xref: /openbmc/linux/drivers/spi/spi-fsl-dspi.c (revision b8c5a806)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 //
5 // Freescale DSPI driver
6 // This file contains a driver for the Freescale DSPI
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/regmap.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/spi-fsl-dspi.h>
20 
21 #define DRIVER_NAME			"fsl-dspi"
22 
23 #define SPI_MCR				0x00
24 #define SPI_MCR_MASTER			BIT(31)
25 #define SPI_MCR_PCSIS(x)		((x) << 16)
26 #define SPI_MCR_CLR_TXF			BIT(11)
27 #define SPI_MCR_CLR_RXF			BIT(10)
28 #define SPI_MCR_XSPI			BIT(3)
29 
30 #define SPI_TCR				0x08
31 #define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
32 
33 #define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
34 #define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
35 #define SPI_CTAR_CPOL			BIT(26)
36 #define SPI_CTAR_CPHA			BIT(25)
37 #define SPI_CTAR_LSBFE			BIT(24)
38 #define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
39 #define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
40 #define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
41 #define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
42 #define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
43 #define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
44 #define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
45 #define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
46 #define SPI_CTAR_SCALE_BITS		0xf
47 
48 #define SPI_CTAR0_SLAVE			0x0c
49 
50 #define SPI_SR				0x2c
51 #define SPI_SR_TCFQF			BIT(31)
52 #define SPI_SR_EOQF			BIT(28)
53 #define SPI_SR_TFUF			BIT(27)
54 #define SPI_SR_TFFF			BIT(25)
55 #define SPI_SR_CMDTCF			BIT(23)
56 #define SPI_SR_SPEF			BIT(21)
57 #define SPI_SR_RFOF			BIT(19)
58 #define SPI_SR_TFIWF			BIT(18)
59 #define SPI_SR_RFDF			BIT(17)
60 #define SPI_SR_CMDFFF			BIT(16)
61 #define SPI_SR_CLEAR			(SPI_SR_TCFQF | SPI_SR_EOQF | \
62 					SPI_SR_TFUF | SPI_SR_TFFF | \
63 					SPI_SR_CMDTCF | SPI_SR_SPEF | \
64 					SPI_SR_RFOF | SPI_SR_TFIWF | \
65 					SPI_SR_RFDF | SPI_SR_CMDFFF)
66 
67 #define SPI_RSER_TFFFE			BIT(25)
68 #define SPI_RSER_TFFFD			BIT(24)
69 #define SPI_RSER_RFDFE			BIT(17)
70 #define SPI_RSER_RFDFD			BIT(16)
71 
72 #define SPI_RSER			0x30
73 #define SPI_RSER_TCFQE			BIT(31)
74 #define SPI_RSER_EOQFE			BIT(28)
75 #define SPI_RSER_CMDTCFE		BIT(23)
76 
77 #define SPI_PUSHR			0x34
78 #define SPI_PUSHR_CMD_CONT		BIT(15)
79 #define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
80 #define SPI_PUSHR_CMD_EOQ		BIT(11)
81 #define SPI_PUSHR_CMD_CTCNT		BIT(10)
82 #define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
83 
84 #define SPI_PUSHR_SLAVE			0x34
85 
86 #define SPI_POPR			0x38
87 
88 #define SPI_TXFR0			0x3c
89 #define SPI_TXFR1			0x40
90 #define SPI_TXFR2			0x44
91 #define SPI_TXFR3			0x48
92 #define SPI_RXFR0			0x7c
93 #define SPI_RXFR1			0x80
94 #define SPI_RXFR2			0x84
95 #define SPI_RXFR3			0x88
96 
97 #define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
98 #define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
99 #define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
100 
101 #define SPI_SREX			0x13c
102 
103 #define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
104 #define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
105 
106 #define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
107 
108 struct chip_data {
109 	u32			ctar_val;
110 };
111 
112 enum dspi_trans_mode {
113 	DSPI_EOQ_MODE = 0,
114 	DSPI_XSPI_MODE,
115 	DSPI_DMA_MODE,
116 };
117 
118 struct fsl_dspi_devtype_data {
119 	enum dspi_trans_mode	trans_mode;
120 	u8			max_clock_factor;
121 	int			fifo_size;
122 };
123 
124 enum {
125 	LS1021A,
126 	LS1012A,
127 	LS1028A,
128 	LS1043A,
129 	LS1046A,
130 	LS2080A,
131 	LS2085A,
132 	LX2160A,
133 	MCF5441X,
134 	VF610,
135 };
136 
137 static const struct fsl_dspi_devtype_data devtype_data[] = {
138 	[VF610] = {
139 		.trans_mode		= DSPI_DMA_MODE,
140 		.max_clock_factor	= 2,
141 		.fifo_size		= 4,
142 	},
143 	[LS1021A] = {
144 		/* Has A-011218 DMA erratum */
145 		.trans_mode		= DSPI_XSPI_MODE,
146 		.max_clock_factor	= 8,
147 		.fifo_size		= 4,
148 	},
149 	[LS1012A] = {
150 		/* Has A-011218 DMA erratum */
151 		.trans_mode		= DSPI_XSPI_MODE,
152 		.max_clock_factor	= 8,
153 		.fifo_size		= 16,
154 	},
155 	[LS1028A] = {
156 		.trans_mode		= DSPI_XSPI_MODE,
157 		.max_clock_factor	= 8,
158 		.fifo_size		= 4,
159 	},
160 	[LS1043A] = {
161 		/* Has A-011218 DMA erratum */
162 		.trans_mode		= DSPI_XSPI_MODE,
163 		.max_clock_factor	= 8,
164 		.fifo_size		= 16,
165 	},
166 	[LS1046A] = {
167 		/* Has A-011218 DMA erratum */
168 		.trans_mode		= DSPI_XSPI_MODE,
169 		.max_clock_factor	= 8,
170 		.fifo_size		= 16,
171 	},
172 	[LS2080A] = {
173 		.trans_mode		= DSPI_DMA_MODE,
174 		.max_clock_factor	= 8,
175 		.fifo_size		= 4,
176 	},
177 	[LS2085A] = {
178 		.trans_mode		= DSPI_DMA_MODE,
179 		.max_clock_factor	= 8,
