1 /* 2 * drivers/spi/spi-fsl-dspi.c 3 * 4 * Copyright 2013 Freescale Semiconductor, Inc. 5 * 6 * Freescale DSPI driver 7 * This file contains a driver for the Freescale DSPI 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 */ 15 16 #include <linux/clk.h> 17 #include <linux/delay.h> 18 #include <linux/err.h> 19 #include <linux/errno.h> 20 #include <linux/interrupt.h> 21 #include <linux/io.h> 22 #include <linux/kernel.h> 23 #include <linux/math64.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/of_device.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/platform_device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/regmap.h> 31 #include <linux/sched.h> 32 #include <linux/spi/spi.h> 33 #include <linux/spi/spi_bitbang.h> 34 #include <linux/time.h> 35 36 #define DRIVER_NAME "fsl-dspi" 37 38 #define TRAN_STATE_RX_VOID 0x01 39 #define TRAN_STATE_TX_VOID 0x02 40 #define TRAN_STATE_WORD_ODD_NUM 0x04 41 42 #define DSPI_FIFO_SIZE 4 43 44 #define SPI_MCR 0x00 45 #define SPI_MCR_MASTER (1 << 31) 46 #define SPI_MCR_PCSIS (0x3F << 16) 47 #define SPI_MCR_CLR_TXF (1 << 11) 48 #define SPI_MCR_CLR_RXF (1 << 10) 49 50 #define SPI_TCR 0x08 51 #define SPI_TCR_GET_TCNT(x) (((x) & 0xffff0000) >> 16) 52 53 #define SPI_CTAR(x) (0x0c + (((x) & 0x3) * 4)) 54 #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27) 55 #define SPI_CTAR_CPOL(x) ((x) << 26) 56 #define SPI_CTAR_CPHA(x) ((x) << 25) 57 #define SPI_CTAR_LSBFE(x) ((x) << 24) 58 #define SPI_CTAR_PCSSCK(x) (((x) & 0x00000003) << 22) 59 #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20) 60 #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18) 61 #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16) 62 #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12) 63 #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8) 64 #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4) 65 #define SPI_CTAR_BR(x) ((x) & 0x0000000f) 66 #define SPI_CTAR_SCALE_BITS 0xf 67 68 #define SPI_CTAR0_SLAVE 0x0c 69 70 #define SPI_SR 0x2c 71 #define SPI_SR_EOQF 0x10000000 72 #define SPI_SR_TCFQF 0x80000000 73 74 #define SPI_RSER 0x30 75 #define SPI_RSER_EOQFE 0x10000000 76 #define SPI_RSER_TCFQE 0x80000000 77 78 #define SPI_PUSHR 0x34 79 #define SPI_PUSHR_CONT (1 << 31) 80 #define SPI_PUSHR_CTAS(x) (((x) & 0x00000003) << 28) 81 #define SPI_PUSHR_EOQ (1 << 27) 82 #define SPI_PUSHR_CTCNT (1 << 26) 83 #define SPI_PUSHR_PCS(x) (((1 << x) & 0x0000003f) << 16) 84 #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff) 85 86 #define SPI_PUSHR_SLAVE 0x34 87 88 #define SPI_POPR 0x38 89 #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff) 90 91 #define SPI_TXFR0 0x3c 92 #define SPI_TXFR1 0x40 93 #define SPI_TXFR2 0x44 94 #define SPI_TXFR3 0x48 95 #define SPI_RXFR0 0x7c 96 #define SPI_RXFR1 0x80 97 #define SPI_RXFR2 0x84 98 #define SPI_RXFR3 0x88 99 100 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1) 101 #define SPI_FRAME_BITS_MASK SPI_CTAR_FMSZ(0xf) 102 #define SPI_FRAME_BITS_16 SPI_CTAR_FMSZ(0xf) 103 #define SPI_FRAME_BITS_8 SPI_CTAR_FMSZ(0x7) 104 105 #define SPI_CS_INIT 0x01 106 #define SPI_CS_ASSERT 0x02 107 #define SPI_CS_DROP 0x04 108 109 #define SPI_TCR_TCNT_MAX 0x10000 110 111 struct chip_data { 112 u32 mcr_val; 113 u32 ctar_val; 114 u16 void_write_data; 115 }; 116 117 enum dspi_trans_mode { 118 DSPI_EOQ_MODE = 0, 119 DSPI_TCFQ_MODE, 120 }; 121 122 struct fsl_dspi_devtype_data { 123 enum dspi_trans_mode trans_mode; 124 }; 125 126 static const struct fsl_dspi_devtype_data vf610_data = { 127 .trans_mode = DSPI_EOQ_MODE, 