xref: /openbmc/linux/drivers/spi/spi-fsl-dspi.c (revision c819e2cf)
1 /*
2  * drivers/spi/spi-fsl-dspi.c
3  *
4  * Copyright 2013 Freescale Semiconductor, Inc.
5  *
6  * Freescale DSPI driver
7  * This file contains a driver for the Freescale DSPI
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/errno.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/regmap.h>
29 #include <linux/sched.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi_bitbang.h>
32 
33 #define DRIVER_NAME "fsl-dspi"
34 
35 #define TRAN_STATE_RX_VOID		0x01
36 #define TRAN_STATE_TX_VOID		0x02
37 #define TRAN_STATE_WORD_ODD_NUM	0x04
38 
39 #define DSPI_FIFO_SIZE			4
40 
41 #define SPI_MCR		0x00
42 #define SPI_MCR_MASTER		(1 << 31)
43 #define SPI_MCR_PCSIS		(0x3F << 16)
44 #define SPI_MCR_CLR_TXF	(1 << 11)
45 #define SPI_MCR_CLR_RXF	(1 << 10)
46 
47 #define SPI_TCR			0x08
48 
49 #define SPI_CTAR(x)		(0x0c + (((x) & 0x3) * 4))
50 #define SPI_CTAR_FMSZ(x)	(((x) & 0x0000000f) << 27)
51 #define SPI_CTAR_CPOL(x)	((x) << 26)
52 #define SPI_CTAR_CPHA(x)	((x) << 25)
53 #define SPI_CTAR_LSBFE(x)	((x) << 24)
54 #define SPI_CTAR_PCSSCR(x)	(((x) & 0x00000003) << 22)
55 #define SPI_CTAR_PASC(x)	(((x) & 0x00000003) << 20)
56 #define SPI_CTAR_PDT(x)	(((x) & 0x00000003) << 18)
57 #define SPI_CTAR_PBR(x)	(((x) & 0x00000003) << 16)
58 #define SPI_CTAR_CSSCK(x)	(((x) & 0x0000000f) << 12)
59 #define SPI_CTAR_ASC(x)	(((x) & 0x0000000f) << 8)
60 #define SPI_CTAR_DT(x)		(((x) & 0x0000000f) << 4)
61 #define SPI_CTAR_BR(x)		((x) & 0x0000000f)
62 
63 #define SPI_CTAR0_SLAVE	0x0c
64 
65 #define SPI_SR			0x2c
66 #define SPI_SR_EOQF		0x10000000
67 
68 #define SPI_RSER		0x30
69 #define SPI_RSER_EOQFE		0x10000000
70 
71 #define SPI_PUSHR		0x34
72 #define SPI_PUSHR_CONT		(1 << 31)
73 #define SPI_PUSHR_CTAS(x)	(((x) & 0x00000003) << 28)
74 #define SPI_PUSHR_EOQ		(1 << 27)
75 #define SPI_PUSHR_CTCNT	(1 << 26)
76 #define SPI_PUSHR_PCS(x)	(((1 << x) & 0x0000003f) << 16)
77 #define SPI_PUSHR_TXDATA(x)	((x) & 0x0000ffff)
78 
79 #define SPI_PUSHR_SLAVE	0x34
80 
81 #define SPI_POPR		0x38
82 #define SPI_POPR_RXDATA(x)	((x) & 0x0000ffff)
83 
84 #define SPI_TXFR0		0x3c
85 #define SPI_TXFR1		0x40
86 #define SPI_TXFR2		0x44
87 #define SPI_TXFR3		0x48
88 #define SPI_RXFR0		0x7c
89 #define SPI_RXFR1		0x80
90 #define SPI_RXFR2		0x84
