 	dspi->rx += dspi->oper_word_size;
281 }
282 
283 static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
284 {
285 	*txdata = cpu_to_be32(*(u32 *)dspi->tx);
286 	dspi->tx += sizeof(u32);
287 }
288 
289 static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
290 {
291 	*(u32 *)dspi->rx = be32_to_cpu(rxdata);
292 	dspi->rx += sizeof(u32);
293 }
294 
295 static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
296 {
297 	*txdata = cpu_to_be16(*(u16 *)dspi->tx);
298 	dspi->tx += sizeof(u16);
299 }
300 
301 static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
302 {
303 	*(u16 *)dspi->rx = be16_to_cpu(rxdata);
304 	dspi->rx += sizeof(u16);
305 }
306 
307 static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
308 {
309 	u16 hi = *(u16 *)dspi->tx;
310 	u16 lo = *(u16 *)(dspi->tx + 2);
311 
312 	*txdata = (u32)hi << 16 | lo;
313 	dspi->tx += sizeof(u32);
314 }
315 
316 static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
317 {
318 	u16 hi = rxdata & 0xffff;
319 	u16 lo = rxdata >> 16;
320 
321 	*(u16 *)dspi->rx = lo;
322 	*(u16 *)(dspi->rx + 2) = hi;
323 	dspi->rx += sizeof(u32);
324 }
325 
326 /*
327  * Pop one word from the TX buffer for pushing into the
328  * PUSHR register (TX FIFO)
329  */
330 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
331 {
332 	u32 txdata = 0;
333 
334 	if (dspi->tx)
335 		dspi->host_to_dev(dspi, &txdata);
336 	dspi->len -= dspi->oper_word_size;
337 	return txdata;
338 }
339 
340 /* Prepare one TX FIFO entry (txdata plus cmd) */
341 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
342 {
343 	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
344 
345 	if (spi_controller_is_slave(dspi->ctlr))
346 		return data;
347 
348 	if (dspi->len > 0)
349 		cmd |= SPI_PUSHR_CMD_CONT;
350 	return cmd << 16 | data;
351 }
352 
353 /* Push one word to the RX buffer from the POPR register (RX FIFO) */
354 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
355 {
356 	if (!dspi->rx)
357 		return;
358 	dspi->dev_to_host(dspi, rxdata);
359 }
360 
361 static void dspi_tx_dma_callback(void *arg)
362 {
363 	struct fsl_dspi *dspi = arg;
364 	struct fsl_dspi_dma *dma = dspi->dma;
365 
366 	complete(&dma->cmd_tx_complete);
367 }
368 
369 static void dspi_rx_dma_callback(void *arg)
370 {
371 	struct fsl_dspi *dspi = arg;
372 	struct fsl_dspi_dma *dma = dspi->dma;
373 	int i;
374 
375 	if (dspi->rx) {
376 		for (i = 0; i < dspi->words_in_flight; i++)
377 			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
378 	}
379 
380 	complete(&dma->cmd_rx_complete);
381 }
382 
383 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
384 {
385 	struct device *dev = &dspi->pdev->dev;
386 	struct fsl_dspi_dma *dma = dspi->dma;
387 	int time_left;
388 	int i;
389 
390 	for (i = 0; i < dspi->words_in_flight; i++)
391 		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
392 
393 	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
394 					dma->tx_dma_phys,
395 					dspi->words_in_flight *
396 					DMA_SLAVE_BUSWIDTH_4_BYTES,
397 					DMA_MEM_TO_DEV,
398 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
399 	if (!dma->tx_desc) {
400 		dev_err(dev, "Not able to get desc for DMA xfer\n");
401 		return -EIO;
402 	}
403 
404 	dma->tx_desc->callback = dspi_tx_dma_callback;
405 	dma->tx_desc->callback_param = dspi;
406 	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
407 		dev_err(dev, "DMA submit failed\n");
408 		return -EINVAL;
409 	}
410 
411 	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
412 					dma->rx_dma_phys,
413 					dspi->words_in_flight *
414 					DMA_SLAVE_BUSWIDTH_4_BYTES,
415 					DMA_DEV_TO_MEM,
416 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
417 	if (!dma->rx_desc) {
418 		dev_err(dev, "Not able to get desc for DMA xfer\n");
419 		return -EIO;
420 	}
421 
422 	dma->rx_desc->callback = dspi_rx_dma_callback;
423 	dma->rx_desc->callback_param = dspi;
424 	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
425 		dev_err(dev, "DMA submit failed\n");
426 		return -EINVAL;
427 	}
428 
429 	reinit_completion(&dspi->dma->cmd_rx_complete);
430 	reinit_completion(&dspi->dma->cmd_tx_complete);
431 
432 	dma_async_issue_pending(dma->chan_rx);
433 	dma_async_issue_pending(dma->chan_tx);
434 
435 	if (spi_controller_is_slave(dspi->ctlr)) {
