xref: /openbmc/linux/drivers/spi/spi-fsl-dspi.c (revision e2f1cf25)
1 /*
2  * drivers/spi/spi-fsl-dspi.c
3  *
4  * Copyright 2013 Freescale Semiconductor, Inc.
5  *
6  * Freescale DSPI driver
7  * This file contains a driver for the Freescale DSPI
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/errno.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/math64.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/regmap.h>
31 #include <linux/sched.h>
32 #include <linux/spi/spi.h>
33 #include <linux/spi/spi_bitbang.h>
34 #include <linux/time.h>
35 
36 #define DRIVER_NAME "fsl-dspi"
37 
38 #define TRAN_STATE_RX_VOID		0x01
39 #define TRAN_STATE_TX_VOID		0x02
40 #define TRAN_STATE_WORD_ODD_NUM	0x04
41 
42 #define DSPI_FIFO_SIZE			4
43 
44 #define SPI_MCR		0x00
45 #define SPI_MCR_MASTER		(1 << 31)
46 #define SPI_MCR_PCSIS		(0x3F << 16)
47 #define SPI_MCR_CLR_TXF	(1 << 11)
48 #define SPI_MCR_CLR_RXF	(1 << 10)
49 
50 #define SPI_TCR			0x08
51 #define SPI_TCR_GET_TCNT(x)	(((x) & 0xffff0000) >> 16)
52 
53 #define SPI_CTAR(x)		(0x0c + (((x) & 0x3) * 4))
54 #define SPI_CTAR_FMSZ(x)	(((x) & 0x0000000f) << 27)
55 #define SPI_CTAR_CPOL(x)	((x) << 26)
56 #define SPI_CTAR_CPHA(x)	((x) << 25)
57 #define SPI_CTAR_LSBFE(x)	((x) << 24)
58 #define SPI_CTAR_PCSSCK(x)	(((x) & 0x00000003) << 22)
59 #define SPI_CTAR_PASC(x)	(((x) & 0x00000003) << 20)
60 #define SPI_CTAR_PDT(x)	(((x) & 0x00000003) << 18)
61 #define SPI_CTAR_PBR(x)	(((x) & 0x00000003) << 16)
62 #define SPI_CTAR_CSSCK(x)	(((x) & 0x0000000f) << 12)
63 #define SPI_CTAR_ASC(x)	(((x) & 0x0000000f) << 8)
64 #define SPI_CTAR_DT(x)		(((x) & 0x0000000f) << 4)
65 #define SPI_CTAR_BR(x)		((x) & 0x0000000f)
66 #define SPI_CTAR_SCALE_BITS	0xf
67 
68 #define SPI_CTAR0_SLAVE	0x0c
69 
70 #define SPI_SR			0x2c
71 #define SPI_SR_EOQF		0x10000000
72 #define SPI_SR_TCFQF		0x80000000
73 
74 #define SPI_RSER		0x30
75 #define SPI_RSER_EOQFE		0x10000000
76 #define SPI_RSER_TCFQE		0x80000000
77 
78 #define SPI_PUSHR		0x34
79 #define SPI_PUSHR_CONT		(1 << 31)
80 #define SPI_PUSHR_CTAS(x)	(((x) & 0x00000003) << 28)
81 #define SPI_PUSHR_EOQ		(1 << 27)
82 #define SPI_PUSHR_CTCNT	(1 << 26)
83 #define SPI_PUSHR_PCS(x)	(((1 << x) & 0x0000003f) << 16)
84 #define SPI_PUSHR_TXDATA(x)	((x) & 0x0000ffff)
85 
86 #define SPI_PUSHR_SLAVE	0x34
87 
88 #define SPI_POPR		0x38
89 #define SPI_POPR_RXDATA(x)	((x) & 0x0000ffff)
90 
91 #define SPI_TXFR0		0x3c
92 #define SPI_TXFR1		0x40
93 #define SPI_TXFR2		0x44
94 #define SPI_TXFR3		0x48
95 #define SPI_RXFR0		0x7c
96 #define SPI_RXFR1		0x80
97 #define SPI_RXFR2		0x84
98 #define SPI_RXFR3		0x88
99 
100 #define SPI_FRAME_BITS(bits)	SPI_CTAR_FMSZ((bits) - 1)
101 #define SPI_FRAME_BITS_MASK	SPI_CTAR_FMSZ(0xf)
102 #define SPI_FRAME_BITS_16	SPI_CTAR_FMSZ(0xf)
103 #define SPI_FRAME_BITS_8	SPI_CTAR_FMSZ(0x7)
104 
105 #define SPI_CS_INIT		0x01
106 #define SPI_CS_ASSERT		0x02
107 #define SPI_CS_DROP		0x04
108 
109 #define SPI_TCR_TCNT_MAX	0x10000
110 
111 struct chip_data {
112 	u32 mcr_val;
113 	u32 ctar_val;
114 	u16 void_write_data;
115 };
116 
117 enum dspi_trans_mode {
118 	DSPI_EOQ_MODE = 0,
119 	DSPI_TCFQ_MODE,
120 };
121 
122 struct fsl_dspi_devtype_data {
123 	enum dspi_trans_mode trans_mode;
124 };
125 
126 static const struct fsl_dspi_devtype_data vf610_data = {
127 	.trans_mode = DSPI_EOQ_MODE,
128 };
129 
130 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
131 	.trans_mode = DSPI_TCFQ_MODE,
132 };
133 
134 static const struct fsl_dspi_devtype_data ls2085a_data = {
135 	.trans_mode = DSPI_TCFQ_MODE,
136 };
137 
138 struct fsl_dspi {
139 	struct spi_master	*master;
140 	struct platform_device	*pdev;
141 
142 	struct regmap		*regmap;
143 	int			irq;
144 	struct clk		*clk;
145 
146 	struct spi_transfer	*cur_transfer;
147 	struct spi_message	*cur_msg;
148 	struct chip_data	*cur_chip;
