xref: /openbmc/linux/drivers/spi/spi-fsl-dspi.c (revision 81de3bf3)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 //
5 // Freescale DSPI driver
6 // This file contains a driver for the Freescale DSPI
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/regmap.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/spi-fsl-dspi.h>
20 
21 #define DRIVER_NAME			"fsl-dspi"
22 
23 #ifdef CONFIG_M5441x
24 #define DSPI_FIFO_SIZE			16
25 #else
26 #define DSPI_FIFO_SIZE			4
27 #endif
28 #define DSPI_DMA_BUFSIZE		(DSPI_FIFO_SIZE * 1024)
29 
30 #define SPI_MCR				0x00
31 #define SPI_MCR_MASTER			BIT(31)
32 #define SPI_MCR_PCSIS			(0x3F << 16)
33 #define SPI_MCR_CLR_TXF			BIT(11)
34 #define SPI_MCR_CLR_RXF			BIT(10)
35 #define SPI_MCR_XSPI			BIT(3)
36 
37 #define SPI_TCR				0x08
38 #define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
39 
40 #define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
41 #define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
42 #define SPI_CTAR_CPOL			BIT(26)
43 #define SPI_CTAR_CPHA			BIT(25)
44 #define SPI_CTAR_LSBFE			BIT(24)
45 #define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
46 #define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
47 #define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
48 #define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
49 #define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
50 #define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
51 #define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
52 #define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
53 #define SPI_CTAR_SCALE_BITS		0xf
54 
55 #define SPI_CTAR0_SLAVE			0x0c
56 
57 #define SPI_SR				0x2c
58 #define SPI_SR_TCFQF			BIT(31)
59 #define SPI_SR_EOQF			BIT(28)
60 #define SPI_SR_TFUF			BIT(27)
61 #define SPI_SR_TFFF			BIT(25)
62 #define SPI_SR_CMDTCF			BIT(23)
63 #define SPI_SR_SPEF			BIT(21)
64 #define SPI_SR_RFOF			BIT(19)
65 #define SPI_SR_TFIWF			BIT(18)
66 #define SPI_SR_RFDF			BIT(17)
67 #define SPI_SR_CMDFFF			BIT(16)
68 #define SPI_SR_CLEAR			(SPI_SR_TCFQF | SPI_SR_EOQF | \
69 					SPI_SR_TFUF | SPI_SR_TFFF | \
70 					SPI_SR_CMDTCF | SPI_SR_SPEF | \
71 					SPI_SR_RFOF | SPI_SR_TFIWF | \
72 					SPI_SR_RFDF | SPI_SR_CMDFFF)
73 
74 #define SPI_RSER_TFFFE			BIT(25)
75 #define SPI_RSER_TFFFD			BIT(24)
76 #define SPI_RSER_RFDFE			BIT(17)
77 #define SPI_RSER_RFDFD			BIT(16)
78 
79 #define SPI_RSER			0x30
80 #define SPI_RSER_TCFQE			BIT(31)
81 #define SPI_RSER_EOQFE			BIT(28)
82 
83 #define SPI_PUSHR			0x34
84 #define SPI_PUSHR_CMD_CONT		BIT(15)
85 #define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
86 #define SPI_PUSHR_CMD_EOQ		BIT(11)
87 #define SPI_PUSHR_CMD_CTCNT		BIT(10)
88 #define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
89 
90 #define SPI_PUSHR_SLAVE			0x34
91 
92 #define SPI_POPR			0x38
93 
94 #define SPI_TXFR0			0x3c
95 #define SPI_TXFR1			0x40
96 #define SPI_TXFR2			0x44
97 #define SPI_TXFR3			0x48
98 #define SPI_RXFR0			0x7c
99 #define SPI_RXFR1			0x80
100 #define SPI_RXFR2			0x84
101 #define SPI_RXFR3			0x88
102 
103 #define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
104 #define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
105 #define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
106 
107 #define SPI_SREX			0x13c
108 
109 #define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
110 #define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
111 
112 /* Register offsets for regmap_pushr */
113 #define PUSHR_CMD			0x0
114 #define PUSHR_TX			0x2
115 
116 #define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
117 
118 struct chip_data {
119 	u32			ctar_val;
120 	u16			void_write_data;
121 };
122 
123 enum dspi_trans_mode {
124 	DSPI_EOQ_MODE = 0,
125 	DSPI_TCFQ_MODE,
126 	DSPI_DMA_MODE,
127 };
128 
129 struct fsl_dspi_devtype_data {
130 	enum dspi_trans_mode	trans_mode;
131 	u8			max_clock_factor;
132 	bool			ptp_sts_supported;
133 	bool			xspi_mode;
134 };
135 
136 static const struct fsl_dspi_devtype_data vf610_data = {
137 	.trans_mode		= DSPI_DMA_MODE,
138 	.max_clock_factor	= 2,
139 };
140 
141 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
142 	.trans_mode		= DSPI_TCFQ_MODE,
143 	.max_clock_factor	= 8,
144 	.ptp_sts_supported	= true,