436 		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
437 		return 0;
438 	}
439 
440 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
441 						DMA_COMPLETION_TIMEOUT);
442 	if (time_left == 0) {
443 		dev_err(dev, "DMA tx timeout\n");
444 		dmaengine_terminate_all(dma->chan_tx);
445 		dmaengine_terminate_all(dma->chan_rx);
446 		return -ETIMEDOUT;
447 	}
448 
449 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
450 						DMA_COMPLETION_TIMEOUT);
451 	if (time_left == 0) {
452 		dev_err(dev, "DMA rx timeout\n");
453 		dmaengine_terminate_all(dma->chan_tx);
454 		dmaengine_terminate_all(dma->chan_rx);
455 		return -ETIMEDOUT;
456 	}
457 
458 	return 0;
459 }
460 
461 static void dspi_setup_accel(struct fsl_dspi *dspi);
462 
463 static int dspi_dma_xfer(struct fsl_dspi *dspi)
464 {
465 	struct spi_message *message = dspi->cur_msg;
466 	struct device *dev = &dspi->pdev->dev;
467 	int ret = 0;
468 
469 	/*
470 	 * dspi->len gets decremented by dspi_pop_tx_pushr in
471 	 * dspi_next_xfer_dma_submit
472 	 */
473 	while (dspi->len) {
474 		/* Figure out operational bits-per-word for this chunk */
475 		dspi_setup_accel(dspi);
476 
477 		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
478 		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
479 			dspi->words_in_flight = dspi->devtype_data->fifo_size;
480 
481 		message->actual_length += dspi->words_in_flight *
482 					  dspi->oper_word_size;
483 
484 		ret = dspi_next_xfer_dma_submit(dspi);
485 		if (ret) {
486 			dev_err(dev, "DMA transfer failed\n");
487 			break;
488 		}
489 	}
490 
491 	return ret;
492 }
493 
494 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
495 {
496 	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
497 	struct device *dev = &dspi->pdev->dev;
498 	struct dma_slave_config cfg;
499 	struct fsl_dspi_dma *dma;
500 	int ret;
501 
502 	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
503 	if (!dma)
504 		return -ENOMEM;
505 
506 	dma->chan_rx = dma_request_chan(dev, "rx");
507 	if (IS_ERR(dma->chan_rx)) {
508 		dev_err(dev, "rx dma channel not available\n");
509 		ret = PTR_ERR(dma->chan_rx);
510 		return ret;
511 	}
512 
513 	dma->chan_tx = dma_request_chan(dev, "tx");
514 	if (IS_ERR(dma->chan_tx)) {
515 		dev_err(dev, "tx dma channel not available\n");
516 		ret = PTR_ERR(dma->chan_tx);
517 		goto err_tx_channel;
518 	}
519 
520 	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
521 					     dma_bufsize, &dma->tx_dma_phys,
522 					     GFP_KERNEL);
523 	if (!dma->tx_dma_buf) {
524 		ret = -ENOMEM;
525 		goto err_tx_dma_buf;
526 	}
527 
528 	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
529 					     dma_bufsize, &dma->rx_dma_phys,
530 					     GFP_KERNEL);
531 	if (!dma->rx_dma_buf) {
532 		ret = -ENOMEM;
533 		goto err_rx_dma_buf;
534 	}
535 
536 	cfg.src_addr = phy_addr + SPI_POPR;
537 	cfg.dst_addr = phy_addr + SPI_PUSHR;
538 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
539 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
540 	cfg.src_maxburst = 1;
541 	cfg.dst_maxburst = 1;
542 
543 	cfg.direction = DMA_DEV_TO_MEM;
544 	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
545 	if (ret) {
546 		dev_err(dev, "can't configure rx dma channel\n");
547 		ret = -EINVAL;
548 		goto err_slave_config;
549 	}
550 
551 	cfg.direction = DMA_MEM_TO_DEV;
552 	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
553 	if (ret) {
554 		dev_err(dev, "can't configure tx dma channel\n");
555 		ret = -EINVAL;
556 		goto err_slave_config;
557 	}
558 
559 	dspi->dma = dma;
560 	init_completion(&dma->cmd_tx_complete);
561 	init_completion(&dma->cmd_rx_complete);
562 
563 	return 0;
564 
565 err_slave_config:
566 	dma_free_coherent(dma->chan_rx->device->dev,
567 			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
568 err_rx_dma_buf:
569 	dma_free_coherent(dma->chan_tx->device->dev,
570 			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
571 err_tx_dma_buf:
572 	dma_release_channel(dma->chan_tx);
573 err_tx_channel:
574 	dma_release_channel(dma->chan_rx);
575 
576 	devm_kfree(dev, dma);
577 	dspi->dma = NULL;
578 
579 	return ret;
580 }
581 
582 static void dspi_release_dma(struct fsl_dspi *dspi)
583 {
584 	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
585 	struct fsl_dspi_dma *dma = dspi->dma;
586 
587 	if (!dma)