91 #define SPI_RXFR3		0x88
92 
93 #define SPI_FRAME_BITS(bits)	SPI_CTAR_FMSZ((bits) - 1)
94 #define SPI_FRAME_BITS_MASK	SPI_CTAR_FMSZ(0xf)
95 #define SPI_FRAME_BITS_16	SPI_CTAR_FMSZ(0xf)
96 #define SPI_FRAME_BITS_8	SPI_CTAR_FMSZ(0x7)
97 
98 #define SPI_CS_INIT		0x01
99 #define SPI_CS_ASSERT		0x02
100 #define SPI_CS_DROP		0x04
101 
102 struct chip_data {
103 	u32 mcr_val;
104 	u32 ctar_val;
105 	u16 void_write_data;
106 };
107 
108 struct fsl_dspi {
109 	struct spi_bitbang	bitbang;
110 	struct platform_device	*pdev;
111 
112 	struct regmap		*regmap;
113 	int			irq;
114 	struct clk		*clk;
115 
116 	struct spi_transfer	*cur_transfer;
117 	struct chip_data	*cur_chip;
118 	size_t			len;
119 	void			*tx;
120 	void			*tx_end;
121 	void			*rx;
122 	void			*rx_end;
123 	char			dataflags;
124 	u8			cs;
125 	u16			void_write_data;
126 
127 	wait_queue_head_t	waitq;
128 	u32			waitflags;
129 };
130 
131 static inline int is_double_byte_mode(struct fsl_dspi *dspi)
132 {
133 	unsigned int val;
134 
135 	regmap_read(dspi->regmap, SPI_CTAR(dspi->cs), &val);
136 
137 	return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
138 }
139 
140 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
141 		unsigned long clkrate)
142 {
143 	/* Valid baud rate pre-scaler values */
144 	int pbr_tbl[4] = {2, 3, 5, 7};
145 	int brs[16] = {	2,	4,	6,	8,
146 		16,	32,	64,	128,
147 		256,	512,	1024,	2048,
148 		4096,	8192,	16384,	32768 };
149 	int temp, i = 0, j = 0;
150 
151 	temp = clkrate / 2 / speed_hz;
152 
153 	for (i = 0; i < ARRAY_SIZE(pbr_tbl); i++)
154 		for (j = 0; j < ARRAY_SIZE(brs); j++) {
155 			if (pbr_tbl[i] * brs[j] >= temp) {
156 				*pbr = i;
157 				*br = j;
158 				return;
159 			}
160 		}
161 
162 	pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld\
163 		,we use the max prescaler value.\n", speed_hz, clkrate);
164 	*pbr = ARRAY_SIZE(pbr_tbl) - 1;
165 	*br =  ARRAY_SIZE(brs) - 1;
166 }
167 
168 static int dspi_transfer_write(struct fsl_dspi *dspi)
169 {
170 	int tx_count = 0;
171 	int tx_word;
172 	u16 d16;
173 	u8  d8;
174 	u32 dspi_pushr = 0;
175 	int first = 1;
176 
177 	tx_word = is_double_byte_mode(dspi);
178 
179 	/* If we are in word mode, but only have a single byte to transfer
180 	 * then switch to byte mode temporarily.  Will switch back at the
181 	 * end of the transfer.