128 }; 129 130 static const struct fsl_dspi_devtype_data ls1021a_v1_data = { 131 .trans_mode = DSPI_TCFQ_MODE, 132 }; 133 134 static const struct fsl_dspi_devtype_data ls2085a_data = { 135 .trans_mode = DSPI_TCFQ_MODE, 136 }; 137 138 struct fsl_dspi { 139 struct spi_master *master; 140 struct platform_device *pdev; 141 142 struct regmap *regmap; 143 int irq; 144 struct clk *clk; 145 146 struct spi_transfer *cur_transfer; 147 struct spi_message *cur_msg; 148 struct chip_data *cur_chip; 149 size_t len; 150 void *tx; 151 void *tx_end; 152 void *rx; 153 void *rx_end; 154 char dataflags; 155 u8 cs; 156 u16 void_write_data; 157 u32 cs_change; 158 struct fsl_dspi_devtype_data *devtype_data; 159 160 wait_queue_head_t waitq; 161 u32 waitflags; 162 163 u32 spi_tcnt; 164 }; 165 166 static inline int is_double_byte_mode(struct fsl_dspi *dspi) 167 { 168 unsigned int val; 169 170 regmap_read(dspi->regmap, SPI_CTAR(0), &val); 171 172 return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1; 173 } 174 175 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz, 176 unsigned long clkrate) 177 { 178 /* Valid baud rate pre-scaler values */ 179 int pbr_tbl[4] = {2, 3, 5, 7}; 180 int brs[16] = { 2, 4, 6, 8, 181 16, 32, 64, 128, 182 256, 512, 1024, 2048, 183 4096, 8192, 16384, 32768 }; 184 int scale_needed, scale, minscale = INT_MAX; 185 int i, j; 186 187 scale_needed = clkrate / speed_hz; 188 if (clkrate % speed_hz) 189 scale_needed++; 190 191 for (i = 0; i < ARRAY_SIZE(brs); i++) 192 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) { 193 scale = brs[i] * pbr_tbl[j]; 194 if (scale >= scale_needed) { 195 if (scale < minscale) { 196 minscale = scale; 197 *br = i; 198 *pbr = j; 199 } 200 break; 201 } 202 } 203 204 if (minscale == INT_MAX) { 205 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n", 206 speed_hz, clkrate); 207 *pbr = ARRAY_SIZE(pbr_tbl) - 1; 208 *br = ARRAY_SIZE(brs) - 1; 209 } 210 } 211 212 static void ns_delay_scale(char *psc, char *sc, int delay_ns, 213 unsigned long clkrate) 214 { 215 int pscale_tbl[4] = {1, 3, 5, 7}; 216 int scale_needed, scale, minscale = INT_MAX; 217 int i, j; 218 u32 remainder; 219 220 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC, 221 &remainder); 222 if (remainder) 223 scale_needed++; 224 225 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++) 226 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) { 227 scale = pscale_tbl[i] * (2 << j); 228 if (scale >= scale_needed) { 229 if (scale < minscale) { 230 minscale = scale; 231 *psc = i; 232 *sc = j; 233 } 234 break; 235 } 236 } 237 238 if (minscale == INT_MAX) { 239 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value", 240 delay_ns, clkrate); 241 *psc = ARRAY_SIZE(pscale_tbl) - 1; 242 *sc = SPI_CTAR_SCALE_BITS; 243 } 244 } 245 246 static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word) 247 { 248 u16 d16; 249 250 if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) 251 d16 = tx_word ? *(u16 *)dspi->tx : *(u8 *)dspi->tx; 252 else 253 d16 = dspi->void_write_data; 254 255 dspi->tx += tx_word + 1; 256 dspi->len -= tx_word + 1; 257 258 return SPI_PUSHR_TXDATA(d16) | 259 SPI_PUSHR_PCS(dspi->cs) | 260 SPI_PUSHR_CTAS(0) | 261 SPI_PUSHR_CONT; 262 } 263 264 static void dspi_data_from_popr(struct fsl_dspi *dspi, int rx_word) 265 { 266 u16 d; 267 unsigned int val; 268 269 regmap_read(dspi->regmap, SPI_POPR, &val); 270 d = SPI_POPR_RXDATA(val); 271 272 if (!