588 		return;
589 
590 	if (dma->chan_tx) {
591 		dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
592 				  dma->tx_dma_buf, dma->tx_dma_phys);
593 		dma_release_channel(dma->chan_tx);
594 	}
595 
596 	if (dma->chan_rx) {
597 		dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
598 				  dma->rx_dma_buf, dma->rx_dma_phys);
599 		dma_release_channel(dma->chan_rx);
600 	}
601 }
602 
603 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
604 			   unsigned long clkrate)
605 {
606 	/* Valid baud rate pre-scaler values */
607 	int pbr_tbl[4] = {2, 3, 5, 7};
608 	int brs[16] = {	2,	4,	6,	8,
609 			16,	32,	64,	128,
610 			256,	512,	1024,	2048,
611 			4096,	8192,	16384,	32768 };
612 	int scale_needed, scale, minscale = INT_MAX;
613 	int i, j;
614 
615 	scale_needed = clkrate / speed_hz;
616 	if (clkrate % speed_hz)
617 		scale_needed++;
618 
619 	for (i = 0; i < ARRAY_SIZE(brs); i++)
620 		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
621 			scale = brs[i] * pbr_tbl[j];
622 			if (scale >= scale_needed) {
623 				if (scale < minscale) {
624 					minscale = scale;
625 					*br = i;
626 					*pbr = j;
627 				}
628 				break;
629 			}
630 		}
631 
632 	if (minscale == INT_MAX) {
633 		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
634 			speed_hz, clkrate);
635 		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
636 		*br =  ARRAY_SIZE(brs) - 1;
637 	}
638 }
639 
640 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
641 			   unsigned long clkrate)
642 {
643 	int scale_needed, scale, minscale = INT_MAX;
644 	int pscale_tbl[4] = {1, 3, 5, 7};
645 	u32 remainder;
646 	int i, j;
647 
648 	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
649 				   &remainder);
650 	if (remainder)
651 		scale_needed++;
652 
653 	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
654 		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
655 			scale = pscale_tbl[i] * (2 << j);
656 			if (scale >= scale_needed) {
657 				if (scale < minscale) {
658 					minscale = scale;
659 					*psc = i;
660 					*sc = j;
661 				}
662 				break;
663 			}
664 		}
665 
666 	if (minscale == INT_MAX) {
667 		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
668 			delay_ns, clkrate);
669 		*psc = ARRAY_SIZE(pscale_tbl) - 1;
670 		*sc = SPI_CTAR_SCALE_BITS;
671 	}
672 }
673 
674 static void dspi_pushr_write(struct fsl_dspi *dspi)
675 {
676 	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
677 }
678 
679 static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
680 {
681 	/*
682 	 * The only time when the PCS doesn't need continuation after this word
683 	 * is when it's last. We need to look ahead, because we actually call
684 	 * dspi_pop_tx (the function that decrements dspi->len) _after_
685 	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
686 	 * word is enough. If there's more to transmit than that,
687 	 * dspi_xspi_write will know to split the FIFO writes in 2, and
688 	 * generate a new PUSHR command with the final word that will have PCS
689 	 * deasserted (not continued) here.
690 	 */
691 	if (dspi->len > dspi->oper_word_size)
692 		cmd |= SPI_PUSHR_CMD_CONT;
693 	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
694 }
695 
696 static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
697 {
698 	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
699 }
700 
701 static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
702 {
703 	int num_bytes = num_words * dspi->oper_word_size;
704 	u16 tx_cmd = dspi->tx_cmd;
705 
706 	/*
707 	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
708 	 * and cs_change does not want the PCS to stay on), then we need a new
709 	 * PUSHR command, since this one (for the body of the buffer)
710 	 * necessarily has the CONT bit set.
711 	 * So send one word less during this go, to force a split and a command
712 	 * with a single word next time, when CONT will be unset.
713 	 */
714 	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
715 		tx_cmd |= SPI_PUSHR_CMD_EOQ;
716 
717 	/* Update CTARE */
718 	regmap_write(dspi->regmap, SPI_CTARE(0),
719 		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
720 		     SPI_CTARE_DTCP(num_words));
721 
722 	/*
723 	 * Write the CMD FIFO entry first, and then the two
724 	 * corresponding TX FIFO entries (or one...).