182 	 */
183 	if (tx_word && (dspi->len == 1)) {
184 		dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
185 		regmap_update_bits(dspi->regmap, SPI_CTAR(dspi->cs),
186 				SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
187 		tx_word = 0;
188 	}
189 
190 	while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
191 		if (tx_word) {
192 			if (dspi->len == 1)
193 				break;
194 
195 			if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) {
196 				d16 = *(u16 *)dspi->tx;
197 				dspi->tx += 2;
198 			} else {
199 				d16 = dspi->void_write_data;
200 			}
201 
202 			dspi_pushr = SPI_PUSHR_TXDATA(d16) |
203 				SPI_PUSHR_PCS(dspi->cs) |
204 				SPI_PUSHR_CTAS(dspi->cs) |
205 				SPI_PUSHR_CONT;
206 
207 			dspi->len -= 2;
208 		} else {
209 			if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) {
210 
211 				d8 = *(u8 *)dspi->tx;
212 				dspi->tx++;
213 			} else {
214 				d8 = (u8)dspi->void_write_data;
215 			}
216 
217 			dspi_pushr = SPI_PUSHR_TXDATA(d8) |
218 				SPI_PUSHR_PCS(dspi->cs) |
219 				SPI_PUSHR_CTAS(dspi->cs) |
220 				SPI_PUSHR_CONT;
221 
222 			dspi->len--;
223 		}
224 
225 		if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
226 			/* last transfer in the transfer */
227 			dspi_pushr |= SPI_PUSHR_EOQ;
228 		} else if (tx_word && (dspi->len == 1))
229 			dspi_pushr |= SPI_PUSHR_EOQ;
230 
231 		if (first) {
232 			first = 0;
233 			dspi_pushr |= SPI_PUSHR_CTCNT; /* clear counter */
234 		}
235 
236 		regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
237 
238 		tx_count++;
239 	}
240 
241 	return tx_count * (tx_word + 1);
242 }
243 
244 static int dspi_transfer_read(struct fsl_dspi *dspi)
245 {
246 	int rx_count = 0;
247 	int rx_word = is_double_byte_mode(dspi);
248 	u16 d;
249 	while ((dspi->rx < dspi->rx_end)
250 			&& (rx_count < DSPI_FIFO_SIZE)) {
251 		if (rx_word) {
252 			unsigned int val;
253 
254 			if ((dspi->rx_end - dspi->rx) == 1)
255 				break;
256 
257 			regmap_read(dspi->regmap, SPI_POPR, &val);
258 			d = SPI_POPR_RXDATA(val);
259 
260 			if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
261 				*(u16 *)dspi->rx = d;
262 			dspi->rx += 2;
263 
264 		} else {
265 			unsigned int val;
266 
267 			regmap_read(dspi->regmap, SPI_POPR, &val);
268 			d = SPI_POPR_RXDATA(val);
269 			if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
270 				*(u8 *)dspi->rx = d;
271 			dspi->rx++;
272 		}
273 		rx_count++;
274 	}
275 
276 	return rx_count;
277 }
278 
279 static int dspi_txrx_transfer(struct spi_device *spi, struct spi_transfer *t)
280 {
281 	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
282 	dspi->cur_transfer = t;
283 	dspi->cur_chip = spi_get_ctldata(spi);
284 	dspi->cs = spi->chip_select;
285 	dspi->void_write_data = dspi->cur_chip->void_write_data;
286 
287 	dspi->dataflags = 0;
288 	dspi->tx = (void *)t->tx_buf;
289 	dspi->tx_end = dspi->tx + t->len;
290 	dspi->rx = t->rx_buf;
291 	dspi->rx_end = dspi->rx + t->len;
292 	dspi->len = t->len;
293 
294 	if (!dspi->rx)
295 		dspi->dataflags |= TRAN_STATE_RX_VOID;
296 
297 	if (!dspi->tx)
298 		dspi->dataflags |= TRAN_STATE_TX_VOID;
299 
300 	regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val);
301 	regmap_write(dspi->regmap, SPI_CTAR(dspi->cs), dspi->cur_chip->ctar_val);
302 	regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
303 
304 	if (t->speed_hz)
305 		regmap_write(dspi->regmap, SPI_CTAR(dspi->cs),
306 				dspi->cur_chip->ctar_val);
307 
308 	dspi_transfer_write(dspi);
309 
310 	if (wait_event_interruptible(dspi->waitq, dspi->waitflags))
311 		dev_err(&dspi->pdev->dev, "wait transfer complete fail!\n");
312 	dspi->waitflags = 0;