145 	.xspi_mode		= true,
146 };
147 
148 static const struct fsl_dspi_devtype_data ls2085a_data = {
149 	.trans_mode		= DSPI_TCFQ_MODE,
150 	.max_clock_factor	= 8,
151 	.ptp_sts_supported	= true,
152 };
153 
154 static const struct fsl_dspi_devtype_data coldfire_data = {
155 	.trans_mode		= DSPI_EOQ_MODE,
156 	.max_clock_factor	= 8,
157 };
158 
159 struct fsl_dspi_dma {
160 	/* Length of transfer in words of DSPI_FIFO_SIZE */
161 	u32					curr_xfer_len;
162 
163 	u32					*tx_dma_buf;
164 	struct dma_chan				*chan_tx;
165 	dma_addr_t				tx_dma_phys;
166 	struct completion			cmd_tx_complete;
167 	struct dma_async_tx_descriptor		*tx_desc;
168 
169 	u32					*rx_dma_buf;
170 	struct dma_chan				*chan_rx;
171 	dma_addr_t				rx_dma_phys;
172 	struct completion			cmd_rx_complete;
173 	struct dma_async_tx_descriptor		*rx_desc;
174 };
175 
176 struct fsl_dspi {
177 	struct spi_controller			*ctlr;
178 	struct platform_device			*pdev;
179 
180 	struct regmap				*regmap;
181 	struct regmap				*regmap_pushr;
182 	int					irq;
183 	struct clk				*clk;
184 
185 	struct spi_transfer			*cur_transfer;
186 	struct spi_message			*cur_msg;
187 	struct chip_data			*cur_chip;
188 	size_t					len;
189 	const void				*tx;
190 	void					*rx;
191 	void					*rx_end;
192 	u16					void_write_data;
193 	u16					tx_cmd;
194 	u8					bits_per_word;
195 	u8					bytes_per_word;
196 	const struct fsl_dspi_devtype_data	*devtype_data;
197 
198 	wait_queue_head_t			waitq;
199 	u32					waitflags;
200 
201 	struct fsl_dspi_dma			*dma;
202 };
203 
204 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
205 {
206 	u32 txdata = 0;
207 
208 	if (dspi->tx) {
209 		if (dspi->bytes_per_word == 1)
210 			txdata = *(u8 *)dspi->tx;
211 		else if (dspi->bytes_per_word == 2)
212 			txdata = *(u16 *)dspi->tx;
213 		else  /* dspi->bytes_per_word == 4 */
214 			txdata = *(u32 *)dspi->tx;
215 		dspi->tx += dspi->bytes_per_word;
216 	}
217 	dspi->len -= dspi->bytes_per_word;
218 	return txdata;
219 }
220 
221 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
222 {
223 	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
224 
225 	if (spi_controller_is_slave(dspi->ctlr))
226 		return data;
227 
228 	if (dspi->len > 0)
229 		cmd |= SPI_PUSHR_CMD_CONT;
230 	return cmd << 16 | data;
231 }
232 
233 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
234 {
235 	if (!dspi->rx)
236 		return;
237 
238 	/* Mask off undefined bits */
239 	rxdata &= (1 << dspi->bits_per_word) - 1;
240 
241 	if (dspi->bytes_per_word == 1)
242 		*(u8 *)dspi->rx = rxdata;
243 	else if (dspi->bytes_per_word == 2)
244 		*(u16 *)dspi->rx = rxdata;
245 	else /* dspi->bytes_per_word == 4 */
246 		*(u32 *)dspi->rx = rxdata;
247 	dspi->rx += dspi->bytes_per_word;
248 }
249 
250 static void dspi_tx_dma_callback(void *arg)
251 {
252 	struct fsl_dspi *dspi = arg;
253 	struct fsl_dspi_dma *dma = dspi->dma;
254 
255 	complete(&dma->cmd_tx_complete);
256 }
257 
258 static void dspi_rx_dma_callback(void *arg)
259 {
260 	struct fsl_dspi *dspi = arg;
261 	struct fsl_dspi_dma *dma = dspi->dma;
262 	int i;
263 
264 	if (dspi->rx) {
265 		for (i = 0; i < dma->curr_xfer_len; i++)
266 			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
267 	}
268 
269 	complete(&dma->cmd_rx_complete);
270 }
271 
272 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
273 {
274 	struct device *dev = &dspi->pdev->dev;
275 	struct fsl_dspi_dma *dma = dspi->dma;
276 	int time_left;
277 	int i;
278 
279 	for (i = 0; i < dma->curr_xfer_len; i++)
280 		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
281 
282 	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
283 					dma->tx_dma_phys,
284 					dma->curr_xfer_len *
285 					DMA_SLAVE_BUSWIDTH_4_BYTES,
286 					DMA_MEM_TO_DEV,
287 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
288 	if (!dma->tx_desc) {
289 		dev_err(dev, "Not able to get desc for DMA xfer\n");
290 		return -EIO;
291 	}
292 
293 	dma->tx_desc->callback = dspi_tx_dma_callback;
294 	dma->tx_desc->callback_param = dspi;
295 	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
296 		dev_err(dev, "DMA submit failed\n");
297 		return -EINVAL;
298 	}
299 
300 	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
301 					dma->rx_dma_phys,
302 					dma->curr_xfer_len *
303 					DMA_SLAVE_BUSWIDTH_4_BYTES,