180 		.fifo_size		= 4,
181 	},
182 	[LX2160A] = {
183 		.trans_mode		= DSPI_DMA_MODE,
184 		.max_clock_factor	= 8,
185 		.fifo_size		= 4,
186 	},
187 	[MCF5441X] = {
188 		.trans_mode		= DSPI_EOQ_MODE,
189 		.max_clock_factor	= 8,
190 		.fifo_size		= 16,
191 	},
192 };
193 
194 struct fsl_dspi_dma {
195 	u32					*tx_dma_buf;
196 	struct dma_chan				*chan_tx;
197 	dma_addr_t				tx_dma_phys;
198 	struct completion			cmd_tx_complete;
199 	struct dma_async_tx_descriptor		*tx_desc;
200 
201 	u32					*rx_dma_buf;
202 	struct dma_chan				*chan_rx;
203 	dma_addr_t				rx_dma_phys;
204 	struct completion			cmd_rx_complete;
205 	struct dma_async_tx_descriptor		*rx_desc;
206 };
207 
208 struct fsl_dspi {
209 	struct spi_controller			*ctlr;
210 	struct platform_device			*pdev;
211 
212 	struct regmap				*regmap;
213 	struct regmap				*regmap_pushr;
214 	int					irq;
215 	struct clk				*clk;
216 
217 	struct spi_transfer			*cur_transfer;
218 	struct spi_message			*cur_msg;
219 	struct chip_data			*cur_chip;
220 	size_t					progress;
221 	size_t					len;
222 	const void				*tx;
223 	void					*rx;
224 	u16					tx_cmd;
225 	const struct fsl_dspi_devtype_data	*devtype_data;
226 
227 	struct completion			xfer_done;
228 
229 	struct fsl_dspi_dma			*dma;
230 
231 	int					oper_word_size;
232 	int					oper_bits_per_word;
233 
234 	int					words_in_flight;
235 
236 	/*
237 	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
238 	 * individually (in XSPI mode)
239 	 */
240 	int					pushr_cmd;
241 	int					pushr_tx;
242 
243 	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
244 	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
245 };
246 
247 static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
248 {
249 	memcpy(txdata, dspi->tx, dspi->oper_word_size);
250 	dspi->tx += dspi->oper_word_size;
251 }
252 
253 static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
254 {
255 	memcpy(dspi->rx, &rxdata, dspi->oper_word_size);
256 	dspi->rx += dspi->oper_word_size;
257 }
258 
259 static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
260 {
261 	*txdata = cpu_to_be32(*(u32 *)dspi->tx);
262 	dspi->tx += sizeof(u32);
263 }
264 
265 static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
266 {
267 	*(u32 *)dspi->rx = be32_to_cpu(rxdata);
268 	dspi->rx += sizeof(u32);
269 }
270 
271 static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
272 {
273 	*txdata = cpu_to_be16(*(u16 *)dspi->tx);
274 	dspi->tx += sizeof(u16);
275 }
276 
277 static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
278 {
279 	*(u16 *)dspi->rx = be16_to_cpu(rxdata);
280 	dspi->rx += sizeof(u16);
281 }
282 
283 static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
284 {
285 	u16 hi = *(u16 *)dspi->tx;
286 	u16 lo = *(u16 *)(dspi->tx + 2);
287 
288 	*txdata = (u32)hi << 16 | lo;
289 	dspi->tx += sizeof(u32);
290 }
291 
292 static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
293 {
294 	u16 hi = rxdata & 0xffff;
295 	u16 lo = rxdata >> 16;
296 
297 	*(u16 *)dspi->rx = lo;
298 	*(u16 *)(dspi->rx + 2) = hi;
299 	dspi->rx += sizeof(u32);
300 }
301 
302 /*
303  * Pop one word from the TX buffer for pushing into the
304  * PUSHR register (TX FIFO)
305  */
306 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
307 {
308 	u32 txdata = 0;
309 
310 	if (dspi->tx)
311 		dspi->host_to_dev(dspi, &txdata);
312 	dspi->len -= dspi->oper_word_size;
313 	return txdata;
314 }
315 
316 /* Prepare one TX FIFO entry (txdata plus cmd) */
317 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
318 {
319 	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
320 
321 	if (spi_controller_is_slave(dspi->ctlr))
322 		return data;
323 
324 	if (dspi->len > 0)
325 		cmd |= SPI_PUSHR_CMD_CONT;
326 	return cmd << 16 | data;
327 }
328 
329 /* Push one word to the RX buffer from the POPR register (RX FIFO) */
330 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
331 {
332 	if (!dspi->rx)
333 		return;
334 	dspi->dev_to_host(dspi, rxdata);
335 }
336 
337 static void dspi_tx_dma_callback(void *arg)
338 {
339 	struct fsl_dspi *dspi = arg;
340 	struct fsl_dspi_dma *dma = dspi->dma;
341 
342 	complete(&dma->cmd_tx_complete);
343 }
344 
345 static void dspi_rx_dma_callback(void *arg)
346 {
347 	struct fsl_dspi *dspi = arg;
348 	struct fsl_dspi_dma *dma = dspi->dma;
349 	int i;
350 
351 	if (dspi->rx) {
352 		for (i = 0; i < dspi->words_in_flight; i++)
353 			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
354 	}
355 
356 	complete(&dma->cmd_rx_complete);
357 }
358 
359 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
360 {
361 	struct device *dev = &dspi->pdev->dev;
362 	struct fsl_dspi_dma *dma = dspi->dma;
363 	int time_left;
364 	int i;
365 
366 	for (i = 0; i < dspi->words_in_flight; i++)
367 		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
368 
369 	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
370 					dma->tx_dma_phys,
371 					dspi->words_in_flight *
372 					DMA_SLAVE_BUSWIDTH_4_BYTES,