149 	size_t			len;
150 	void			*tx;
151 	void			*tx_end;
152 	void			*rx;
153 	void			*rx_end;
154 	char			dataflags;
155 	u8			cs;
156 	u16			void_write_data;
157 	u32			cs_change;
158 	struct fsl_dspi_devtype_data *devtype_data;
159 
160 	wait_queue_head_t	waitq;
161 	u32			waitflags;
162 
163 	u32			spi_tcnt;
164 };
165 
166 static inline int is_double_byte_mode(struct fsl_dspi *dspi)
167 {
168 	unsigned int val;
169 
170 	regmap_read(dspi->regmap, SPI_CTAR(dspi->cs), &val);
171 
172 	return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
173 }
174 
175 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
176 		unsigned long clkrate)
177 {
178 	/* Valid baud rate pre-scaler values */
179 	int pbr_tbl[4] = {2, 3, 5, 7};
180 	int brs[16] = {	2,	4,	6,	8,
181 		16,	32,	64,	128,
182 		256,	512,	1024,	2048,
183 		4096,	8192,	16384,	32768 };
184 	int scale_needed, scale, minscale = INT_MAX;
185 	int i, j;
186 
187 	scale_needed = clkrate / speed_hz;
188 	if (clkrate % speed_hz)
189 		scale_needed++;
190 
191 	for (i = 0; i < ARRAY_SIZE(brs); i++)
192 		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
193 			scale = brs[i] * pbr_tbl[j];
194 			if (scale >= scale_needed) {
195 				if (scale < minscale) {
196 					minscale = scale;
197 					*br = i;
198 					*pbr = j;
199 				}
200 				break;
201 			}
202 		}
203 
204 	if (minscale == INT_MAX) {
205 		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
206 			speed_hz, clkrate);
207 		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
208 		*br =  ARRAY_SIZE(brs) - 1;
209 	}
210 }
211 
212 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
213 		unsigned long clkrate)
214 {
215 	int pscale_tbl[4] = {1, 3, 5, 7};
216 	int scale_needed, scale, minscale = INT_MAX;
217 	int i, j;
218 	u32 remainder;
219 
220 	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
221 			&remainder);
222 	if (remainder)
223 		scale_needed++;
224 
225 	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
226 		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
227 			scale = pscale_tbl[i] * (2 << j);
228 			if (scale >= scale_needed) {
229 				if (scale < minscale) {
230 					minscale = scale;
231 					*psc = i;
232 					*sc = j;
233 				}
234 				break;
235 			}
236 		}
237 
238 	if (minscale == INT_MAX) {
239 		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
240 			delay_ns, clkrate);
241 		*psc = ARRAY_SIZE(pscale_tbl) - 1;
242 		*sc = SPI_CTAR_SCALE_BITS;
243 	}
244 }
245 
246 static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word)
247 {
248 	u16 d16;
249 
250 	if (!(dspi->dataflags & TRAN_STATE_TX_VOID))
251 		d16 = tx_word ? *(u16 *)dspi->tx : *(u8 *)dspi->tx;
252 	else
253 		d16 = dspi->void_write_data;
254 
255 	dspi->tx += tx_word + 1;
256 	dspi->len -= tx_word + 1;
257 
258 	return	SPI_PUSHR_TXDATA(d16) |
259 		SPI_PUSHR_PCS(dspi->cs) |
260 		SPI_PUSHR_CTAS(dspi->cs) |
261 		SPI_PUSHR_CONT;
262 }
263 
264 static void dspi_data_from_popr(struct fsl_dspi *dspi, int rx_word)
265 {
266 	u16 d;
267 	unsigned int val;
268 
269 	regmap_read(dspi->regmap, SPI_POPR, &val);
270 	d = SPI_POPR_RXDATA(val);
271 
272 	if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
273 		rx_word ? (*(u16 *)dspi->rx = d) : (*(u8 *)dspi->rx = d);
274 
275 	dspi->rx += rx_word + 1;
276 }
277 
278 static int dspi_eoq_write(struct fsl_dspi *dspi)
279 {
280 	int tx_count = 0;
281 	int tx_word;
282 	u32 dspi_pushr = 0;
283 
284 	tx_word = is_double_byte_mode(dspi);
285 
286 	while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
287 		/* If we are in word mode, only have a single byte to transfer
288 		 * switch to byte mode temporarily.  Will switch back at the
289 		 * end of the transfer.
290 		 */
291 		if (tx_word && (dspi->len == 1)) {