304 					DMA_DEV_TO_MEM,
305 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
306 	if (!dma->rx_desc) {
307 		dev_err(dev, "Not able to get desc for DMA xfer\n");
308 		return -EIO;
309 	}
310 
311 	dma->rx_desc->callback = dspi_rx_dma_callback;
312 	dma->rx_desc->callback_param = dspi;
313 	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
314 		dev_err(dev, "DMA submit failed\n");
315 		return -EINVAL;
316 	}
317 
318 	reinit_completion(&dspi->dma->cmd_rx_complete);
319 	reinit_completion(&dspi->dma->cmd_tx_complete);
320 
321 	dma_async_issue_pending(dma->chan_rx);
322 	dma_async_issue_pending(dma->chan_tx);
323 
324 	if (spi_controller_is_slave(dspi->ctlr)) {
325 		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
326 		return 0;
327 	}
328 
329 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
330 						DMA_COMPLETION_TIMEOUT);
331 	if (time_left == 0) {
332 		dev_err(dev, "DMA tx timeout\n");
333 		dmaengine_terminate_all(dma->chan_tx);
334 		dmaengine_terminate_all(dma->chan_rx);
335 		return -ETIMEDOUT;
336 	}
337 
338 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
339 						DMA_COMPLETION_TIMEOUT);
340 	if (time_left == 0) {
341 		dev_err(dev, "DMA rx timeout\n");
342 		dmaengine_terminate_all(dma->chan_tx);
343 		dmaengine_terminate_all(dma->chan_rx);
344 		return -ETIMEDOUT;
345 	}
346 
347 	return 0;
348 }
349 
350 static int dspi_dma_xfer(struct fsl_dspi *dspi)
351 {
352 	struct spi_message *message = dspi->cur_msg;
353 	struct device *dev = &dspi->pdev->dev;
354 	struct fsl_dspi_dma *dma = dspi->dma;
355 	int curr_remaining_bytes;
356 	int bytes_per_buffer;
357 	int ret = 0;
358 
359 	curr_remaining_bytes = dspi->len;
360 	bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
361 	while (curr_remaining_bytes) {
362 		/* Check if current transfer fits the DMA buffer */
363 		dma->curr_xfer_len = curr_remaining_bytes
364 			/ dspi->bytes_per_word;
365 		if (dma->curr_xfer_len > bytes_per_buffer)
366 			dma->curr_xfer_len = bytes_per_buffer;
367 
368 		ret = dspi_next_xfer_dma_submit(dspi);
369 		if (ret) {
370 			dev_err(dev, "DMA transfer failed\n");
371 			goto exit;
372 
373 		} else {
374 			const int len =
375 				dma->curr_xfer_len * dspi->bytes_per_word;
376 			curr_remaining_bytes -= len;
377 			message->actual_length += len;
378 			if (curr_remaining_bytes < 0)
379 				curr_remaining_bytes = 0;
380 		}
381 	}
382 
383 exit:
384 	return ret;
385 }
386 
387 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
388 {
389 	struct device *dev = &dspi->pdev->dev;
390 	struct dma_slave_config cfg;
391 	struct fsl_dspi_dma *dma;
392 	int ret;
393 
394 	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
395 	if (!dma)
396 		return -ENOMEM;
397 
398 	dma->chan_rx = dma_request_slave_channel(dev, "rx");
399 	if (!dma->chan_rx) {
400 		dev_err(dev, "rx dma channel not available\n");
401 		ret = -ENODEV;
402 		return ret;
403 	}
404 
405 	dma->chan_tx = dma_request_slave_channel(dev, "tx");
406 	if (!dma->chan_tx) {
407 		dev_err(dev, "tx dma channel not available\n");
408 		ret = -ENODEV;
409 		goto err_tx_channel;
410 	}
411 
412 	dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
413 					     &dma->tx_dma_phys, GFP_KERNEL);
414 	if (!dma->tx_dma_buf) {
415 		ret = -ENOMEM;
416 		goto err_tx_dma_buf;
417 	}
418 
419 	dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
420 					     &dma->rx_dma_phys, GFP_KERNEL);
421 	if (!dma->rx_dma_buf) {
422 		ret = -ENOMEM;
423 		goto err_rx_dma_buf;
424 	}
425 
426 	cfg.src_addr = phy_addr + SPI_POPR;
427 	cfg.dst_addr = phy_addr + SPI_PUSHR;
428 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
429 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
430 	cfg.src_maxburst = 1;
431 	cfg.dst_maxburst = 1;
432 
433 	cfg.direction = DMA_DEV_TO_MEM;
434 	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
435 	if (ret) {
436 		dev_err(dev, "can't configure rx dma channel\n");
437 		ret = -EINVAL;
438 		goto err_slave_config;
439 	}
440 
441 	cfg.direction = DMA_MEM_TO_DEV;
442 	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
443 	if (ret) {
444 		dev_err(dev, "can't configure tx dma channel\n");
445 		ret = -EINVAL;
446 		goto err_slave_config;
447 	}
448 
449 	dspi->dma = dma;
450 	init_completion(&dma->cmd_tx_complete);