(dspi->dataflags & TRAN_STATE_RX_VOID)) 273 rx_word ? (*(u16 *)dspi->rx = d) : (*(u8 *)dspi->rx = d); 274 275 dspi->rx += rx_word + 1; 276 } 277 278 static int dspi_eoq_write(struct fsl_dspi *dspi) 279 { 280 int tx_count = 0; 281 int tx_word; 282 u32 dspi_pushr = 0; 283 284 tx_word = is_double_byte_mode(dspi); 285 286 while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) { 287 /* If we are in word mode, only have a single byte to transfer 288 * switch to byte mode temporarily. Will switch back at the 289 * end of the transfer. 290 */ 291 if (tx_word && (dspi->len == 1)) { 292 dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM; 293 regmap_update_bits(dspi->regmap, SPI_CTAR(0), 294 SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8)); 295 tx_word = 0; 296 } 297 298 dspi_pushr = dspi_data_to_pushr(dspi, tx_word); 299 300 if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) { 301 /* last transfer in the transfer */ 302 dspi_pushr |= SPI_PUSHR_EOQ; 303 if ((dspi->cs_change) && (!dspi->len)) 304 dspi_pushr &= ~SPI_PUSHR_CONT; 305 } else if (tx_word && (dspi->len == 1)) 306 dspi_pushr |= SPI_PUSHR_EOQ; 307 308 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr); 309 310 tx_count++; 311 } 312 313 return tx_count * (tx_word + 1); 314 } 315 316 static int dspi_eoq_read(struct fsl_dspi *dspi) 317 { 318 int rx_count = 0; 319 int rx_word = is_double_byte_mode(dspi); 320 321 while ((dspi->rx < dspi->rx_end) 322 && (rx_count < DSPI_FIFO_SIZE)) { 323 if (rx_word && (dspi->rx_end - dspi->rx) == 1) 324 rx_word = 0; 325 326 dspi_data_from_popr(dspi, rx_word); 327 rx_count++; 328 } 329 330 return rx_count; 331 } 332 333 static int dspi_tcfq_write(struct fsl_dspi *dspi) 334 { 335 int tx_word; 336 u32 dspi_pushr = 0; 337 338 tx_word = is_double_byte_mode(dspi); 339 340 if (tx_word && (dspi->len == 1)) { 341 dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM; 342 regmap_update_bits(dspi->regmap, SPI_CTAR(0), 343 SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8)); 344 tx_word = 0; 345 } 346 347 dspi_pushr = dspi_data_to_pushr(dspi, tx_word); 348 349 if ((dspi->cs_change) && (!dspi->len)) 350 dspi_pushr &= ~SPI_PUSHR_CONT; 351 352 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr); 353 354 return tx_word + 1; 355 } 356 357 static void dspi_tcfq_read(struct fsl_dspi *dspi) 358 { 359 int rx_word = is_double_byte_mode(dspi); 360 361 if (rx_word && (dspi->rx_end - dspi->rx) == 1) 362 rx_word = 0; 363 364 dspi_data_from_popr(dspi, rx_word); 365 } 366 367 static int dspi_transfer_one_message(struct spi_master *master, 368 struct spi_message *message) 369 { 370 struct fsl_dspi *dspi = spi_master_get_devdata(master); 371 struct spi_device *spi = message->spi; 372 struct spi_transfer *transfer; 373 int status = 0; 374 enum dspi_trans_mode trans_mode; 375 u32 spi_tcr; 376 377 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr); 378 dspi->spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr); 379 380 message->actual_length = 0; 381 382 list_for_each_entry(transfer, &message->transfers, transfer_list) { 383 dspi->cur_transfer = transfer; 384 dspi->cur_msg = message; 385 dspi->cur_chip = spi_get_ctldata(spi); 386 dspi->cs = spi->chip_select; 387 dspi->cs_change = 0; 388 if (dspi->cur_transfer->transfer_list.next 389 == &dspi->cur_msg->transfers) 390 dspi->cs_change = 1; 391 dspi->void_write_data = dspi->cur_chip->void_write_data; 392 393 dspi->dataflags = 0; 394 dspi->tx = (void *)transfer->tx_buf; 395 dspi->tx_end = dspi->tx + transfer->len; 396 dspi->rx = transfer->rx_buf; 397 dspi->rx_end = dspi->rx + transfer->len; 398 dspi->len = transfer->len; 399 400 if (!dspi->rx) 