292 			dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
293 			regmap_update_bits(dspi->regmap, SPI_CTAR(dspi->cs),
294 					SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
295 			tx_word = 0;
296 		}
297 
298 		dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
299 
300 		if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
301 			/* last transfer in the transfer */
302 			dspi_pushr |= SPI_PUSHR_EOQ;
303 			if ((dspi->cs_change) && (!dspi->len))
304 				dspi_pushr &= ~SPI_PUSHR_CONT;
305 		} else if (tx_word && (dspi->len == 1))
306 			dspi_pushr |= SPI_PUSHR_EOQ;
307 
308 		regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
309 
310 		tx_count++;
311 	}
312 
313 	return tx_count * (tx_word + 1);
314 }
315 
316 static int dspi_eoq_read(struct fsl_dspi *dspi)
317 {
318 	int rx_count = 0;
319 	int rx_word = is_double_byte_mode(dspi);
320 
321 	while ((dspi->rx < dspi->rx_end)
322 			&& (rx_count < DSPI_FIFO_SIZE)) {
323 		if (rx_word && (dspi->rx_end - dspi->rx) == 1)
324 			rx_word = 0;
325 
326 		dspi_data_from_popr(dspi, rx_word);
327 		rx_count++;
328 	}
329 
330 	return rx_count;
331 }
332 
333 static int dspi_tcfq_write(struct fsl_dspi *dspi)
334 {
335 	int tx_word;
336 	u32 dspi_pushr = 0;
337 
338 	tx_word = is_double_byte_mode(dspi);
339 
340 	if (tx_word && (dspi->len == 1)) {
341 		dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
342 		regmap_update_bits(dspi->regmap, SPI_CTAR(dspi->cs),
343 				SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
344 		tx_word = 0;
345 	}
346 
347 	dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
348 
349 	if ((dspi->cs_change) && (!dspi->len))
350 		dspi_pushr &= ~SPI_PUSHR_CONT;
351 
352 	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
353 
354 	return tx_word + 1;
355 }
356 
357 static void dspi_tcfq_read(struct fsl_dspi *dspi)
358 {
359 	int rx_word = is_double_byte_mode(dspi);
360 
361 	if (rx_word && (dspi->rx_end - dspi->rx) == 1)
362 		rx_word = 0;
363 
364 	dspi_data_from_popr(dspi, rx_word);
365 }
366 
367 static int dspi_transfer_one_message(struct spi_master *master,
368 		struct spi_message *message)
369 {
370 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
371 	struct spi_device *spi = message->spi;
372 	struct spi_transfer *transfer;
373 	int status = 0;
374 	enum dspi_trans_mode trans_mode;
375 	u32 spi_tcr;
376 
377 	regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
378 	dspi->spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
379 
380 	message->actual_length = 0;
381 
382 	list_for_each_entry(transfer, &message->transfers, transfer_list) {
383 		dspi->cur_transfer = transfer;
384 		dspi->cur_msg = message;
385 		dspi->cur_chip = spi_get_ctldata(spi);
386 		dspi->cs = spi->chip_select;
387 		dspi->cs_change = 0;
388 		if (dspi->cur_transfer->transfer_list.next
389 				== &dspi->cur_msg->transfers)
390 			dspi->cs_change = 1;
391 		dspi->void_write_data = dspi->cur_chip->void_write_data;
392 
393 		dspi->dataflags = 0;
394 		dspi->tx = (void *)transfer->tx_buf;
395 		dspi->tx_end = dspi->tx + transfer->len;
396 		dspi->rx = transfer->rx_buf;
397 		dspi->rx_end = dspi->rx + transfer->len;
398 		dspi->len = transfer->len;
399 
400 		if (!dspi->rx)
401 			dspi->dataflags |= TRAN_STATE_RX_VOID;
402 
403 		if (!dspi->tx)
404 			dspi->dataflags |= TRAN_STATE_TX_VOID;
405 
406 		regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val);
407 		regmap_update_bits(dspi->regmap, SPI_MCR,
408 				SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
409 				SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
410 		regmap_write(dspi->regmap, SPI_CTAR(dspi->cs),
411 				dspi->cur_chip->ctar_val);
412 		if (transfer->speed_hz)
413 			regmap_write(dspi->regmap, SPI_CTAR(dspi->cs),
414 					dspi->cur_chip->ctar_val);
415 