373 					DMA_MEM_TO_DEV,
374 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
375 	if (!dma->tx_desc) {
376 		dev_err(dev, "Not able to get desc for DMA xfer\n");
377 		return -EIO;
378 	}
379 
380 	dma->tx_desc->callback = dspi_tx_dma_callback;
381 	dma->tx_desc->callback_param = dspi;
382 	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
383 		dev_err(dev, "DMA submit failed\n");
384 		return -EINVAL;
385 	}
386 
387 	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
388 					dma->rx_dma_phys,
389 					dspi->words_in_flight *
390 					DMA_SLAVE_BUSWIDTH_4_BYTES,
391 					DMA_DEV_TO_MEM,
392 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
393 	if (!dma->rx_desc) {
394 		dev_err(dev, "Not able to get desc for DMA xfer\n");
395 		return -EIO;
396 	}
397 
398 	dma->rx_desc->callback = dspi_rx_dma_callback;
399 	dma->rx_desc->callback_param = dspi;
400 	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
401 		dev_err(dev, "DMA submit failed\n");
402 		return -EINVAL;
403 	}
404 
405 	reinit_completion(&dspi->dma->cmd_rx_complete);
406 	reinit_completion(&dspi->dma->cmd_tx_complete);
407 
408 	dma_async_issue_pending(dma->chan_rx);
409 	dma_async_issue_pending(dma->chan_tx);
410 
411 	if (spi_controller_is_slave(dspi->ctlr)) {
412 		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
413 		return 0;
414 	}
415 
416 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
417 						DMA_COMPLETION_TIMEOUT);
418 	if (time_left == 0) {
419 		dev_err(dev, "DMA tx timeout\n");
420 		dmaengine_terminate_all(dma->chan_tx);
421 		dmaengine_terminate_all(dma->chan_rx);
422 		return -ETIMEDOUT;
423 	}
424 
425 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
426 						DMA_COMPLETION_TIMEOUT);
427 	if (time_left == 0) {
428 		dev_err(dev, "DMA rx timeout\n");
429 		dmaengine_terminate_all(dma->chan_tx);
430 		dmaengine_terminate_all(dma->chan_rx);
431 		return -ETIMEDOUT;
432 	}
433 
434 	return 0;
435 }
436 
437 static void dspi_setup_accel(struct fsl_dspi *dspi);
438 
439 static int dspi_dma_xfer(struct fsl_dspi *dspi)
440 {
441 	struct spi_message *message = dspi->cur_msg;
442 	struct device *dev = &dspi->pdev->dev;
443 	int ret = 0;
444 
445 	/*
446 	 * dspi->len gets decremented by dspi_pop_tx_pushr in
447 	 * dspi_next_xfer_dma_submit
448 	 */
449 	while (dspi->len) {
450 		/* Figure out operational bits-per-word for this chunk */
451 		dspi_setup_accel(dspi);
452 
453 		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
454 		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
455 			dspi->words_in_flight = dspi->devtype_data->fifo_size;
456 
457 		message->actual_length += dspi->words_in_flight *
458 					  dspi->oper_word_size;
459 
460 		ret = dspi_next_xfer_dma_submit(dspi);
461 		if (ret) {
462 			dev_err(dev, "DMA transfer failed\n");
463 			break;
464 		}
465 	}
466 
467 	return ret;
468 }
469 
470 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
471 {
472 	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
473 	struct device *dev = &dspi->pdev->dev;
474 	struct dma_slave_config cfg;
475 	struct fsl_dspi_dma *dma;
476 	int ret;
477 
478 	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
479 	if (!dma)
480 		return -ENOMEM;
481 
482 	dma->chan_rx = dma_request_chan(dev, "rx");
483 	if (IS_ERR(dma->chan_rx)) {
484 		dev_err(dev, "rx dma channel not available\n");
485 		ret = PTR_ERR(dma->chan_rx);
486 		return ret;
487 	}
488 
489 	dma->chan_tx = dma_request_chan(dev, "tx");
490 	if (IS_ERR(dma->chan_tx)) {
491 		dev_err(dev, "tx dma channel not available\n");
492 		ret = PTR_ERR(dma->chan_tx);
493 		goto err_tx_channel;
494 	}
495 
496 	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
497 					     dma_bufsize, &dma->tx_dma_phys,
498 					     GFP_KERNEL);
499 	if (!dma->tx_dma_buf) {
500 		ret = -ENOMEM;
501 		goto err_tx_dma_buf;
502 	}
503 
504 	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
505 					     dma_bufsize, &dma->rx_dma_phys,
506 					     GFP_KERNEL);
507 	if (!dma->rx_dma_buf) {
508 		ret = -ENOMEM;
509 		goto err_rx_dma_buf;
510 	}
511 
512 	cfg.src_addr = phy_addr + SPI_POPR;
513 	cfg.dst_addr = phy_addr + SPI_PUSHR;
514 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
515 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
516 	cfg.src_maxburst = 1;
517 	cfg.dst_maxburst = 1;
518 
519 	cfg.direction = DMA_DEV_TO_MEM;
520 	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
521 	if (ret) {
522 		dev_err(dev, "can't configure rx dma channel\n");
523 		ret = -EINVAL;
524 		goto err_slave_config;
525 	}
526 
527 	cfg.direction = DMA_MEM_TO_DEV;
528 	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
529 	if (ret) {
530 		dev_err(dev, "can't configure tx dma channel\n");
531 		ret = -EINVAL;
532 		goto err_slave_config;
533 	}
534 
535 	dspi->dma = dma;
536 	init_completion(&dma->cmd_tx_complete);
537 	init_completion(&dma->cmd_rx_complete);
538 
539 	return 0;
540 