451 	init_completion(&dma->cmd_rx_complete);
452 
453 	return 0;
454 
455 err_slave_config:
456 	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
457 			dma->rx_dma_buf, dma->rx_dma_phys);
458 err_rx_dma_buf:
459 	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
460 			dma->tx_dma_buf, dma->tx_dma_phys);
461 err_tx_dma_buf:
462 	dma_release_channel(dma->chan_tx);
463 err_tx_channel:
464 	dma_release_channel(dma->chan_rx);
465 
466 	devm_kfree(dev, dma);
467 	dspi->dma = NULL;
468 
469 	return ret;
470 }
471 
472 static void dspi_release_dma(struct fsl_dspi *dspi)
473 {
474 	struct fsl_dspi_dma *dma = dspi->dma;
475 	struct device *dev = &dspi->pdev->dev;
476 
477 	if (!dma)
478 		return;
479 
480 	if (dma->chan_tx) {
481 		dma_unmap_single(dev, dma->tx_dma_phys,
482 				 DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
483 		dma_release_channel(dma->chan_tx);
484 	}
485 
486 	if (dma->chan_rx) {
487 		dma_unmap_single(dev, dma->rx_dma_phys,
488 				 DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
489 		dma_release_channel(dma->chan_rx);
490 	}
491 }
492 
493 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
494 			   unsigned long clkrate)
495 {
496 	/* Valid baud rate pre-scaler values */
497 	int pbr_tbl[4] = {2, 3, 5, 7};
498 	int brs[16] = {	2,	4,	6,	8,
499 			16,	32,	64,	128,
500 			256,	512,	1024,	2048,
501 			4096,	8192,	16384,	32768 };
502 	int scale_needed, scale, minscale = INT_MAX;
503 	int i, j;
504 
505 	scale_needed = clkrate / speed_hz;
506 	if (clkrate % speed_hz)
507 		scale_needed++;
508 
509 	for (i = 0; i < ARRAY_SIZE(brs); i++)
510 		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
511 			scale = brs[i] * pbr_tbl[j];
512 			if (scale >= scale_needed) {
513 				if (scale < minscale) {
514 					minscale = scale;
515 					*br = i;
516 					*pbr = j;
517 				}
518 				break;
519 			}
520 		}
521 
522 	if (minscale == INT_MAX) {
523 		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
524 			speed_hz, clkrate);
525 		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
526 		*br =  ARRAY_SIZE(brs) - 1;
527 	}
528 }
529 
530 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
531 			   unsigned long clkrate)
532 {
533 	int scale_needed, scale, minscale = INT_MAX;
534 	int pscale_tbl[4] = {1, 3, 5, 7};
535 	u32 remainder;
536 	int i, j;
537 
538 	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
539 				   &remainder);
540 	if (remainder)
541 		scale_needed++;
542 
543 	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
544 		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
545 			scale = pscale_tbl[i] * (2 << j);
546 			if (scale >= scale_needed) {
547 				if (scale < minscale) {
548 					minscale = scale;
549 					*psc = i;
550 					*sc = j;
551 				}
552 				break;
553 			}
554 		}
555 
556 	if (minscale == INT_MAX) {
557 		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
558 			delay_ns, clkrate);
559 		*psc = ARRAY_SIZE(pscale_tbl) - 1;
560 		*sc = SPI_CTAR_SCALE_BITS;
561 	}
562 }
563 
564 static void fifo_write(struct fsl_dspi *dspi)
565 {
566 	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
567 }
568 
569 static void cmd_fifo_write(struct fsl_dspi *dspi)
570 {
571 	u16 cmd = dspi->tx_cmd;
572 
573 	if (dspi->len > 0)
574 		cmd |= SPI_PUSHR_CMD_CONT;
575 	regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
576 }
577 
578 static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
579 {
580 	regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
581 }
582 
583 static void dspi_tcfq_write(struct fsl_dspi *dspi)
584 {
585 	/* Clear transfer count */
586 	dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
587 
588 	if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
589 		/* Write two TX FIFO entries first, and then the corresponding
590 		 * CMD FIFO entry.
591 		 */
592 		u32 data = dspi_pop_tx(dspi);
593 
594 		if (dspi->cur_chip->ctar_val & SPI_CTAR_LSBFE) {
595 			/* LSB */
596 			tx_fifo_write(dspi, data & 0xFFFF);
597 			tx_fifo_write(dspi, data >> 16);
598 		} else {
599 			/* MSB */
600 			tx_fifo_write(dspi, data >> 16);
601 			tx_fifo_write(dspi, data & 0xFFFF);
602 		}
603 		cmd_fifo_write(dspi);
604 	} else {
605 		/* Write one entry to both TX FIFO and CMD FIFO
606 		 * simultaneously.