313 
314 	return t->len - dspi->len;
315 }
316 
317 static void dspi_chipselect(struct spi_device *spi, int value)
318 {
319 	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
320 	unsigned int pushr;
321 
322 	regmap_read(dspi->regmap, SPI_PUSHR, &pushr);
323 
324 	switch (value) {
325 	case BITBANG_CS_ACTIVE:
326 		pushr |= SPI_PUSHR_CONT;
327 		break;
328 	case BITBANG_CS_INACTIVE:
329 		pushr &= ~SPI_PUSHR_CONT;
330 		break;
331 	}
332 
333 	regmap_write(dspi->regmap, SPI_PUSHR, pushr);
334 }
335 
336 static int dspi_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
337 {
338 	struct chip_data *chip;
339 	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
340 	unsigned char br = 0, pbr = 0, fmsz = 0;
341 
342 	/* Only alloc on first setup */
343 	chip = spi_get_ctldata(spi);
344 	if (chip == NULL) {
345 		chip = devm_kzalloc(&spi->dev, sizeof(struct chip_data),
346 				    GFP_KERNEL);
347 		if (!chip)
348 			return -ENOMEM;
349 	}
350 
351 	chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
352 		SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
353 	if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
354 		fmsz = spi->bits_per_word - 1;
355 	} else {
356 		pr_err("Invalid wordsize\n");
357 		return -ENODEV;
358 	}
359 
360 	chip->void_write_data = 0;
361 
362 	hz_to_spi_baud(&pbr, &br,
363 			spi->max_speed_hz, clk_get_rate(dspi->clk));
364 
365 	chip->ctar_val =  SPI_CTAR_FMSZ(fmsz)
366 		| SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
367 		| SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
368 		| SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
369 		| SPI_CTAR_PBR(pbr)
370 		| SPI_CTAR_BR(br);
371 
372 	spi_set_ctldata(spi, chip);
373 
374 	return 0;
375 }
376 
377 static int dspi_setup(struct spi_device *spi)
378 {
379 	if (!spi->max_speed_hz)
380 		return -EINVAL;
381 
382 	return dspi_setup_transfer(spi, NULL);
383 }
384 
385 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
386 {
387 	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
388 
389 	regmap_write(dspi->regmap, SPI_SR, SPI_SR_EOQF);
390 
391 	dspi_transfer_read(dspi);
392 
393 	if (!dspi->len) {
394 		if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
395 			regmap_update_bits(dspi->regmap, SPI_CTAR(dspi->cs),
396 				SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(16));
397 
398 		dspi->waitflags = 1;
399 		wake_up_interruptible(&dspi->waitq);
400 	} else {
401 		dspi_transfer_write(dspi);
402 
403 		return IRQ_HANDLED;
404 	}
405 
406 	return IRQ_HANDLED;
407 }
408 
409 static const struct of_device_id fsl_dspi_dt_ids[] = {
410 	{ .compatible = "fsl,vf610-dspi", .data = NULL, },
411 	{ /* sentinel */ }
412 };
413 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
414 
415 #ifdef CONFIG_PM_SLEEP
416 static int dspi_suspend(struct device *dev)
417 {
418 	struct spi_master *master = dev_get_drvdata(dev);
419 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
420 
421 	spi_master_suspend(master);
422 	clk_disable_unprepare(dspi->clk);
423 
424 	return 0;
425 }
426 
427 static int dspi_resume(struct device *dev)
428 {
429 	struct spi_master *master = dev_get_drvdata(dev);
430 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
431 
432 	clk_prepare_enable(dspi->clk);
433 	spi_master_resume(master);
434 
435 	return 0;
436 }
437 #endif /* CONFIG_PM_SLEEP */
438 
439 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
440 
441 static const struct regmap_config dspi_regmap_config = {
442 	.reg_bits = 32,
443 	.val_bits = 32,
444 	.reg_stride = 4,
445 	.max_register = 0x88,
446 };
447 
448 static int dspi_probe(struct platform_device *pdev)