541 err_slave_config:
542 	dma_free_coherent(dma->chan_rx->device->dev,
543 			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
544 err_rx_dma_buf:
545 	dma_free_coherent(dma->chan_tx->device->dev,
546 			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
547 err_tx_dma_buf:
548 	dma_release_channel(dma->chan_tx);
549 err_tx_channel:
550 	dma_release_channel(dma->chan_rx);
551 
552 	devm_kfree(dev, dma);
553 	dspi->dma = NULL;
554 
555 	return ret;
556 }
557 
558 static void dspi_release_dma(struct fsl_dspi *dspi)
559 {
560 	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
561 	struct fsl_dspi_dma *dma = dspi->dma;
562 
563 	if (!dma)
564 		return;
565 
566 	if (dma->chan_tx) {
567 		dma_unmap_single(dma->chan_tx->device->dev, dma->tx_dma_phys,
568 				 dma_bufsize, DMA_TO_DEVICE);
569 		dma_release_channel(dma->chan_tx);
570 	}
571 
572 	if (dma->chan_rx) {
573 		dma_unmap_single(dma->chan_rx->device->dev, dma->rx_dma_phys,
574 				 dma_bufsize, DMA_FROM_DEVICE);
575 		dma_release_channel(dma->chan_rx);
576 	}
577 }
578 
579 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
580 			   unsigned long clkrate)
581 {
582 	/* Valid baud rate pre-scaler values */
583 	int pbr_tbl[4] = {2, 3, 5, 7};
584 	int brs[16] = {	2,	4,	6,	8,
585 			16,	32,	64,	128,
586 			256,	512,	1024,	2048,
587 			4096,	8192,	16384,	32768 };
588 	int scale_needed, scale, minscale = INT_MAX;
589 	int i, j;
590 
591 	scale_needed = clkrate / speed_hz;
592 	if (clkrate % speed_hz)
593 		scale_needed++;
594 
595 	for (i = 0; i < ARRAY_SIZE(brs); i++)
596 		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
597 			scale = brs[i] * pbr_tbl[j];
598 			if (scale >= scale_needed) {
599 				if (scale < minscale) {
600 					minscale = scale;
601 					*br = i;
602 					*pbr = j;
603 				}
604 				break;
605 			}
606 		}
607 
608 	if (minscale == INT_MAX) {
609 		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
610 			speed_hz, clkrate);
611 		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
612 		*br =  ARRAY_SIZE(brs) - 1;
613 	}
614 }
615 
616 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
617 			   unsigned long clkrate)
618 {
619 	int scale_needed, scale, minscale = INT_MAX;
620 	int pscale_tbl[4] = {1, 3, 5, 7};
621 	u32 remainder;
622 	int i, j;
623 
624 	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
625 				   &remainder);
626 	if (remainder)
627 		scale_needed++;
628 
629 	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
630 		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
631 			scale = pscale_tbl[i] * (2 << j);
632 			if (scale >= scale_needed) {
633 				if (scale < minscale) {
634 					minscale = scale;
635 					*psc = i;
636 					*sc = j;
637 				}
638 				break;
639 			}
640 		}
641 
642 	if (minscale == INT_MAX) {
643 		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
644 			delay_ns, clkrate);
645 		*psc = ARRAY_SIZE(pscale_tbl) - 1;
646 		*sc = SPI_CTAR_SCALE_BITS;
647 	}
648 }
649 
650 static void dspi_pushr_write(struct fsl_dspi *dspi)
651 {
652 	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
653 }
654 
655 static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
656 {
657 	/*
658 	 * The only time when the PCS doesn't need continuation after this word
659 	 * is when it's last. We need to look ahead, because we actually call
660 	 * dspi_pop_tx (the function that decrements dspi->len) _after_
661 	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
662 	 * word is enough. If there's more to transmit than that,
663 	 * dspi_xspi_write will know to split the FIFO writes in 2, and
664 	 * generate a new PUSHR command with the final word that will have PCS
665 	 * deasserted (not continued) here.
666 	 */
667 	if (dspi->len > dspi->oper_word_size)
668 		cmd |= SPI_PUSHR_CMD_CONT;
669 	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
670 }
671 
672 static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
673 {
674 	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
675 }
676 
677 static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
678 {
679 	int num_bytes = num_words * dspi->oper_word_size;
680 	u16 tx_cmd = dspi->tx_cmd;
681 
682 	/*
683 	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
684 	 * and cs_change does not want the PCS to stay on), then we need a new
685 	 * PUSHR command, since this one (for the body of the buffer)
686 	 * necessarily has the CONT bit set.
687 	 * So send one word less during this go, to force a split and a command
688 	 * with a single word next time, when CONT will be unset.
689 	 */
690 	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
691 		tx_cmd |= SPI_PUSHR_CMD_EOQ;
692 
693 	/* Update CTARE */
694 	regmap_write(dspi->regmap, SPI_CTARE(0),
695 		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
696 		     SPI_CTARE_DTCP(num_words));
697 
698 	/*
699 	 * Write the CMD FIFO entry first, and then the two
700 	 * corresponding TX FIFO entries (or one...).