607 		 */
608 		fifo_write(dspi);
609 	}
610 }
611 
612 static u32 fifo_read(struct fsl_dspi *dspi)
613 {
614 	u32 rxdata = 0;
615 
616 	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
617 	return rxdata;
618 }
619 
620 static void dspi_tcfq_read(struct fsl_dspi *dspi)
621 {
622 	dspi_push_rx(dspi, fifo_read(dspi));
623 }
624 
625 static void dspi_eoq_write(struct fsl_dspi *dspi)
626 {
627 	int fifo_size = DSPI_FIFO_SIZE;
628 	u16 xfer_cmd = dspi->tx_cmd;
629 
630 	/* Fill TX FIFO with as many transfers as possible */
631 	while (dspi->len && fifo_size--) {
632 		dspi->tx_cmd = xfer_cmd;
633 		/* Request EOQF for last transfer in FIFO */
634 		if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
635 			dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
636 		/* Clear transfer count for first transfer in FIFO */
637 		if (fifo_size == (DSPI_FIFO_SIZE - 1))
638 			dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
639 		/* Write combined TX FIFO and CMD FIFO entry */
640 		fifo_write(dspi);
641 	}
642 }
643 
644 static void dspi_eoq_read(struct fsl_dspi *dspi)
645 {
646 	int fifo_size = DSPI_FIFO_SIZE;
647 
648 	/* Read one FIFO entry and push to rx buffer */
649 	while ((dspi->rx < dspi->rx_end) && fifo_size--)
650 		dspi_push_rx(dspi, fifo_read(dspi));
651 }
652 
653 static int dspi_rxtx(struct fsl_dspi *dspi)
654 {
655 	struct spi_message *msg = dspi->cur_msg;
656 	enum dspi_trans_mode trans_mode;
657 	u16 spi_tcnt;
658 	u32 spi_tcr;
659 
660 	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
661 				dspi->tx - dspi->bytes_per_word, !dspi->irq);
662 
663 	/* Get transfer counter (in number of SPI transfers). It was
664 	 * reset to 0 when transfer(s) were started.
665 	 */
666 	regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
667 	spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
668 	/* Update total number of bytes that were transferred */
669 	msg->actual_length += spi_tcnt * dspi->bytes_per_word;
670 
671 	trans_mode = dspi->devtype_data->trans_mode;
672 	if (trans_mode == DSPI_EOQ_MODE)
673 		dspi_eoq_read(dspi);
674 	else if (trans_mode == DSPI_TCFQ_MODE)
675 		dspi_tcfq_read(dspi);
676 
677 	if (!dspi->len)
678 		/* Success! */
679 		return 0;
680 
681 	spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
682 			       dspi->tx, !dspi->irq);
683 
684 	if (trans_mode == DSPI_EOQ_MODE)
685 		dspi_eoq_write(dspi);
686 	else if (trans_mode == DSPI_TCFQ_MODE)
687 		dspi_tcfq_write(dspi);
688 
689 	return -EINPROGRESS;
690 }
691 
692 static int dspi_poll(struct fsl_dspi *dspi)
693 {
694 	int tries = 1000;
695 	u32 spi_sr;
696 
697 	do {
698 		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
699 		regmap_write(dspi->regmap, SPI_SR, spi_sr);
700 
701 		if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF))
702 			break;
703 	} while (--tries);
704 
705 	if (!tries)
706 		return -ETIMEDOUT;
707 
708 	return dspi_rxtx(dspi);
709 }
710 
711 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
712 {
713 	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
714 	u32 spi_sr;
715 
716 	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
717 	regmap_write(dspi->regmap, SPI_SR, spi_sr);
718 
719 	if (!(spi_sr & SPI_SR_EOQF))
720 		return IRQ_NONE;
721 
722 	if (dspi_rxtx(dspi) == 0) {
723 		dspi->waitflags = 1;
724 		wake_up_interruptible(&dspi->waitq);
725 	}
726 
727 	return IRQ_HANDLED;
728 }
729 
730 static int dspi_transfer_one_message(struct spi_controller *ctlr,
731 				     struct spi_message *message)
732 {
733 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
734 	struct spi_device *spi = message->spi;
735 	enum dspi_trans_mode trans_mode;
736 	struct spi_transfer *transfer;
737 	int status = 0;
738 
739 	message->actual_length = 0;
740 
741 	list_for_each_entry(transfer, &message->transfers, transfer_list) {
742 		dspi->cur_transfer = transfer;
743 		dspi->cur_msg = message;
744 		dspi->cur_chip = spi_get_ctldata(spi);
745 		/* Prepare command word for CMD FIFO */
746 		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
747 			       SPI_PUSHR_CMD_PCS(spi->chip_select);
748 		if (list_is_last(&dspi->cur_transfer->transfer_list,
749 				 &dspi->cur_msg->transfers)) {
750 			/* Leave PCS activated after last transfer when
751 			 * cs_change is set.
752 			 */
753 			if (transfer->cs_change)
754 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
755 		} else {
756 			/* Keep PCS active between transfers in same message
757 			 * when cs_change is not set, and de-activate PCS
758 			 * between transfers in the same message when
759 			 * cs_change is set.