401 dspi->dataflags |= TRAN_STATE_RX_VOID; 402 403 if (!dspi->tx) 404 dspi->dataflags |= TRAN_STATE_TX_VOID; 405 406 regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val); 407 regmap_update_bits(dspi->regmap, SPI_MCR, 408 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF, 409 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF); 410 regmap_write(dspi->regmap, SPI_CTAR(0), 411 dspi->cur_chip->ctar_val); 412 413 trans_mode = dspi->devtype_data->trans_mode; 414 switch (trans_mode) { 415 case DSPI_EOQ_MODE: 416 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE); 417 dspi_eoq_write(dspi); 418 break; 419 case DSPI_TCFQ_MODE: 420 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE); 421 dspi_tcfq_write(dspi); 422 break; 423 default: 424 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n", 425 trans_mode); 426 status = -EINVAL; 427 goto out; 428 } 429 430 if (wait_event_interruptible(dspi->waitq, dspi->waitflags)) 431 dev_err(&dspi->pdev->dev, "wait transfer complete fail!\n"); 432 dspi->waitflags = 0; 433 434 if (transfer->delay_usecs) 435 udelay(transfer->delay_usecs); 436 } 437 438 out: 439 message->status = status; 440 spi_finalize_current_message(master); 441 442 return status; 443 } 444 445 static int dspi_setup(struct spi_device *spi) 446 { 447 struct chip_data *chip; 448 struct fsl_dspi *dspi = spi_master_get_devdata(spi->master); 449 u32 cs_sck_delay = 0, sck_cs_delay = 0; 450 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0; 451 unsigned char pasc = 0, asc = 0, fmsz = 0; 452 unsigned long clkrate; 453 454 if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) { 455 fmsz = spi->bits_per_word - 1; 456 } else { 457 pr_err("Invalid wordsize\n"); 458 return -ENODEV; 459 } 460 461 /* Only alloc on first setup */ 462 chip = spi_get_ctldata(spi); 463 if (chip == NULL) { 464 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 465 if (!chip) 466 return -ENOMEM; 467 } 468 469 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay", 470 &cs_sck_delay); 471 472 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay", 473 &sck_cs_delay); 474 475 chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS | 476 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF; 477 478 chip->void_write_data = 0; 479 480 clkrate = clk_get_rate(dspi->clk); 481 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate); 482 483 /* Set PCS to SCK delay scale values */ 484 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate); 485 486 /* Set After SCK delay scale values */ 487 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate); 488 489 chip->ctar_val = SPI_CTAR_FMSZ(fmsz) 490 | SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0) 491 | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0) 492 | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0) 493 | SPI_CTAR_PCSSCK(pcssck) 494 | SPI_CTAR_CSSCK(cssck) 495 | SPI_CTAR_PASC(pasc) 496 | SPI_CTAR_ASC(asc) 497 | SPI_CTAR_PBR(pbr) 498 | SPI_CTAR_BR(br); 499 500 spi_set_ctldata(spi, chip); 501 502 return 0; 503 } 504 505 static void dspi_cleanup(struct spi_device *spi) 506 { 507 struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi); 508 509 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n", 510 spi->master->bus_num, spi->chip_select); 511 512 kfree(chip); 513 } 514 515 static irqreturn_t dspi_interrupt(int irq, void *dev_id) 516 { 517 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id; 518 struct spi_message *msg = dspi->cur_msg; 519 enum dspi_trans_mode trans_mode; 520 u32 spi_sr, spi_tcr; 