701 	 */
702 	dspi_pushr_cmd_write(dspi, tx_cmd);
703 
704 	/* Fill TX FIFO with as many transfers as possible */
705 	while (num_words--) {
706 		u32 data = dspi_pop_tx(dspi);
707 
708 		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
709 		if (dspi->oper_bits_per_word > 16)
710 			dspi_pushr_txdata_write(dspi, data >> 16);
711 	}
712 }
713 
714 static void dspi_eoq_fifo_write(struct fsl_dspi *dspi, int num_words)
715 {
716 	u16 xfer_cmd = dspi->tx_cmd;
717 
718 	/* Fill TX FIFO with as many transfers as possible */
719 	while (num_words--) {
720 		dspi->tx_cmd = xfer_cmd;
721 		/* Request EOQF for last transfer in FIFO */
722 		if (num_words == 0)
723 			dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
724 		/* Write combined TX FIFO and CMD FIFO entry */
725 		dspi_pushr_write(dspi);
726 	}
727 }
728 
729 static u32 dspi_popr_read(struct fsl_dspi *dspi)
730 {
731 	u32 rxdata = 0;
732 
733 	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
734 	return rxdata;
735 }
736 
737 static void dspi_fifo_read(struct fsl_dspi *dspi)
738 {
739 	int num_fifo_entries = dspi->words_in_flight;
740 
741 	/* Read one FIFO entry and push to rx buffer */
742 	while (num_fifo_entries--)
743 		dspi_push_rx(dspi, dspi_popr_read(dspi));
744 }
745 
746 static void dspi_setup_accel(struct fsl_dspi *dspi)
747 {
748 	struct spi_transfer *xfer = dspi->cur_transfer;
749 	bool odd = !!(dspi->len & 1);
750 
751 	/* No accel for frames not multiple of 8 bits at the moment */
752 	if (xfer->bits_per_word % 8)
753 		goto no_accel;
754 
755 	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
756 		dspi->oper_bits_per_word = 16;
757 	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
758 		dspi->oper_bits_per_word = 8;
759 	} else {
760 		/* Start off with maximum supported by hardware */
761 		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
762 			dspi->oper_bits_per_word = 32;
763 		else
764 			dspi->oper_bits_per_word = 16;
765 
766 		/*
767 		 * And go down only if the buffer can't be sent with
768 		 * words this big
769 		 */
770 		do {
771 			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
772 				break;
773 
774 			dspi->oper_bits_per_word /= 2;
775 		} while (dspi->oper_bits_per_word > 8);
776 	}
777 
778 	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
779 		dspi->dev_to_host = dspi_8on32_dev_to_host;
780 		dspi->host_to_dev = dspi_8on32_host_to_dev;
781 	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
782 		dspi->dev_to_host = dspi_8on16_dev_to_host;
783 		dspi->host_to_dev = dspi_8on16_host_to_dev;
784 	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
785 		dspi->dev_to_host = dspi_16on32_dev_to_host;
786 		dspi->host_to_dev = dspi_16on32_host_to_dev;
787 	} else {
788 no_accel:
789 		dspi->dev_to_host = dspi_native_dev_to_host;
790 		dspi->host_to_dev = dspi_native_host_to_dev;
791 		dspi->oper_bits_per_word = xfer->bits_per_word;
792 	}
793 
794 	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
795 
796 	/*
797 	 * Update CTAR here (code is common for EOQ, XSPI and DMA modes).
798 	 * We will update CTARE in the portion specific to XSPI, when we
799 	 * also know the preload value (DTCP).
800 	 */
801 	regmap_write(dspi->regmap, SPI_CTAR(0),
802 		     dspi->cur_chip->ctar_val |
803 		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
804 }
805 
806 static void dspi_fifo_write(struct fsl_dspi *dspi)
807 {
808 	int num_fifo_entries = dspi->devtype_data->fifo_size;
809 	struct spi_transfer *xfer = dspi->cur_transfer;
810 	struct spi_message *msg = dspi->cur_msg;
811 	int num_words, num_bytes;
812 
813 	dspi_setup_accel(dspi);
814 
815 	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
816 	if (dspi->oper_word_size == 4)
817 		num_fifo_entries /= 2;
818 
819 	/*
820 	 * Integer division intentionally trims off odd (or non-multiple of 4)
821 	 * numbers of bytes at the end of the buffer, which will be sent next
822 	 * time using a smaller oper_word_size.
823 	 */
824 	num_words = dspi->len / dspi->oper_word_size;
825 	if (num_words > num_fifo_entries)
826 		num_words = num_fifo_entries;
827 
828 	/* Update total number of bytes that were transferred */
829 	num_bytes = num_words * dspi->oper_word_size;
830 	msg->actual_length += num_bytes;
831 	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
832 
833 	/*
834 	 * Update shared variable for use in the next interrupt (both in
835 	 * dspi_fifo_read and in dspi_fifo_write).
836 	 */
837 	dspi->words_in_flight = num_words;
838 
839 	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
840 
841 	if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE)
842 		dspi_eoq_fifo_write(dspi, num_words);
843 	else
844 		dspi_xspi_fifo_write(dspi, num_words);
845 	/*
846 	 * Everything after this point is in a potential race with the next
847 	 * interrupt, so we must never use dspi->words_in_flight again since it
848 	 * might already be modified by the next dspi_fifo_write.
849 	 */
850 
851 	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
852 				dspi->progress, !dspi->irq);
853 }
854 
855 static int dspi_rxtx(struct fsl_dspi *dspi)
856 {
857 	dspi_fifo_read(dspi);
858 
859 	if (!dspi->len)
860 		/* Success! */
861 		return 0;
862 
863 	dspi_fifo_write(dspi);
864 
865 	return -EINPROGRESS;
866 }
867 
868 static int dspi_poll(struct fsl_dspi *dspi)
869 {
870 	int tries = 1000;
871 	u32 spi_sr;
872 
873 	do {
874 		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
875 		regmap_write(dspi->regmap, SPI_SR, spi_sr);
876 
877 		if (spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF))
878 			break;
879 	} while (--tries);
880 
881 	if (!tries)
882 		return -ETIMEDOUT;
883 
884 	return dspi_rxtx(dspi);
885 }
886 
887 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
888 {
889 	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
890 	u32 spi_sr;
891 
892 	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
893 	regmap_write(dspi->regmap, SPI_SR, spi_sr);
894 
895 	if (!(spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF)))
896 		return IRQ_NONE;
897 
898 	if (dspi_rxtx(dspi) == 0)
899 		complete(&dspi->xfer_done);
900 
901 	return IRQ_HANDLED;
902 }
903 
904 static int dspi_transfer_one_message(struct spi_controller *ctlr,
905 				     struct spi_message *message)
906 {
907 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
908 	struct spi_device *spi = message->spi;
909 	struct spi_transfer *transfer;
910 	int status = 0;
911 
912 	message->actual_length = 0;
913 
914 	list_for_each_entry(transfer, &message->transfers, transfer_list) {
915 		dspi->cur_transfer = transfer;
916 		dspi->cur_msg = message;
917 		dspi->cur_chip = spi_get_ctldata(spi);
918 		/* Prepare command word for CMD FIFO */
919 		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
920 			       SPI_PUSHR_CMD_PCS(spi->chip_select);
921 		if (list_is_last(&dspi->cur_transfer->transfer_list,
922 				 &dspi->cur_msg->transfers)) {
923 			/* Leave PCS activated after last transfer when
924 			 * cs_change is set.