449 {
450 	struct device_node *np = pdev->dev.of_node;
451 	struct spi_master *master;
452 	struct fsl_dspi *dspi;
453 	struct resource *res;
454 	void __iomem *base;
455 	int ret = 0, cs_num, bus_num;
456 
457 	master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
458 	if (!master)
459 		return -ENOMEM;
460 
461 	dspi = spi_master_get_devdata(master);
462 	dspi->pdev = pdev;
463 	dspi->bitbang.master = master;
464 	dspi->bitbang.chipselect = dspi_chipselect;
465 	dspi->bitbang.setup_transfer = dspi_setup_transfer;
466 	dspi->bitbang.txrx_bufs = dspi_txrx_transfer;
467 	dspi->bitbang.master->setup = dspi_setup;
468 	dspi->bitbang.master->dev.of_node = pdev->dev.of_node;
469 
470 	master->mode_bits = SPI_CPOL | SPI_CPHA;
471 	master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
472 					SPI_BPW_MASK(16);
473 
474 	ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
475 	if (ret < 0) {
476 		dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
477 		goto out_master_put;
478 	}
479 	master->num_chipselect = cs_num;
480 
481 	ret = of_property_read_u32(np, "bus-num", &bus_num);
482 	if (ret < 0) {
483 		dev_err(&pdev->dev, "can't get bus-num\n");
484 		goto out_master_put;
485 	}
486 	master->bus_num = bus_num;
487 
488 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
489 	base = devm_ioremap_resource(&pdev->dev, res);
490 	if (IS_ERR(base)) {
491 		ret = PTR_ERR(base);
492 		goto out_master_put;
493 	}
494 
495 	dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "dspi", base,
496 						&dspi_regmap_config);
497 	if (IS_ERR(dspi->regmap)) {
498 		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
499 				PTR_ERR(dspi->regmap));
500 		return PTR_ERR(dspi->regmap);
501 	}
502 
503 	dspi->irq = platform_get_irq(pdev, 0);
504 	if (dspi->irq < 0) {
505 		dev_err(&pdev->dev, "can't get platform irq\n");
506 		ret = dspi->irq;
507 		goto out_master_put;
508 	}
509 
510 	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
511 			pdev->name, dspi);
512 	if (ret < 0) {
513 		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
514 		goto out_master_put;
515 	}
516 
517 	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
518 	if (IS_ERR(dspi->clk)) {
519 		ret = PTR_ERR(dspi->clk);
520 		dev_err(&pdev->dev, "unable to get clock\n");
521 		goto out_master_put;
522 	}
523 	clk_prepare_enable(dspi->clk);
524 
525 	init_waitqueue_head(&dspi->waitq);
526 	platform_set_drvdata(pdev, master);
527 
528 	ret = spi_bitbang_start(&dspi->bitbang);
529 	if (ret != 0) {
530 		dev_err(&pdev->dev, "Problem registering DSPI master\n");
531 		goto out_clk_put;
532 	}
533 
534 	return ret;
535 
536 out_clk_put:
537 	clk_disable_unprepare(dspi->clk);
538 out_master_put:
539 	spi_master_put(master);
540 
541 	return ret;
542 }
543 
544 static int dspi_remove(struct platform_device *pdev)
545 {
546 	struct spi_master *master = platform_get_drvdata(pdev);
547 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
548 
549 	/* Disconnect from the SPI framework */
550 	spi_bitbang_stop(&dspi->bitbang);
551 	clk_disable_unprepare(dspi->clk);
552 	spi_master_put(dspi->bitbang.master);
553 
554 	return 0;
555 }
556 
557 static struct platform_driver fsl_dspi_driver = {
558 	.driver.name    = DRIVER_NAME,
559 	.driver.of_match_table = fsl_dspi_dt_ids,
560 	.driver.owner   = THIS_MODULE,
561 	.driver.pm = &dspi_pm,
562 	.probe          = dspi_probe,
563 	.remove		= dspi_remove,
564 };
565 module_platform_driver(fsl_dspi_driver);
566 
567 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
568 MODULE_LICENSE("GPL");
569 MODULE_ALIAS("platform:" DRIVER_NAME);
570