416 		trans_mode = dspi->devtype_data->trans_mode;
417 		switch (trans_mode) {
418 		case DSPI_EOQ_MODE:
419 			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
420 			dspi_eoq_write(dspi);
421 			break;
422 		case DSPI_TCFQ_MODE:
423 			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
424 			dspi_tcfq_write(dspi);
425 			break;
426 		default:
427 			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
428 				trans_mode);
429 			status = -EINVAL;
430 			goto out;
431 		}
432 
433 		if (wait_event_interruptible(dspi->waitq, dspi->waitflags))
434 			dev_err(&dspi->pdev->dev, "wait transfer complete fail!\n");
435 		dspi->waitflags = 0;
436 
437 		if (transfer->delay_usecs)
438 			udelay(transfer->delay_usecs);
439 	}
440 
441 out:
442 	message->status = status;
443 	spi_finalize_current_message(master);
444 
445 	return status;
446 }
447 
448 static int dspi_setup(struct spi_device *spi)
449 {
450 	struct chip_data *chip;
451 	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
452 	u32 cs_sck_delay = 0, sck_cs_delay = 0;
453 	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
454 	unsigned char pasc = 0, asc = 0, fmsz = 0;
455 	unsigned long clkrate;
456 
457 	if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
458 		fmsz = spi->bits_per_word - 1;
459 	} else {
460 		pr_err("Invalid wordsize\n");
461 		return -ENODEV;
462 	}
463 
464 	/* Only alloc on first setup */
465 	chip = spi_get_ctldata(spi);
466 	if (chip == NULL) {
467 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
468 		if (!chip)
469 			return -ENOMEM;
470 	}
471 
472 	of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
473 			&cs_sck_delay);
474 
475 	of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
476 			&sck_cs_delay);
477 
478 	chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
479 		SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
480 
481 	chip->void_write_data = 0;
482 
483 	clkrate = clk_get_rate(dspi->clk);
484 	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
485 
486 	/* Set PCS to SCK delay scale values */
487 	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
488 
489 	/* Set After SCK delay scale values */
490 	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
491 
492 	chip->ctar_val =  SPI_CTAR_FMSZ(fmsz)
493 		| SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
494 		| SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
495 		| SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
496 		| SPI_CTAR_PCSSCK(pcssck)
497 		| SPI_CTAR_CSSCK(cssck)
498 		| SPI_CTAR_PASC(pasc)
499 		| SPI_CTAR_ASC(asc)
500 		| SPI_CTAR_PBR(pbr)
501 		| SPI_CTAR_BR(br);
502 
503 	spi_set_ctldata(spi, chip);
504 
505 	return 0;
506 }
507 
508 static void dspi_cleanup(struct spi_device *spi)
509 {
510 	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
511 
512 	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
513 			spi->master->bus_num, spi->chip_select);
514 
515 	kfree(chip);
516 }
517 
518 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
519 {
520 	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
521 	struct spi_message *msg = dspi->cur_msg;
522 	enum dspi_trans_mode trans_mode;
523 	u32 spi_sr, spi_tcr;
524 	u32 spi_tcnt, tcnt_diff;
525 	int tx_word;
526 
527 	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
528 	regmap_write(dspi->regmap, SPI_SR, spi_sr);
529 
530 
531 	if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
532 		tx_word = is_double_byte_mode(dspi);
533 
534 		regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
535 		spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
536 		/*
537 		 * The width of SPI Transfer Counter in SPI_TCR is 16bits,
538 		 * so the max couner is 65535. When the counter reach 65535,
539 		 * it will wrap around, counter reset to zero.