725 	 */
726 	dspi_pushr_cmd_write(dspi, tx_cmd);
727 
728 	/* Fill TX FIFO with as many transfers as possible */
729 	while (num_words--) {
730 		u32 data = dspi_pop_tx(dspi);
731 
732 		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
733 		if (dspi->oper_bits_per_word > 16)
734 			dspi_pushr_txdata_write(dspi, data >> 16);
735 	}
736 }
737 
738 static void dspi_eoq_fifo_write(struct fsl_dspi *dspi, int num_words)
739 {
740 	u16 xfer_cmd = dspi->tx_cmd;
741 
742 	/* Fill TX FIFO with as many transfers as possible */
743 	while (num_words--) {
744 		dspi->tx_cmd = xfer_cmd;
745 		/* Request EOQF for last transfer in FIFO */
746 		if (num_words == 0)
747 			dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
748 		/* Write combined TX FIFO and CMD FIFO entry */
749 		dspi_pushr_write(dspi);
750 	}
751 }
752 
753 static u32 dspi_popr_read(struct fsl_dspi *dspi)
754 {
755 	u32 rxdata = 0;
756 
757 	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
758 	return rxdata;
759 }
760 
761 static void dspi_fifo_read(struct fsl_dspi *dspi)
762 {
763 	int num_fifo_entries = dspi->words_in_flight;
764 
765 	/* Read one FIFO entry and push to rx buffer */
766 	while (num_fifo_entries--)
767 		dspi_push_rx(dspi, dspi_popr_read(dspi));
768 }
769 
770 static void dspi_setup_accel(struct fsl_dspi *dspi)
771 {
772 	struct spi_transfer *xfer = dspi->cur_transfer;
773 	bool odd = !!(dspi->len & 1);
774 
775 	/* No accel for frames not multiple of 8 bits at the moment */
776 	if (xfer->bits_per_word % 8)
777 		goto no_accel;
778 
779 	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
780 		dspi->oper_bits_per_word = 16;
781 	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
782 		dspi->oper_bits_per_word = 8;
783 	} else {
784 		/* Start off with maximum supported by hardware */
785 		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
786 			dspi->oper_bits_per_word = 32;
787 		else
788 			dspi->oper_bits_per_word = 16;
789 
790 		/*
791 		 * And go down only if the buffer can't be sent with
792 		 * words this big
793 		 */
794 		do {
795 			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
796 				break;
797 
798 			dspi->oper_bits_per_word /= 2;
799 		} while (dspi->oper_bits_per_word > 8);
800 	}
801 
802 	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
803 		dspi->dev_to_host = dspi_8on32_dev_to_host;
804 		dspi->host_to_dev = dspi_8on32_host_to_dev;
805 	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
806 		dspi->dev_to_host = dspi_8on16_dev_to_host;
807 		dspi->host_to_dev = dspi_8on16_host_to_dev;
808 	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
809 		dspi->dev_to_host = dspi_16on32_dev_to_host;
810 		dspi->host_to_dev = dspi_16on32_host_to_dev;
811 	} else {
812 no_accel:
813 		dspi->dev_to_host = dspi_native_dev_to_host;
814 		dspi->host_to_dev = dspi_native_host_to_dev;
815 		dspi->oper_bits_per_word = xfer->bits_per_word;
816 	}
817 
818 	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
819 
820 	/*
821 	 * Update CTAR here (code is common for EOQ, XSPI and DMA modes).
822 	 * We will update CTARE in the portion specific to XSPI, when we
823 	 * also know the preload value (DTCP).
824 	 */
825 	regmap_write(dspi->regmap, SPI_CTAR(0),
826 		     dspi->cur_chip->ctar_val |
827 		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
828 }
829 
830 static void dspi_fifo_write(struct fsl_dspi *dspi)
831 {
832 	int num_fifo_entries = dspi->devtype_data->fifo_size;
833 	struct spi_transfer *xfer = dspi->cur_transfer;
834 	struct spi_message *msg = dspi->cur_msg;
835 	int num_words, num_bytes;
836 
837 	dspi_setup_accel(dspi);
838 
839 	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
840 	if (dspi->oper_word_size == 4)
841 		num_fifo_entries /= 2;
842 
843 	/*
844 	 * Integer division intentionally trims off odd (or non-multiple of 4)
845 	 * numbers of bytes at the end of the buffer, which will be sent next
846 	 * time using a smaller oper_word_size.
847 	 */
848 	num_words = dspi->len / dspi->oper_word_size;
849 	if (num_words > num_fifo_entries)
850 		num_words = num_fifo_entries;
851 
852 	/* Update total number of bytes that were transferred */
853 	num_bytes = num_words * dspi->oper_word_size;
854 	msg->actual_length += num_bytes;
855 	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
856 
857 	/*
858 	 * Update shared variable for use in the next interrupt (both in
859 	 * dspi_fifo_read and in dspi_fifo_write).
860 	 */
861 	dspi->words_in_flight = num_words;
862 
863 	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
864 
865 	if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE)
866 		dspi_eoq_fifo_write(dspi, num_words);
867 	else
868 		dspi_xspi_fifo_write(dspi, num_words);
869 	/*
870 	 * Everything after this point is in a potential race with the next
871 	 * interrupt, so we must never use dspi->words_in_flight again since it
872 	 * might already be modified by the next dspi_fifo_write.