760 			 */
761 			if (!transfer->cs_change)
762 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
763 		}
764 
765 		dspi->void_write_data = dspi->cur_chip->void_write_data;
766 
767 		dspi->tx = transfer->tx_buf;
768 		dspi->rx = transfer->rx_buf;
769 		dspi->rx_end = dspi->rx + transfer->len;
770 		dspi->len = transfer->len;
771 		/* Validated transfer specific frame size (defaults applied) */
772 		dspi->bits_per_word = transfer->bits_per_word;
773 		if (transfer->bits_per_word <= 8)
774 			dspi->bytes_per_word = 1;
775 		else if (transfer->bits_per_word <= 16)
776 			dspi->bytes_per_word = 2;
777 		else
778 			dspi->bytes_per_word = 4;
779 
780 		regmap_update_bits(dspi->regmap, SPI_MCR,
781 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
782 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
783 		regmap_write(dspi->regmap, SPI_CTAR(0),
784 			     dspi->cur_chip->ctar_val |
785 			     SPI_FRAME_BITS(transfer->bits_per_word));
786 		if (dspi->devtype_data->xspi_mode)
787 			regmap_write(dspi->regmap, SPI_CTARE(0),
788 				     SPI_FRAME_EBITS(transfer->bits_per_word) |
789 				     SPI_CTARE_DTCP(1));
790 
791 		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
792 				       dspi->tx, !dspi->irq);
793 
794 		trans_mode = dspi->devtype_data->trans_mode;
795 		switch (trans_mode) {
796 		case DSPI_EOQ_MODE:
797 			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
798 			dspi_eoq_write(dspi);
799 			break;
800 		case DSPI_TCFQ_MODE:
801 			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
802 			dspi_tcfq_write(dspi);
803 			break;
804 		case DSPI_DMA_MODE:
805 			regmap_write(dspi->regmap, SPI_RSER,
806 				     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
807 				     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
808 			status = dspi_dma_xfer(dspi);
809 			break;
810 		default:
811 			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
812 				trans_mode);
813 			status = -EINVAL;
814 			goto out;
815 		}
816 
817 		if (!dspi->irq) {
818 			do {
819 				status = dspi_poll(dspi);
820 			} while (status == -EINPROGRESS);
821 		} else if (trans_mode != DSPI_DMA_MODE) {
822 			status = wait_event_interruptible(dspi->waitq,
823 							  dspi->waitflags);
824 			dspi->waitflags = 0;
825 		}
826 		if (status)
827 			dev_err(&dspi->pdev->dev,
828 				"Waiting for transfer to complete failed!\n");
829 
830 		spi_transfer_delay_exec(transfer);
831 	}
832 
833 out:
834 	message->status = status;
835 	spi_finalize_current_message(ctlr);
836 
837 	return status;
838 }
839 
840 static int dspi_setup(struct spi_device *spi)
841 {
842 	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
843 	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
844 	u32 cs_sck_delay = 0, sck_cs_delay = 0;
845 	struct fsl_dspi_platform_data *pdata;
846 	unsigned char pasc = 0, asc = 0;
847 	struct chip_data *chip;
848 	unsigned long clkrate;
849 
850 	/* Only alloc on first setup */
851 	chip = spi_get_ctldata(spi);
852 	if (chip == NULL) {
853 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
854 		if (!chip)
855 			return -ENOMEM;
856 	}
857 
858 	pdata = dev_get_platdata(&dspi->pdev->dev);
859 
860 	if (!pdata) {
861 		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
862 				     &cs_sck_delay);
863 
864 		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
865 				     &sck_cs_delay);
866 	} else {
867 		cs_sck_delay = pdata->cs_sck_delay;
868 		sck_cs_delay = pdata->sck_cs_delay;
869 	}
870 
871 	chip->void_write_data = 0;
872 
873 	clkrate = clk_get_rate(dspi->clk);
874 	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
875 
876 	/* Set PCS to SCK delay scale values */
877 	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
878 
879 	/* Set After SCK delay scale values */
880 	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
881 
882 	chip->ctar_val = 0;
883 	if (spi->mode & SPI_CPOL)
884 		chip->ctar_val |= SPI_CTAR_CPOL;
885 	if (spi->mode & SPI_CPHA)
886 		chip->ctar_val |= SPI_CTAR_CPHA;
887 
888 	if (!spi_controller_is_slave(dspi->ctlr)) {
889 		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
890 				  SPI_CTAR_CSSCK(cssck) |
891 				  SPI_CTAR_PASC(pasc) |
892 				  SPI_CTAR_ASC(asc) |
893 				  SPI_CTAR_PBR(pbr) |
894 				  SPI_CTAR_BR(br);
895 
896 		if (spi->mode & SPI_LSB_FIRST)
897 			chip->ctar_val |= SPI_CTAR_LSBFE;
898 	}
899 
900 	spi_set_ctldata(spi, chip);
901 
902 	return 0;
903 }
904 
905 static void dspi_cleanup(struct spi_device *spi)
906 {
907 	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
908 
909 	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
910 		spi->controller->bus_num, spi->chip_select);
911 