540 		 * spi_tcnt my be less than dspi->spi_tcnt, it means the
541 		 * counter already wrapped around.
542 		 * SPI Transfer Counter is a counter of transmitted frames.
543 		 * The size of frame maybe two bytes.
544 		 */
545 		tcnt_diff = ((spi_tcnt + SPI_TCR_TCNT_MAX) - dspi->spi_tcnt)
546 			% SPI_TCR_TCNT_MAX;
547 		tcnt_diff *= (tx_word + 1);
548 		if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
549 			tcnt_diff--;
550 
551 		msg->actual_length += tcnt_diff;
552 
553 		dspi->spi_tcnt = spi_tcnt;
554 
555 		trans_mode = dspi->devtype_data->trans_mode;
556 		switch (trans_mode) {
557 		case DSPI_EOQ_MODE:
558 			dspi_eoq_read(dspi);
559 			break;
560 		case DSPI_TCFQ_MODE:
561 			dspi_tcfq_read(dspi);
562 			break;
563 		default:
564 			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
565 				trans_mode);
566 				return IRQ_HANDLED;
567 		}
568 
569 		if (!dspi->len) {
570 			if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) {
571 				regmap_update_bits(dspi->regmap,
572 						   SPI_CTAR(dspi->cs),
573 						   SPI_FRAME_BITS_MASK,
574 						   SPI_FRAME_BITS(16));
575 				dspi->dataflags &= ~TRAN_STATE_WORD_ODD_NUM;
576 			}
577 
578 			dspi->waitflags = 1;
579 			wake_up_interruptible(&dspi->waitq);
580 		} else {
581 			switch (trans_mode) {
582 			case DSPI_EOQ_MODE:
583 				dspi_eoq_write(dspi);
584 				break;
585 			case DSPI_TCFQ_MODE:
586 				dspi_tcfq_write(dspi);
587 				break;
588 			default:
589 				dev_err(&dspi->pdev->dev,
590 					"unsupported trans_mode %u\n",
591 					trans_mode);
592 			}
593 		}
594 	}
595 
596 	return IRQ_HANDLED;
597 }
598 
599 static const struct of_device_id fsl_dspi_dt_ids[] = {
600 	{ .compatible = "fsl,vf610-dspi", .data = (void *)&vf610_data, },
601 	{ .compatible = "fsl,ls1021a-v1.0-dspi",
602 		.data = (void *)&ls1021a_v1_data, },
603 	{ .compatible = "fsl,ls2085a-dspi", .data = (void *)&ls2085a_data, },
604 	{ /* sentinel */ }
605 };
606 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
607 
608 #ifdef CONFIG_PM_SLEEP
609 static int dspi_suspend(struct device *dev)
610 {
611 	struct spi_master *master = dev_get_drvdata(dev);
612 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
613 
614 	spi_master_suspend(master);
615 	clk_disable_unprepare(dspi->clk);
616 
617 	pinctrl_pm_select_sleep_state(dev);
618 
619 	return 0;
620 }
621 
622 static int dspi_resume(struct device *dev)
623 {
624 	struct spi_master *master = dev_get_drvdata(dev);
625 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
626 
627 	pinctrl_pm_select_default_state(dev);
628 
629 	clk_prepare_enable(dspi->clk);
630 	spi_master_resume(master);
631 
632 	return 0;
633 }
634 #endif /* CONFIG_PM_SLEEP */
635 
636 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
637 
638 static const struct regmap_config dspi_regmap_config = {
639 	.reg_bits = 32,
640 	.val_bits = 32,
641 	.reg_stride = 4,
642 	.max_register = 0x88,
643 };
644 
645 static int dspi_probe(struct platform_device *pdev)
646 {
647 	struct device_node *np = pdev->dev.of_node;
648 	struct spi_master *master;
649 	struct fsl_dspi *dspi;
650 	struct resource *res;
651 	void __iomem *base;
652 	int ret = 0, cs_num, bus_num;
653 	const struct of_device_id *of_id =
654 			of_match_device(fsl_dspi_dt_ids, &pdev->dev);
655 
656 	master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
657 	if (!master)
658 		return -ENOMEM;
659 
660 	dspi = spi_master_get_devdata(master);