925 			 */
926 			if (transfer->cs_change)
927 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
928 		} else {
929 			/* Keep PCS active between transfers in same message
930 			 * when cs_change is not set, and de-activate PCS
931 			 * between transfers in the same message when
932 			 * cs_change is set.
933 			 */
934 			if (!transfer->cs_change)
935 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
936 		}
937 
938 		dspi->tx = transfer->tx_buf;
939 		dspi->rx = transfer->rx_buf;
940 		dspi->len = transfer->len;
941 		dspi->progress = 0;
942 
943 		regmap_update_bits(dspi->regmap, SPI_MCR,
944 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
945 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
946 
947 		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
948 				       dspi->progress, !dspi->irq);
949 
950 		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
951 			status = dspi_dma_xfer(dspi);
952 		} else {
953 			dspi_fifo_write(dspi);
954 
955 			if (dspi->irq) {
956 				wait_for_completion(&dspi->xfer_done);
957 				reinit_completion(&dspi->xfer_done);
958 			} else {
959 				do {
960 					status = dspi_poll(dspi);
961 				} while (status == -EINPROGRESS);
962 			}
963 		}
964 		if (status)
965 			break;
966 
967 		spi_transfer_delay_exec(transfer);
968 	}
969 
970 	message->status = status;
971 	spi_finalize_current_message(ctlr);
972 
973 	return status;
974 }
975 
976 static int dspi_setup(struct spi_device *spi)
977 {
978 	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
979 	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
980 	u32 cs_sck_delay = 0, sck_cs_delay = 0;
981 	struct fsl_dspi_platform_data *pdata;
982 	unsigned char pasc = 0, asc = 0;
983 	struct chip_data *chip;
984 	unsigned long clkrate;
985 
986 	/* Only alloc on first setup */
987 	chip = spi_get_ctldata(spi);
988 	if (chip == NULL) {
989 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
990 		if (!chip)
991 			return -ENOMEM;
992 	}
993 
994 	pdata = dev_get_platdata(&dspi->pdev->dev);
995 
996 	if (!pdata) {
997 		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
998 				     &cs_sck_delay);
999 
1000 		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1001 				     &sck_cs_delay);
1002 	} else {
1003 		cs_sck_delay = pdata->cs_sck_delay;
1004 		sck_cs_delay = pdata->sck_cs_delay;
1005 	}
1006 
1007 	clkrate = clk_get_rate(dspi->clk);
1008 	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1009 
1010 	/* Set PCS to SCK delay scale values */
1011 	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1012 
1013 	/* Set After SCK delay scale values */
1014 	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1015 
1016 	chip->ctar_val = 0;
1017 	if (spi->mode & SPI_CPOL)
1018 		chip->ctar_val |= SPI_CTAR_CPOL;
1019 	if (spi->mode & SPI_CPHA)
1020 		chip->ctar_val |= SPI_CTAR_CPHA;
1021 
1022 	if (!spi_controller_is_slave(dspi->ctlr)) {
1023 		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1024 				  SPI_CTAR_CSSCK(cssck) |
1025 				  SPI_CTAR_PASC(pasc) |
1026 				  SPI_CTAR_ASC(asc) |
1027 				  SPI_CTAR_PBR(pbr) |
1028 				  SPI_CTAR_BR(br);
1029 
1030 		if (spi->mode & SPI_LSB_FIRST)
1031 			chip->ctar_val |= SPI_CTAR_LSBFE;
1032 	}
1033 
1034 	spi_set_ctldata(spi, chip);
1035 
1036 	return 0;
1037 }
1038 
1039 static void dspi_cleanup(struct spi_device *spi)
1040 {
1041 	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
1042 
1043 	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1044 		spi->controller->bus_num, spi->chip_select);
1045 
1046 	kfree(chip);
1047 }
1048 
1049 static const struct of_device_id fsl_dspi_dt_ids[] = {
1050 	{
1051 		.compatible = "fsl,vf610-dspi",
1052 		.data = &devtype_data[VF610],
1053 	}, {
1054 		.compatible = "fsl,ls1021a-v1.0-dspi",
1055 		.data = &devtype_data[LS1021A],
1056 	}, {
1057 		.compatible = "fsl,ls1012a-dspi",
1058 		.data = &devtype_data[LS1012A],
1059 	}, {
1060 		.compatible = "fsl,ls1028a-dspi",
1061 		.data = &devtype_data[LS1028A],
1062 	}, {
1063 		.compatible = "fsl,ls1043a-dspi",
1064 		.data = &devtype_data[LS1043A],
1065 	}, {
1066 		.compatible = "fsl,ls1046a-dspi",
1067 		.data = &devtype_data[LS1046A],
1068 	}, {
1069 		.compatible = "fsl,ls2080a-dspi",
1070 		.data = &devtype_data[LS2080A],
1071 	}, {
1072 		.compatible = "fsl,ls2085a-dspi",
1073 		.data = &devtype_data[LS2085A],
1074 	}, {
1075 		.compatible = "fsl,lx2160a-dspi",
1076 		.data = &devtype_data[LX2160A],
1077 	},
1078 	{ /* sentinel */ }
1079 };