873 	 */
874 
875 	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
876 				dspi->progress, !dspi->irq);
877 }
878 
879 static int dspi_rxtx(struct fsl_dspi *dspi)
880 {
881 	dspi_fifo_read(dspi);
882 
883 	if (!dspi->len)
884 		/* Success! */
885 		return 0;
886 
887 	dspi_fifo_write(dspi);
888 
889 	return -EINPROGRESS;
890 }
891 
892 static int dspi_poll(struct fsl_dspi *dspi)
893 {
894 	int tries = 1000;
895 	u32 spi_sr;
896 
897 	do {
898 		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
899 		regmap_write(dspi->regmap, SPI_SR, spi_sr);
900 
901 		if (spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF))
902 			break;
903 	} while (--tries);
904 
905 	if (!tries)
906 		return -ETIMEDOUT;
907 
908 	return dspi_rxtx(dspi);
909 }
910 
911 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
912 {
913 	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
914 	u32 spi_sr;
915 
916 	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
917 	regmap_write(dspi->regmap, SPI_SR, spi_sr);
918 
919 	if (!(spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF)))
920 		return IRQ_NONE;
921 
922 	if (dspi_rxtx(dspi) == 0)
923 		complete(&dspi->xfer_done);
924 
925 	return IRQ_HANDLED;
926 }
927 
928 static int dspi_transfer_one_message(struct spi_controller *ctlr,
929 				     struct spi_message *message)
930 {
931 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
932 	struct spi_device *spi = message->spi;
933 	struct spi_transfer *transfer;
934 	int status = 0;
935 
936 	message->actual_length = 0;
937 
938 	list_for_each_entry(transfer, &message->transfers, transfer_list) {
939 		dspi->cur_transfer = transfer;
940 		dspi->cur_msg = message;
941 		dspi->cur_chip = spi_get_ctldata(spi);
942 		/* Prepare command word for CMD FIFO */
943 		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
944 			       SPI_PUSHR_CMD_PCS(spi->chip_select);
945 		if (list_is_last(&dspi->cur_transfer->transfer_list,
946 				 &dspi->cur_msg->transfers)) {
947 			/* Leave PCS activated after last transfer when
948 			 * cs_change is set.
949 			 */
950 			if (transfer->cs_change)
951 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
952 		} else {
953 			/* Keep PCS active between transfers in same message
954 			 * when cs_change is not set, and de-activate PCS
955 			 * between transfers in the same message when
956 			 * cs_change is set.
957 			 */
958 			if (!transfer->cs_change)
959 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
960 		}
961 
962 		dspi->tx = transfer->tx_buf;
963 		dspi->rx = transfer->rx_buf;
964 		dspi->len = transfer->len;
965 		dspi->progress = 0;
966 
967 		regmap_update_bits(dspi->regmap, SPI_MCR,
968 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
969 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
970 
971 		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
972 				       dspi->progress, !dspi->irq);
973 
974 		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
975 			status = dspi_dma_xfer(dspi);
976 		} else {
977 			dspi_fifo_write(dspi);
978 
979 			if (dspi->irq) {
980 				wait_for_completion(&dspi->xfer_done);
981 				reinit_completion(&dspi->xfer_done);
982 			} else {
983 				do {
984 					status = dspi_poll(dspi);
985 				} while (status == -EINPROGRESS);
986 			}
987 		}
988 		if (status)
989 			break;
990 
991 		spi_transfer_delay_exec(transfer);
992 	}
993 
994 	message->status = status;
995 	spi_finalize_current_message(ctlr);
996 
997 	return status;
998 }
999 
1000 static int dspi_setup(struct spi_device *spi)
1001 {
1002 	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1003 	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
1004 	u32 cs_sck_delay = 0, sck_cs_delay = 0;
1005 	struct fsl_dspi_platform_data *pdata;
1006 	unsigned char pasc = 0, asc = 0;
1007 	struct chip_data *chip;
1008 	unsigned long clkrate;
1009 
1010 	/* Only alloc on first setup */
1011 	chip = spi_get_ctldata(spi);
1012 	if (chip == NULL) {
1013 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1014 		if (!chip)
1015 			return -ENOMEM;
1016 	}
1017 
1018 	pdata = dev_get_platdata(&dspi->pdev->dev);
1019 
1020 	if (!pdata) {
1021 		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
1022 				     &cs_sck_delay);
1023 
1024 		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1025 				     &sck_cs_delay);
1026 	} else {
1027 		cs_sck_delay = pdata->cs_sck_delay;
1028 		sck_cs_delay = pdata->sck_cs_delay;
1029 	}
1030 
1031 	clkrate = clk_get_rate(dspi->clk);
1032 	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1033 
1034 	/* Set PCS to SCK delay scale values */
1035 	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1036 
1037 	/* Set After SCK delay scale values */
1038 	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1039 
1040 	chip->ctar_val = 0;
1041 	if (spi->mode & SPI_CPOL)
1042 		chip->ctar_val |= SPI_CTAR_CPOL;
1043 	if (spi->mode & SPI_CPHA)
1044 		chip->ctar_val |= SPI_CTAR_CPHA;
1045 
1046 	if (!spi_controller_is_slave(dspi->ctlr)) {
1047 		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1048 				  SPI_CTAR_CSSCK(cssck) |
1049 				  SPI_CTAR_PASC(pasc) |
1050 				  SPI_CTAR_ASC(asc) |
1051 				  SPI_CTAR_PBR(pbr) |
1052 				  SPI_CTAR_BR(br);
1053 