912 	kfree(chip);
913 }
914 
915 static const struct of_device_id fsl_dspi_dt_ids[] = {
916 	{ .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
917 	{ .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
918 	{ .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
919 	{ /* sentinel */ }
920 };
921 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
922 
923 #ifdef CONFIG_PM_SLEEP
924 static int dspi_suspend(struct device *dev)
925 {
926 	struct spi_controller *ctlr = dev_get_drvdata(dev);
927 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
928 
929 	spi_controller_suspend(ctlr);
930 	clk_disable_unprepare(dspi->clk);
931 
932 	pinctrl_pm_select_sleep_state(dev);
933 
934 	return 0;
935 }
936 
937 static int dspi_resume(struct device *dev)
938 {
939 	struct spi_controller *ctlr = dev_get_drvdata(dev);
940 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
941 	int ret;
942 
943 	pinctrl_pm_select_default_state(dev);
944 
945 	ret = clk_prepare_enable(dspi->clk);
946 	if (ret)
947 		return ret;
948 	spi_controller_resume(ctlr);
949 
950 	return 0;
951 }
952 #endif /* CONFIG_PM_SLEEP */
953 
954 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
955 
956 static const struct regmap_range dspi_volatile_ranges[] = {
957 	regmap_reg_range(SPI_MCR, SPI_TCR),
958 	regmap_reg_range(SPI_SR, SPI_SR),
959 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
960 };
961 
962 static const struct regmap_access_table dspi_volatile_table = {
963 	.yes_ranges	= dspi_volatile_ranges,
964 	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
965 };
966 
967 static const struct regmap_config dspi_regmap_config = {
968 	.reg_bits	= 32,
969 	.val_bits	= 32,
970 	.reg_stride	= 4,
971 	.max_register	= 0x88,
972 	.volatile_table	= &dspi_volatile_table,
973 };
974 
975 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
976 	regmap_reg_range(SPI_MCR, SPI_TCR),
977 	regmap_reg_range(SPI_SR, SPI_SR),
978 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
979 	regmap_reg_range(SPI_SREX, SPI_SREX),
980 };
981 
982 static const struct regmap_access_table dspi_xspi_volatile_table = {
983 	.yes_ranges	= dspi_xspi_volatile_ranges,
984 	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
985 };
986 
987 static const struct regmap_config dspi_xspi_regmap_config[] = {
988 	{
989 		.reg_bits	= 32,
990 		.val_bits	= 32,
991 		.reg_stride	= 4,
992 		.max_register	= 0x13c,
993 		.volatile_table	= &dspi_xspi_volatile_table,
994 	},
995 	{
996 		.name		= "pushr",
997 		.reg_bits	= 16,
998 		.val_bits	= 16,
999 		.reg_stride	= 2,
1000 		.max_register	= 0x2,
1001 	},
1002 };
1003 
1004 static void dspi_init(struct fsl_dspi *dspi)
1005 {
1006 	unsigned int mcr = SPI_MCR_PCSIS;
1007 
1008 	if (dspi->devtype_data->xspi_mode)
1009 		mcr |= SPI_MCR_XSPI;
1010 	if (!spi_controller_is_slave(dspi->ctlr))
1011 		mcr |= SPI_MCR_MASTER;
1012 
1013 	regmap_write(dspi->regmap, SPI_MCR, mcr);
1014 	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1015 	if (dspi->devtype_data->xspi_mode)
1016 		regmap_write(dspi->regmap, SPI_CTARE(0),
1017 			     SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
1018 }
1019 
1020 static int dspi_slave_abort(struct spi_master *master)
1021 {
1022 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
1023 
1024 	/*
1025 	 * Terminate all pending DMA transactions for the SPI working
1026 	 * in SLAVE mode.
1027 	 */
1028 	dmaengine_terminate_sync(dspi->dma->chan_rx);
1029 	dmaengine_terminate_sync(dspi->dma->chan_tx);
1030 
1031 	/* Clear the internal DSPI RX and TX FIFO buffers */
1032 	regmap_update_bits(dspi->regmap, SPI_MCR,
1033 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1034 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1035 
1036 	return 0;
1037 }
1038 
1039 static int dspi_probe(struct platform_device *pdev)
1040 {
1041 	struct device_node *np = pdev->dev.of_node;
1042 	const struct regmap_config *regmap_config;
1043 	struct fsl_dspi_platform_data *pdata;
1044 	struct spi_controller *ctlr;
1045 	int ret, cs_num, bus_num;
1046 	struct fsl_dspi *dspi;
1047 	struct resource *res;
1048 	void __iomem *base;
1049 
1050 	ctlr = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
1051 	if (!ctlr)
1052 		return -ENOMEM;
1053 
1054 	dspi = spi_controller_get_devdata(ctlr);
1055 	dspi->pdev = pdev;
1056 	dspi->ctlr = ctlr;
1057 
1058 	ctlr->setup = dspi_setup;
1059 	ctlr->transfer_one_message = dspi_transfer_one_message;
1060 	ctlr->dev.of_node = pdev->dev.of_node;
1061 
1062 	ctlr->cleanup = dspi_cleanup;
1063 	ctlr->slave_abort = dspi_slave_abort;
1064 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1065 
1066 	pdata = dev_get_platdata(&pdev->dev);