1080 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1081 
1082 #ifdef CONFIG_PM_SLEEP
1083 static int dspi_suspend(struct device *dev)
1084 {
1085 	struct spi_controller *ctlr = dev_get_drvdata(dev);
1086 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1087 
1088 	spi_controller_suspend(ctlr);
1089 	clk_disable_unprepare(dspi->clk);
1090 
1091 	pinctrl_pm_select_sleep_state(dev);
1092 
1093 	return 0;
1094 }
1095 
1096 static int dspi_resume(struct device *dev)
1097 {
1098 	struct spi_controller *ctlr = dev_get_drvdata(dev);
1099 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1100 	int ret;
1101 
1102 	pinctrl_pm_select_default_state(dev);
1103 
1104 	ret = clk_prepare_enable(dspi->clk);
1105 	if (ret)
1106 		return ret;
1107 	spi_controller_resume(ctlr);
1108 
1109 	return 0;
1110 }
1111 #endif /* CONFIG_PM_SLEEP */
1112 
1113 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1114 
1115 static const struct regmap_range dspi_volatile_ranges[] = {
1116 	regmap_reg_range(SPI_MCR, SPI_TCR),
1117 	regmap_reg_range(SPI_SR, SPI_SR),
1118 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1119 };
1120 
1121 static const struct regmap_access_table dspi_volatile_table = {
1122 	.yes_ranges	= dspi_volatile_ranges,
1123 	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
1124 };
1125 
1126 static const struct regmap_config dspi_regmap_config = {
1127 	.reg_bits	= 32,
1128 	.val_bits	= 32,
1129 	.reg_stride	= 4,
1130 	.max_register	= 0x88,
1131 	.volatile_table	= &dspi_volatile_table,
1132 };
1133 
1134 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1135 	regmap_reg_range(SPI_MCR, SPI_TCR),
1136 	regmap_reg_range(SPI_SR, SPI_SR),
1137 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1138 	regmap_reg_range(SPI_SREX, SPI_SREX),
1139 };
1140 
1141 static const struct regmap_access_table dspi_xspi_volatile_table = {
1142 	.yes_ranges	= dspi_xspi_volatile_ranges,
1143 	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
1144 };
1145 
1146 static const struct regmap_config dspi_xspi_regmap_config[] = {
1147 	{
1148 		.reg_bits	= 32,
1149 		.val_bits	= 32,
1150 		.reg_stride	= 4,
1151 		.max_register	= 0x13c,
1152 		.volatile_table	= &dspi_xspi_volatile_table,
1153 	},
1154 	{
1155 		.name		= "pushr",
1156 		.reg_bits	= 16,
1157 		.val_bits	= 16,
1158 		.reg_stride	= 2,
1159 		.max_register	= 0x2,
1160 	},
1161 };
1162 
1163 static int dspi_init(struct fsl_dspi *dspi)
1164 {
1165 	unsigned int mcr;
1166 
1167 	/* Set idle states for all chip select signals to high */
1168 	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->num_chipselect - 1, 0));
1169 
1170 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1171 		mcr |= SPI_MCR_XSPI;
1172 	if (!spi_controller_is_slave(dspi->ctlr))
1173 		mcr |= SPI_MCR_MASTER;
1174 
1175 	regmap_write(dspi->regmap, SPI_MCR, mcr);
1176 	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1177 
1178 	switch (dspi->devtype_data->trans_mode) {
1179 	case DSPI_EOQ_MODE:
1180 		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
1181 		break;
1182 	case DSPI_XSPI_MODE:
1183 		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1184 		break;
1185 	case DSPI_DMA_MODE:
1186 		regmap_write(dspi->regmap, SPI_RSER,
1187 			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1188 			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1189 		break;
1190 	default:
1191 		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1192 			dspi->devtype_data->trans_mode);
1193 		return -EINVAL;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 static int dspi_slave_abort(struct spi_master *master)
1200 {
1201 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
1202 
1203 	/*
1204 	 * Terminate all pending DMA transactions for the SPI working
1205 	 * in SLAVE mode.
1206 	 */
1207 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1208 		dmaengine_terminate_sync(dspi->dma->chan_rx);
1209 		dmaengine_terminate_sync(dspi->dma->chan_tx);
1210 	}
1211 
1212 	/* Clear the internal DSPI RX and TX FIFO buffers */
1213 	regmap_update_bits(dspi->regmap, SPI_MCR,
1214 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1215 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1216 
1217 	return 0;
1218 }
1219 
1220 /*
1221  * EOQ mode will inevitably deassert its PCS signal on last word in a queue
1222  * (hardware limitation), so we need to inform the spi_device that larger
1223  * buffers than the FIFO size are going to have the chip select randomly
1224  * toggling, so it has a chance to adapt its message sizes.