661 	dspi->pdev = pdev;
662 	dspi->master = master;
663 
664 	master->transfer = NULL;
665 	master->setup = dspi_setup;
666 	master->transfer_one_message = dspi_transfer_one_message;
667 	master->dev.of_node = pdev->dev.of_node;
668 
669 	master->cleanup = dspi_cleanup;
670 	master->mode_bits = SPI_CPOL | SPI_CPHA;
671 	master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
672 					SPI_BPW_MASK(16);
673 
674 	ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
675 	if (ret < 0) {
676 		dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
677 		goto out_master_put;
678 	}
679 	master->num_chipselect = cs_num;
680 
681 	ret = of_property_read_u32(np, "bus-num", &bus_num);
682 	if (ret < 0) {
683 		dev_err(&pdev->dev, "can't get bus-num\n");
684 		goto out_master_put;
685 	}
686 	master->bus_num = bus_num;
687 
688 	dspi->devtype_data = (struct fsl_dspi_devtype_data *)of_id->data;
689 	if (!dspi->devtype_data) {
690 		dev_err(&pdev->dev, "can't get devtype_data\n");
691 		ret = -EFAULT;
692 		goto out_master_put;
693 	}
694 
695 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
696 	base = devm_ioremap_resource(&pdev->dev, res);
697 	if (IS_ERR(base)) {
698 		ret = PTR_ERR(base);
699 		goto out_master_put;
700 	}
701 
702 	dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, NULL, base,
703 						&dspi_regmap_config);
704 	if (IS_ERR(dspi->regmap)) {
705 		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
706 				PTR_ERR(dspi->regmap));
707 		return PTR_ERR(dspi->regmap);
708 	}
709 
710 	dspi->irq = platform_get_irq(pdev, 0);
711 	if (dspi->irq < 0) {
712 		dev_err(&pdev->dev, "can't get platform irq\n");
713 		ret = dspi->irq;
714 		goto out_master_put;
715 	}
716 
717 	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
718 			pdev->name, dspi);
719 	if (ret < 0) {
720 		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
721 		goto out_master_put;
722 	}
723 
724 	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
725 	if (IS_ERR(dspi->clk)) {
726 		ret = PTR_ERR(dspi->clk);
727 		dev_err(&pdev->dev, "unable to get clock\n");
728 		goto out_master_put;
729 	}
730 	clk_prepare_enable(dspi->clk);
731 
732 	init_waitqueue_head(&dspi->waitq);
733 	platform_set_drvdata(pdev, master);
734 
735 	ret = spi_register_master(master);
736 	if (ret != 0) {
737 		dev_err(&pdev->dev, "Problem registering DSPI master\n");
738 		goto out_clk_put;
739 	}
740 
741 	return ret;
742 
743 out_clk_put:
744 	clk_disable_unprepare(dspi->clk);
745 out_master_put:
746 	spi_master_put(master);
747 
748 	return ret;
749 }
750 
751 static int dspi_remove(struct platform_device *pdev)
752 {
753 	struct spi_master *master = platform_get_drvdata(pdev);
754 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
755 
756 	/* Disconnect from the SPI framework */
757 	clk_disable_unprepare(dspi->clk);
758 	spi_unregister_master(dspi->master);
759 	spi_master_put(dspi->master);
760 
761 	return 0;
762 }
763 
764 static struct platform_driver fsl_dspi_driver = {
765 	.driver.name    = DRIVER_NAME,
766 	.driver.of_match_table = fsl_dspi_dt_ids,
767 	.driver.owner   = THIS_MODULE,
768 	.driver.pm = &dspi_pm,
769 	.probe          = dspi_probe,
770 	.remove		= dspi_remove,
771 };
772 module_platform_driver(fsl_dspi_driver);
773 
774 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
775 MODULE_LICENSE("GPL");
776 MODULE_ALIAS("platform:" DRIVER_NAME);
777