1067 	if (pdata) {
1068 		ctlr->num_chipselect = pdata->cs_num;
1069 		ctlr->bus_num = pdata->bus_num;
1070 
1071 		dspi->devtype_data = &coldfire_data;
1072 	} else {
1073 
1074 		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1075 		if (ret < 0) {
1076 			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1077 			goto out_ctlr_put;
1078 		}
1079 		ctlr->num_chipselect = cs_num;
1080 
1081 		ret = of_property_read_u32(np, "bus-num", &bus_num);
1082 		if (ret < 0) {
1083 			dev_err(&pdev->dev, "can't get bus-num\n");
1084 			goto out_ctlr_put;
1085 		}
1086 		ctlr->bus_num = bus_num;
1087 
1088 		if (of_property_read_bool(np, "spi-slave"))
1089 			ctlr->slave = true;
1090 
1091 		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1092 		if (!dspi->devtype_data) {
1093 			dev_err(&pdev->dev, "can't get devtype_data\n");
1094 			ret = -EFAULT;
1095 			goto out_ctlr_put;
1096 		}
1097 	}
1098 
1099 	if (dspi->devtype_data->xspi_mode)
1100 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1101 	else
1102 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1103 
1104 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1105 	base = devm_ioremap_resource(&pdev->dev, res);
1106 	if (IS_ERR(base)) {
1107 		ret = PTR_ERR(base);
1108 		goto out_ctlr_put;
1109 	}
1110 
1111 	if (dspi->devtype_data->xspi_mode)
1112 		regmap_config = &dspi_xspi_regmap_config[0];
1113 	else
1114 		regmap_config = &dspi_regmap_config;
1115 	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1116 	if (IS_ERR(dspi->regmap)) {
1117 		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1118 				PTR_ERR(dspi->regmap));
1119 		ret = PTR_ERR(dspi->regmap);
1120 		goto out_ctlr_put;
1121 	}
1122 
1123 	if (dspi->devtype_data->xspi_mode) {
1124 		dspi->regmap_pushr = devm_regmap_init_mmio(
1125 			&pdev->dev, base + SPI_PUSHR,
1126 			&dspi_xspi_regmap_config[1]);
1127 		if (IS_ERR(dspi->regmap_pushr)) {
1128 			dev_err(&pdev->dev,
1129 				"failed to init pushr regmap: %ld\n",
1130 				PTR_ERR(dspi->regmap_pushr));
1131 			ret = PTR_ERR(dspi->regmap_pushr);
1132 			goto out_ctlr_put;
1133 		}
1134 	}
1135 
1136 	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1137 	if (IS_ERR(dspi->clk)) {
1138 		ret = PTR_ERR(dspi->clk);
1139 		dev_err(&pdev->dev, "unable to get clock\n");
1140 		goto out_ctlr_put;
1141 	}
1142 	ret = clk_prepare_enable(dspi->clk);
1143 	if (ret)
1144 		goto out_ctlr_put;
1145 
1146 	dspi_init(dspi);
1147 
1148 	if (dspi->devtype_data->trans_mode == DSPI_TCFQ_MODE)
1149 		goto poll_mode;
1150 
1151 	dspi->irq = platform_get_irq(pdev, 0);
1152 	if (dspi->irq <= 0) {
1153 		dev_info(&pdev->dev,
1154 			 "can't get platform irq, using poll mode\n");
1155 		dspi->irq = 0;
1156 		goto poll_mode;
1157 	}
1158 
1159 	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt,
1160 			       IRQF_SHARED, pdev->name, dspi);
1161 	if (ret < 0) {
1162 		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1163 		goto out_clk_put;
1164 	}
1165 
1166 	init_waitqueue_head(&dspi->waitq);
1167 
1168 poll_mode:
1169 
1170 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1171 		ret = dspi_request_dma(dspi, res->start);
1172 		if (ret < 0) {
1173 			dev_err(&pdev->dev, "can't get dma channels\n");
1174 			goto out_clk_put;
1175 		}
1176 	}
1177 
1178 	ctlr->max_speed_hz =
1179 		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1180 
1181 	ctlr->ptp_sts_supported = dspi->devtype_data->ptp_sts_supported;
1182 
1183 	platform_set_drvdata(pdev, ctlr);
1184 
1185 	ret = spi_register_controller(ctlr);
1186 	if (ret != 0) {
1187 		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1188 		goto out_clk_put;
1189 	}
1190 
1191 	return ret;
1192 
1193 out_clk_put:
1194 	clk_disable_unprepare(dspi->clk);
1195 out_ctlr_put:
1196 	spi_controller_put(ctlr);
1197 
1198 	return ret;
1199 }
1200 
1201 static int dspi_remove(struct platform_device *pdev)
1202 {
1203 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1204 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1205 
1206 	/* Disconnect from the SPI framework */
1207 	dspi_release_dma(dspi);
1208 	clk_disable_unprepare(dspi->clk);
1209 	spi_unregister_controller(dspi->ctlr);
1210 
1211 	return 0;
1212 }
1213 
1214 static struct platform_driver fsl_dspi_driver = {
1215 	.driver.name		= DRIVER_NAME,
1216 	.driver.of_match_table	= fsl_dspi_dt_ids,
1217 	.driver.owner		= THIS_MODULE,
1218 	.driver.pm		= &dspi_pm,
1219 	.probe			= dspi_probe,
1220 	.remove			= dspi_remove,
1221 };
1222 module_platform_driver(fsl_dspi_driver);
1223 
1224 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1225 MODULE_LICENSE("GPL");
1226 MODULE_ALIAS("platform:" DRIVER_NAME);
1227