1225  */
1226 static size_t dspi_max_message_size(struct spi_device *spi)
1227 {
1228 	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1229 
1230 	if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE)
1231 		return dspi->devtype_data->fifo_size;
1232 
1233 	return SIZE_MAX;
1234 }
1235 
1236 static int dspi_probe(struct platform_device *pdev)
1237 {
1238 	struct device_node *np = pdev->dev.of_node;
1239 	const struct regmap_config *regmap_config;
1240 	struct fsl_dspi_platform_data *pdata;
1241 	struct spi_controller *ctlr;
1242 	int ret, cs_num, bus_num = -1;
1243 	struct fsl_dspi *dspi;
1244 	struct resource *res;
1245 	void __iomem *base;
1246 	bool big_endian;
1247 
1248 	ctlr = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
1249 	if (!ctlr)
1250 		return -ENOMEM;
1251 
1252 	dspi = spi_controller_get_devdata(ctlr);
1253 	dspi->pdev = pdev;
1254 	dspi->ctlr = ctlr;
1255 
1256 	ctlr->setup = dspi_setup;
1257 	ctlr->transfer_one_message = dspi_transfer_one_message;
1258 	ctlr->max_message_size = dspi_max_message_size;
1259 	ctlr->dev.of_node = pdev->dev.of_node;
1260 
1261 	ctlr->cleanup = dspi_cleanup;
1262 	ctlr->slave_abort = dspi_slave_abort;
1263 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1264 
1265 	pdata = dev_get_platdata(&pdev->dev);
1266 	if (pdata) {
1267 		ctlr->num_chipselect = pdata->cs_num;
1268 		ctlr->bus_num = pdata->bus_num;
1269 
1270 		/* Only Coldfire uses platform data */
1271 		dspi->devtype_data = &devtype_data[MCF5441X];
1272 		big_endian = true;
1273 	} else {
1274 
1275 		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1276 		if (ret < 0) {
1277 			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1278 			goto out_ctlr_put;
1279 		}
1280 		ctlr->num_chipselect = cs_num;
1281 
1282 		of_property_read_u32(np, "bus-num", &bus_num);
1283 		ctlr->bus_num = bus_num;
1284 
1285 		if (of_property_read_bool(np, "spi-slave"))
1286 			ctlr->slave = true;
1287 
1288 		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1289 		if (!dspi->devtype_data) {
1290 			dev_err(&pdev->dev, "can't get devtype_data\n");
1291 			ret = -EFAULT;
1292 			goto out_ctlr_put;
1293 		}
1294 
1295 		big_endian = of_device_is_big_endian(np);
1296 	}
1297 	if (big_endian) {
1298 		dspi->pushr_cmd = 0;
1299 		dspi->pushr_tx = 2;
1300 	} else {
1301 		dspi->pushr_cmd = 2;
1302 		dspi->pushr_tx = 0;
1303 	}
1304 
1305 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1306 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1307 	else
1308 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1309 
1310 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1311 	base = devm_ioremap_resource(&pdev->dev, res);
1312 	if (IS_ERR(base)) {
1313 		ret = PTR_ERR(base);
1314 		goto out_ctlr_put;
1315 	}
1316 
1317 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1318 		regmap_config = &dspi_xspi_regmap_config[0];
1319 	else
1320 		regmap_config = &dspi_regmap_config;
1321 	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1322 	if (IS_ERR(dspi->regmap)) {
1323 		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1324 				PTR_ERR(dspi->regmap));
1325 		ret = PTR_ERR(dspi->regmap);
1326 		goto out_ctlr_put;
1327 	}
1328 
1329 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1330 		dspi->regmap_pushr = devm_regmap_init_mmio(
1331 			&pdev->dev, base + SPI_PUSHR,
1332 			&dspi_xspi_regmap_config[1]);
1333 		if (IS_ERR(dspi->regmap_pushr)) {
1334 			dev_err(&pdev->dev,
1335 				"failed to init pushr regmap: %ld\n",
1336 				PTR_ERR(dspi->regmap_pushr));
1337 			ret = PTR_ERR(dspi->regmap_pushr);
1338 			goto out_ctlr_put;
1339 		}
1340 	}
1341 
1342 	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1343 	if (IS_ERR(dspi->clk)) {
1344 		ret = PTR_ERR(dspi->clk);
1345 		dev_err(&pdev->dev, "unable to get clock\n");
1346 		goto out_ctlr_put;
1347 	}
1348 	ret = clk_prepare_enable(dspi->clk);
1349 	if (ret)
1350 		goto out_ctlr_put;
1351 
1352 	ret = dspi_init(dspi);
1353 	if (ret)
1354 		goto out_clk_put;
1355 
1356 	dspi->irq = platform_get_irq(pdev, 0);
1357 	if (dspi->irq <= 0) {
1358 		dev_info(&pdev->dev,
1359 			 "can't get platform irq, using poll mode\n");
1360 		dspi->irq = 0;
1361 		goto poll_mode;
1362 	}
1363 
1364 	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt,
1365 			       IRQF_SHARED, pdev->name, dspi);
1366 	if (ret < 0) {
1367 		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1368 		goto out_clk_put;
1369 	}
1370 
1371 	init_completion(&dspi->xfer_done);
1372 
1373 poll_mode:
1374 
1375 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1376 		ret = dspi_request_dma(dspi, res->start);
1377 		if (ret < 0) {
1378 			dev_err(&pdev->dev, "can't get dma channels\n");
1379 			goto out_clk_put;
1380 		}
1381 	}
1382 
1383 	ctlr->max_speed_hz =
1384 		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1385 
1386 	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1387 		ctlr->ptp_sts_supported = true;
1388 
1389 	platform_set_drvdata(pdev, ctlr);
1390 
1391 	ret = spi_register_controller(ctlr);
1392 	if (ret != 0) {
1393 		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1394 		goto out_clk_put;
1395 	}
1396 
1397 	return ret;
1398 
1399 out_clk_put:
1400 	clk_disable_unprepare(dspi->clk);
1401 out_ctlr_put:
1402 	spi_controller_put(ctlr);
1403 
1404 	return ret;
1405 }
1406 
1407 static int dspi_remove(struct platform_device *pdev)
1408 {
1409 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1410 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1411 
1412 	/* Disconnect from the SPI framework */
1413 	dspi_release_dma(dspi);
1414 	clk_disable_unprepare(dspi->clk);
1415 	spi_unregister_controller(dspi->ctlr);
1416 
1417 	return 0;
1418 }
1419 
1420 static struct platform_driver fsl_dspi_driver = {
1421 	.driver.name		= DRIVER_NAME,
1422 	.driver.of_match_table	= fsl_dspi_dt_ids,
1423 	.driver.owner		= THIS_MODULE,
1424 	.driver.pm		= &dspi_pm,
1425 	.probe			= dspi_probe,
1426 	.remove			= dspi_remove,
1427 };
1428 module_platform_driver(fsl_dspi_driver);
1429 
1430 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1431 MODULE_LICENSE("GPL");
1432 MODULE_ALIAS("platform:" DRIVER_NAME);
1433