521 u32 spi_tcnt, tcnt_diff; 522 int tx_word; 523 524 regmap_read(dspi->regmap, SPI_SR, &spi_sr); 525 regmap_write(dspi->regmap, SPI_SR, spi_sr); 526 527 528 if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) { 529 tx_word = is_double_byte_mode(dspi); 530 531 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr); 532 spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr); 533 /* 534 * The width of SPI Transfer Counter in SPI_TCR is 16bits, 535 * so the max couner is 65535. When the counter reach 65535, 536 * it will wrap around, counter reset to zero. 537 * spi_tcnt my be less than dspi->spi_tcnt, it means the 538 * counter already wrapped around. 539 * SPI Transfer Counter is a counter of transmitted frames. 540 * The size of frame maybe two bytes. 541 */ 542 tcnt_diff = ((spi_tcnt + SPI_TCR_TCNT_MAX) - dspi->spi_tcnt) 543 % SPI_TCR_TCNT_MAX; 544 tcnt_diff *= (tx_word + 1); 545 if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) 546 tcnt_diff--; 547 548 msg->actual_length += tcnt_diff; 549 550 dspi->spi_tcnt = spi_tcnt; 551 552 trans_mode = dspi->devtype_data->trans_mode; 553 switch (trans_mode) { 554 case DSPI_EOQ_MODE: 555 dspi_eoq_read(dspi); 556 break; 557 case DSPI_TCFQ_MODE: 558 dspi_tcfq_read(dspi); 559 break; 560 default: 561 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n", 562 trans_mode); 563 return IRQ_HANDLED; 564 } 565 566 if (!dspi->len) { 567 if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) { 568 regmap_update_bits(dspi->regmap, 569 SPI_CTAR(0), 570 SPI_FRAME_BITS_MASK, 571 SPI_FRAME_BITS(16)); 572 dspi->dataflags &= ~TRAN_STATE_WORD_ODD_NUM; 573 } 574 575 dspi->waitflags = 1; 576 wake_up_interruptible(&dspi->waitq); 577 } else { 578 switch (trans_mode) { 579 case DSPI_EOQ_MODE: 580 dspi_eoq_write(dspi); 581 break; 582 case DSPI_TCFQ_MODE: 583 dspi_tcfq_write(dspi); 584 break; 585 default: 586 dev_err(&dspi->pdev->dev, 587 "unsupported trans_mode %u\n", 588 trans_mode); 589 } 590 } 591 } 592 593 return IRQ_HANDLED; 594 } 595 596 static const struct of_device_id fsl_dspi_dt_ids[] = { 597 { .compatible = "fsl,vf610-dspi", .data = (void *)&vf610_data, }, 598 { .compatible = "fsl,ls1021a-v1.0-dspi", 599 .data = (void *)&ls1021a_v1_data, }, 600 { .compatible = "fsl,ls2085a-dspi", .data = (void *)&ls2085a_data, }, 601 { /* sentinel */ } 602 }; 603 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids); 604 605 #ifdef CONFIG_PM_SLEEP 606 static int dspi_suspend(struct device *dev) 607 { 608 struct spi_master *master = dev_get_drvdata(dev); 609 struct fsl_dspi *dspi = spi_master_get_devdata(master); 610 611 spi_master_suspend(master); 612 clk_disable_unprepare(dspi->clk); 613 614 pinctrl_pm_select_sleep_state(dev); 615 616 return 0; 617 } 618 619 static int dspi_resume(struct device *dev) 620 { 621 struct spi_master *master = dev_get_drvdata(dev); 622 struct fsl_dspi *dspi = spi_master_get_devdata(master); 623 624 pinctrl_pm_select_default_state(dev); 625 626 clk_prepare_enable(dspi->clk); 627 spi_master_resume(master); 628 629 return 0; 630 } 631 #endif /* CONFIG_PM_SLEEP */ 632 633 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume); 634 635 static const struct regmap_config dspi_regmap_config = { 636 .reg_bits = 32, 637 .val_bits = 32, 638 .reg_stride = 4, 639 .max_register = 0x88, 640 }; 641 642 static int dspi_probe(struct platform_device *pdev) 643 { 644 struct device_node *np = pdev->dev.of_node; 645 struct spi_master *master; 646 struct fsl_dspi *dspi; 647 struct resource *res; 648 void __iomem *base; 649 int