1054 		if (spi->mode & SPI_LSB_FIRST)
1055 			chip->ctar_val |= SPI_CTAR_LSBFE;
1056 	}
1057 
1058 	spi_set_ctldata(spi, chip);
1059 
1060 	return 0;
1061 }
1062 
1063 static void dspi_cleanup(struct spi_device *spi)
1064 {
1065 	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
1066 
1067 	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1068 		spi->controller->bus_num, spi->chip_select);
1069 
1070 	kfree(chip);
1071 }
1072 
1073 static const struct of_device_id fsl_dspi_dt_ids[] = {
1074 	{
1075 		.compatible = "fsl,vf610-dspi",
1076 		.data = &devtype_data[VF610],
1077 	}, {
1078 		.compatible = "fsl,ls1021a-v1.0-dspi",
1079 		.data = &devtype_data[LS1021A],
1080 	}, {
1081 		.compatible = "fsl,ls1012a-dspi",
1082 		.data = &devtype_data[LS1012A],
1083 	}, {
1084 		.compatible = "fsl,ls1028a-dspi",
1085 		.data = &devtype_data[LS1028A],
1086 	}, {
1087 		.compatible = "fsl,ls1043a-dspi",
1088 		.data = &devtype_data[LS1043A],
1089 	}, {
1090 		.compatible = "fsl,ls1046a-dspi",
1091 		.data = &devtype_data[LS1046A],
1092 	}, {
1093 		.compatible = "fsl,ls2080a-dspi",
1094 		.data = &devtype_data[LS2080A],
1095 	}, {
1096 		.compatible = "fsl,ls2085a-dspi",
1097 		.data = &devtype_data[LS2085A],
1098 	}, {
1099 		.compatible = "fsl,lx2160a-dspi",
1100 		.data = &devtype_data[LX2160A],
1101 	},
1102 	{ /* sentinel */ }
1103 };
1104 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1105 
1106 #ifdef CONFIG_PM_SLEEP
1107 static int dspi_suspend(struct device *dev)
1108 {
1109 	struct spi_controller *ctlr = dev_get_drvdata(dev);
1110 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1111 
1112 	if (dspi->irq)
1113 		disable_irq(dspi->irq);
1114 	spi_controller_suspend(ctlr);
1115 	clk_disable_unprepare(dspi->clk);
1116 
1117 	pinctrl_pm_select_sleep_state(dev);
1118 
1119 	return 0;
1120 }
1121 
1122 static int dspi_resume(struct device *dev)
1123 {
1124 	struct spi_controller *ctlr = dev_get_drvdata(dev);
1125 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1126 	int ret;
1127 
1128 	pinctrl_pm_select_default_state(dev);
1129 
1130 	ret = clk_prepare_enable(dspi->clk);
1131 	if (ret)
1132 		return ret;
1133 	spi_controller_resume(ctlr);
1134 	if (dspi->irq)
1135 		enable_irq(dspi->irq);
1136 
1137 	return 0;
1138 }
1139 #endif /* CONFIG_PM_SLEEP */
1140 
1141 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1142 
1143 static const struct regmap_range dspi_volatile_ranges[] = {
1144 	regmap_reg_range(SPI_MCR, SPI_TCR),
1145 	regmap_reg_range(SPI_SR, SPI_SR),
1146 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1147 };
1148 
1149 static const struct regmap_access_table dspi_volatile_table = {
1150 	.yes_ranges	= dspi_volatile_ranges,
1151 	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
1152 };
1153 
1154 static const struct regmap_config dspi_regmap_config = {
1155 	.reg_bits	= 32,
1156 	.val_bits	= 32,
1157 	.reg_stride	= 4,
1158 	.max_register	= 0x88,
1159 	.volatile_table	= &dspi_volatile_table,
1160 };
1161 
1162 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1163 	regmap_reg_range(SPI_MCR, SPI_TCR),
1164 	regmap_reg_range(SPI_SR, SPI_SR),
1165 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1166 	regmap_reg_range(SPI_SREX, SPI_SREX),
1167 };
1168 
1169 static const struct regmap_access_table dspi_xspi_volatile_table = {
1170 	.yes_ranges	= dspi_xspi_volatile_ranges,
1171 	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
1172 };
1173 
1174 static const struct regmap_config dspi_xspi_regmap_config[] = {
1175 	{
1176 		.reg_bits	= 32,
1177 		.val_bits	= 32,
1178 		.reg_stride	= 4,
1179 		.max_register	= 0x13c,
1180 		.volatile_table	= &dspi_xspi_volatile_table,
1181 	},
1182 	{
1183 		.name		= "pushr",
1184 		.reg_bits	= 16,
1185 		.val_bits	= 16,
1186 		.reg_stride	= 2,
1187 		.max_register	= 0x2,
1188 	},
1189 };
1190 
1191 static int dspi_init(struct fsl_dspi *dspi)
1192 {
1193 	unsigned int mcr;
1194 
1195 	/* Set idle states for all chip select signals to high */
1196 	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->num_chipselect - 1, 0));
1197 
1198 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1199 		mcr |= SPI_MCR_XSPI;
1200 	if (!spi_controller_is_slave(dspi->ctlr))
1201 		mcr |= SPI_MCR_MASTER;
1202 
1203 	regmap_write(dspi->regmap, SPI_MCR, mcr);
1204 	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1205 
1206 	switch (dspi->devtype_data->trans_mode) {
1207 	case DSPI_EOQ_MODE:
1208 		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
1209 		break;
1210 	case DSPI_XSPI_MODE:
1211 		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1212 		break;
1213 	case DSPI_DMA_MODE:
1214 		regmap_write(dspi->regmap, SPI_RSER,
1215 			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1216 			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1217 		break;
1218 	default:
1219 		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1220 			dspi->devtype_data->trans_mode);
1221 		return -EINVAL;
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 static int dspi_slave_abort(struct spi_master *master)
1228 {
1229 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
1230 
1231 	/*
1232 	 * Terminate all pending DMA transactions for the SPI working
1233 	 * in SLAVE mode.