ret = 0, cs_num, bus_num; 650 const struct of_device_id *of_id = 651 of_match_device(fsl_dspi_dt_ids, &pdev->dev); 652 653 master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi)); 654 if (!master) 655 return -ENOMEM; 656 657 dspi = spi_master_get_devdata(master); 658 dspi->pdev = pdev; 659 dspi->master = master; 660 661 master->transfer = NULL; 662 master->setup = dspi_setup; 663 master->transfer_one_message = dspi_transfer_one_message; 664 master->dev.of_node = pdev->dev.of_node; 665 666 master->cleanup = dspi_cleanup; 667 master->mode_bits = SPI_CPOL | SPI_CPHA; 668 master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) | 669 SPI_BPW_MASK(16); 670 671 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num); 672 if (ret < 0) { 673 dev_err(&pdev->dev, "can't get spi-num-chipselects\n"); 674 goto out_master_put; 675 } 676 master->num_chipselect = cs_num; 677 678 ret = of_property_read_u32(np, "bus-num", &bus_num); 679 if (ret < 0) { 680 dev_err(&pdev->dev, "can't get bus-num\n"); 681 goto out_master_put; 682 } 683 master->bus_num = bus_num; 684 685 dspi->devtype_data = (struct fsl_dspi_devtype_data *)of_id->data; 686 if (!dspi->devtype_data) { 687 dev_err(&pdev->dev, "can't get devtype_data\n"); 688 ret = -EFAULT; 689 goto out_master_put; 690 } 691 692 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 693 base = devm_ioremap_resource(&pdev->dev, res); 694 if (IS_ERR(base)) { 695 ret = PTR_ERR(base); 696 goto out_master_put; 697 } 698 699 dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, NULL, base, 700 &dspi_regmap_config); 701 if (IS_ERR(dspi->regmap)) { 702 dev_err(&pdev->dev, "failed to init regmap: %ld\n", 703 PTR_ERR(dspi->regmap)); 704 return PTR_ERR(dspi->regmap); 705 } 706 707 dspi->irq = platform_get_irq(pdev, 0); 708 if (dspi->irq < 0) { 709 dev_err(&pdev->dev, "can't get platform irq\n"); 710 ret = dspi->irq; 711 goto out_master_put; 712 } 713 714 ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0, 715 pdev->name, dspi); 716 if (ret < 0) { 717 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n"); 718 goto out_master_put; 719 } 720 721 dspi->clk = devm_clk_get(&pdev->dev, "dspi"); 722 if (IS_ERR(dspi->clk)) { 723 ret = PTR_ERR(dspi->clk); 724 dev_err(&pdev->dev, "unable to get clock\n"); 725 goto out_master_put; 726 } 727 clk_prepare_enable(dspi->clk); 728 729 init_waitqueue_head(&dspi->waitq); 730 platform_set_drvdata(pdev, master); 731 732 ret = spi_register_master(master); 733 if (ret != 0) { 734 dev_err(&pdev->dev, "Problem registering DSPI master\n"); 735 goto out_clk_put; 736 } 737 738 return ret; 739 740 out_clk_put: 741 clk_disable_unprepare(dspi->clk); 742 out_master_put: 743 spi_master_put(master); 744 745 return ret; 746 } 747 748 static int dspi_remove(struct platform_device *pdev) 749 { 750 struct spi_master *master = platform_get_drvdata(pdev); 751 struct fsl_dspi *dspi = spi_master_get_devdata(master); 752 753 /* Disconnect from the SPI framework */ 754 clk_disable_unprepare(dspi->clk); 755 spi_unregister_master(dspi->master); 756 spi_master_put(dspi->master); 757 758 return 0; 759 } 760 761 static struct platform_driver fsl_dspi_driver = { 762 .driver.name = DRIVER_NAME, 763 .driver.of_match_table = fsl_dspi_dt_ids, 764 .driver.owner = THIS_MODULE, 765 .driver.pm = &dspi_pm, 766 .probe = dspi_probe, 767 .remove = dspi_remove, 768 }; 769 module_platform_driver(fsl_dspi_driver); 770 771 MODULE_DESCRIPTION("Freescale DSPI Controller Driver"); 772 MODULE_LICENSE("GPL"); 773 MODULE_ALIAS("platform:" DRIVER_NAME); 774