1234 	 */
1235 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1236 		dmaengine_terminate_sync(dspi->dma->chan_rx);
1237 		dmaengine_terminate_sync(dspi->dma->chan_tx);
1238 	}
1239 
1240 	/* Clear the internal DSPI RX and TX FIFO buffers */
1241 	regmap_update_bits(dspi->regmap, SPI_MCR,
1242 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1243 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1244 
1245 	return 0;
1246 }
1247 
1248 /*
1249  * EOQ mode will inevitably deassert its PCS signal on last word in a queue
1250  * (hardware limitation), so we need to inform the spi_device that larger
1251  * buffers than the FIFO size are going to have the chip select randomly
1252  * toggling, so it has a chance to adapt its message sizes.
1253  */
1254 static size_t dspi_max_message_size(struct spi_device *spi)
1255 {
1256 	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1257 
1258 	if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE)
1259 		return dspi->devtype_data->fifo_size;
1260 
1261 	return SIZE_MAX;
1262 }
1263 
1264 static int dspi_probe(struct platform_device *pdev)
1265 {
1266 	struct device_node *np = pdev->dev.of_node;
1267 	const struct regmap_config *regmap_config;
1268 	struct fsl_dspi_platform_data *pdata;
1269 	struct spi_controller *ctlr;
1270 	int ret, cs_num, bus_num = -1;
1271 	struct fsl_dspi *dspi;
1272 	struct resource *res;
1273 	void __iomem *base;
1274 	bool big_endian;
1275 
1276 	dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1277 	if (!dspi)
1278 		return -ENOMEM;
1279 
1280 	ctlr = spi_alloc_master(&pdev->dev, 0);
1281 	if (!ctlr)
1282 		return -ENOMEM;
1283 
1284 	dspi->pdev = pdev;
1285 	dspi->ctlr = ctlr;
1286 
1287 	ctlr->setup = dspi_setup;
1288 	ctlr->transfer_one_message = dspi_transfer_one_message;
1289 	ctlr->max_message_size = dspi_max_message_size;
1290 	ctlr->dev.of_node = pdev->dev.of_node;
1291 
1292 	ctlr->cleanup = dspi_cleanup;
1293 	ctlr->slave_abort = dspi_slave_abort;
1294 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1295 
1296 	pdata = dev_get_platdata(&pdev->dev);
1297 	if (pdata) {
1298 		ctlr->num_chipselect = pdata->cs_num;
1299 		ctlr->bus_num = pdata->bus_num;
1300 
1301 		/* Only Coldfire uses platform data */
1302 		dspi->devtype_data = &devtype_data[MCF5441X];
1303 		big_endian = true;
1304 	} else {
1305 
1306 		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1307 		if (ret < 0) {
1308 			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1309 			goto out_ctlr_put;
1310 		}
1311 		ctlr->num_chipselect = cs_num;
1312 
1313 		of_property_read_u32(np, "bus-num", &bus_num);
1314 		ctlr->bus_num = bus_num;
1315 
1316 		if (of_property_read_bool(np, "spi-slave"))
1317 			ctlr->slave = true;
1318 
1319 		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1320 		if (!dspi->devtype_data) {
1321 			dev_err(&pdev->dev, "can't get devtype_data\n");
1322 			ret = -EFAULT;
1323 			goto out_ctlr_put;
1324 		}
1325 
1326 		big_endian = of_device_is_big_endian(np);
1327 	}
1328 	if (big_endian) {
1329 		dspi->pushr_cmd = 0;
1330 		dspi->pushr_tx = 2;
1331 	} else {
1332 		dspi->pushr_cmd = 2;
1333 		dspi->pushr_tx = 0;
1334 	}
1335 
1336 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1337 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1338 	else
1339 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1340 
1341 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1342 	base = devm_ioremap_resource(&pdev->dev, res);
1343 	if (IS_ERR(base)) {
1344 		ret = PTR_ERR(base);
1345 		goto out_ctlr_put;
1346 	}
1347 
1348 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1349 		regmap_config = &dspi_xspi_regmap_config[0];
1350 	else
1351 		regmap_config = &dspi_regmap_config;
1352 	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1353 	if (IS_ERR(dspi->regmap)) {
1354 		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1355 				PTR_ERR(dspi->regmap));
1356 		ret = PTR_ERR(dspi->regmap);
1357 		goto out_ctlr_put;
1358 	}
1359 
1360 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1361 		dspi->regmap_pushr = devm_regmap_init_mmio(
1362 			&pdev->dev, base + SPI_PUSHR,
1363 			&dspi_xspi_regmap_config[1]);
1364 		if (IS_ERR(dspi->regmap_pushr)) {
1365 			dev_err(&pdev->dev,
1366 				"failed to init pushr regmap: %ld\n",
1367 				PTR_ERR(dspi->regmap_pushr));
1368 			ret = PTR_ERR(dspi->regmap_pushr);
1369 			goto out_ctlr_put;
1370 		}
1371 	}
1372 
1373 	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1374 	if (IS_ERR(dspi->clk)) {
1375 		ret = PTR_ERR(dspi->clk);
1376 		dev_err(&pdev->dev, "unable to get clock\n");
1377 		goto out_ctlr_put;
1378 	}
1379 	ret = clk_prepare_enable(dspi->clk);
1380 	if (ret)
1381 		goto out_ctlr_put;
1382 
1383 	ret = dspi_init(dspi);
1384 	if (ret)
1385 		goto out_clk_put;
1386 
1387 	dspi->irq = platform_get_irq(pdev, 0);
1388 	if (dspi->irq <= 0) {
1389 		dev_info(&pdev->dev,
1390 			 "can't get platform irq, using poll mode\n");
1391 		dspi->irq = 0;
1392 		goto poll_mode;
1393 	}
1394 
1395 	init_completion(&dspi->xfer_done);
1396 
1397 	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1398 				   IRQF_SHARED, pdev->name, dspi);
1399 	if (ret < 0) {
1400 		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1401 		goto out_clk_put;
1402 	}
1403 
1404 poll_mode:
1405 
1406 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1407 		ret = dspi_request_dma(dspi, res->start);
1408 		if (ret < 0) {
1409 			dev_err(&pdev->dev, "can't get dma channels\n");
1410 			goto out_free_irq;
1411 		}
1412 	}
1413 
1414 	ctlr->max_speed_hz =
1415 		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1416 
1417 	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1418 		ctlr->ptp_sts_supported = true;
1419 
1420 	platform_set_drvdata(pdev, dspi);
1421 
1422 	ret = spi_register_controller(ctlr);
1423 	if (ret != 0) {
1424 		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1425 		goto out_free_irq;
1426 	}
1427 
1428 	return ret;
1429 
1430 out_free_irq:
1431 	if (dspi->irq)
1432 		free_irq(dspi->irq, dspi);
1433 out_clk_put:
1434 	clk_disable_unprepare(dspi->clk);
1435 out_ctlr_put:
1436 	spi_controller_put(ctlr);
1437 
1438 	return ret;
1439 }
1440 
1441 static int dspi_remove(struct platform_device *pdev)
1442 {
1443 	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1444 
1445 	/* Disconnect from the SPI framework */
1446 	spi_unregister_controller(dspi->ctlr);
1447 
1448 	/* Disable RX and TX */
1449 	regmap_update_bits(dspi->regmap, SPI_MCR,
1450 			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1451 			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1452 
1453 	/* Stop Running */
1454 	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1455 
1456 	dspi_release_dma(dspi);
1457 	if (dspi->irq)
1458 		free_irq(dspi->irq, dspi);
1459 	clk_disable_unprepare(dspi->clk);
1460 
1461 	return 0;
1462 }
1463 
1464 static void dspi_shutdown(struct platform_device *pdev)
1465 {
1466 	dspi_remove(pdev);
1467 }
1468 
1469 static struct platform_driver fsl_dspi_driver = {
1470 	.driver.name		= DRIVER_NAME,
1471 	.driver.of_match_table	= fsl_dspi_dt_ids,
1472 	.driver.owner		= THIS_MODULE,
1473 	.driver.pm		= &dspi_pm,
1474 	.probe			= dspi_probe,
1475 	.remove			= dspi_remove,
1476 	.shutdown		= dspi_shutdown,
1477 };
1478 module_platform_driver(fsl_dspi_driver);
1479 
1480 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1481 MODULE_LICENSE("GPL");
1482 MODULE_ALIAS("platform:" DRIVER_NAME);
1483