1 /* 2 * drivers/spi/spi-fsl-dspi.c 3 * 4 * Copyright 2013 Freescale Semiconductor, Inc. 5 * 6 * Freescale DSPI driver 7 * This file contains a driver for the Freescale DSPI 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 */ 15 16 #include <linux/clk.h> 17 #include <linux/delay.h> 18 #include <linux/dmaengine.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/err.h> 21 #include <linux/errno.h> 22 #include <linux/interrupt.h> 23 #include <linux/io.h> 24 #include <linux/kernel.h> 25 #include <linux/math64.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/pinctrl/consumer.h> 30 #include <linux/platform_device.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/regmap.h> 33 #include <linux/sched.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi_bitbang.h> 36 #include <linux/time.h> 37 38 #define DRIVER_NAME "fsl-dspi" 39 40 #define TRAN_STATE_RX_VOID 0x01 41 #define TRAN_STATE_TX_VOID 0x02 42 #define TRAN_STATE_WORD_ODD_NUM 0x04 43 44 #define DSPI_FIFO_SIZE 4 45 #define DSPI_DMA_BUFSIZE (DSPI_FIFO_SIZE * 1024) 46 47 #define SPI_MCR 0x00 48 #define SPI_MCR_MASTER (1 << 31) 49 #define SPI_MCR_PCSIS (0x3F << 16) 50 #define SPI_MCR_CLR_TXF (1 << 11) 51 #define SPI_MCR_CLR_RXF (1 << 10) 52 53 #define SPI_TCR 0x08 54 #define SPI_TCR_GET_TCNT(x) (((x) & 0xffff0000) >> 16) 55 56 #define SPI_CTAR(x) (0x0c + (((x) & 0x3) * 4)) 57 #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27) 58 #define SPI_CTAR_CPOL(x) ((x) << 26) 59 #define SPI_CTAR_CPHA(x) ((x) << 25) 60 #define SPI_CTAR_LSBFE(x) ((x) << 24) 61 #define SPI_CTAR_PCSSCK(x) (((x) & 0x00000003) << 22) 62 #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20) 63 #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18) 64 #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16) 65 #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12) 66 #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8) 67 #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4) 68 #define SPI_CTAR_BR(x) ((x) & 0x0000000f) 69 #define SPI_CTAR_SCALE_BITS 0xf 70 71 #define SPI_CTAR0_SLAVE 0x0c 72 73 #define SPI_SR 0x2c 74 #define SPI_SR_EOQF 0x10000000 75 #define SPI_SR_TCFQF 0x80000000 76 #define SPI_SR_CLEAR 0xdaad0000 77 78 #define SPI_RSER_TFFFE BIT(25) 79 #define SPI_RSER_TFFFD BIT(24) 80 #define SPI_RSER_RFDFE BIT(17) 81 #define SPI_RSER_RFDFD BIT(16) 82 83 #define SPI_RSER 0x30 84 #define SPI_RSER_EOQFE 0x10000000 85 #define SPI_RSER_TCFQE 0x80000000 86 87 #define SPI_PUSHR 0x34 88 #define SPI_PUSHR_CONT (1 << 31) 89 #define SPI_PUSHR_CTAS(x) (((x) & 0x00000003) << 28) 90 #define SPI_PUSHR_EOQ (1 << 27) 91 #define SPI_PUSHR_CTCNT (1 << 26) 92 #define SPI_PUSHR_PCS(x) (((1 << x) & 0x0000003f) << 16) 93 #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff) 94 95 #define SPI_PUSHR_SLAVE 0x34 96 97 #define SPI_POPR 0x38 98 #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff) 99 100 #define SPI_TXFR0 0x3c 101 #define SPI_TXFR1 0x40 102 #define SPI_TXFR2 0x44 103 #define SPI_TXFR3 0x48 104 #define SPI_RXFR0 0x7c 105 #define SPI_RXFR1 0x80 106 #define SPI_RXFR2 0x84 107 #define SPI_RXFR3 0x88 108 109 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1) 110 #define SPI_FRAME_BITS_MASK SPI_CTAR_FMSZ(0xf) 111 #define SPI_FRAME_BITS_16 SPI_CTAR_FMSZ(0xf) 112 #define SPI_FRAME_BITS_8 SPI_CTAR_FMSZ(0x7) 113 114 #define SPI_CS_INIT 0x01 115 #define SPI_CS_ASSERT 0x02 116 #define SPI_CS_DROP 0x04 117 118 #define SPI_TCR_TCNT_MAX 0x10000 119 120 #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000) 121 122 struct chip_data { 123 u32 mcr_val; 124 u32 ctar_val; 125 u16 void_write_data; 126 }; 127 128 enum dspi_trans_mode { 129 DSPI_EOQ_MODE = 0, 130 DSPI_TCFQ_MODE, 131 DSPI_DMA_MODE, 132 }; 133 134 struct fsl_dspi_devtype_data { 135 enum dspi_trans_mode trans_mode; 136 u8 max_clock_factor; 137 }; 138 139 static const struct fsl_dspi_devtype_data vf610_data = { 140 .trans_mode = DSPI_DMA_MODE, 141 .max_clock_factor = 2, 142 }; 143 144 static const struct fsl_dspi_devtype_data ls1021a_v1_data = { 145 .trans_mode = DSPI_TCFQ_MODE, 146 .max_clock_factor = 8, 147 }; 148 149 static const struct fsl_dspi_devtype_data ls2085a_data = { 150 .trans_mode = DSPI_TCFQ_MODE, 151 .max_clock_factor = 8, 152 }; 153 154 struct fsl_dspi_dma { 155 /* Length of transfer in words of DSPI_FIFO_SIZE */ 156 u32 curr_xfer_len; 157 158 u32 *tx_dma_buf; 159 struct dma_chan *chan_tx; 160 dma_addr_t tx_dma_phys; 161 struct completion cmd_tx_complete; 162 struct dma_async_tx_descriptor *tx_desc; 163 164 u32 *rx_dma_buf; 165 struct dma_chan *chan_rx; 166 dma_addr_t rx_dma_phys; 167 struct completion cmd_rx_complete; 168 struct dma_async_tx_descriptor *rx_desc; 169 }; 170 171 struct fsl_dspi { 172 struct spi_master *master; 173 struct platform_device *pdev; 174 175 struct regmap *regmap; 176 int irq; 177 struct clk *clk; 178 179 struct spi_transfer *cur_transfer; 180 struct spi_message *cur_msg; 181 struct chip_data *cur_chip; 182 size_t len; 183 void *tx; 184 void *tx_end; 185 void *rx; 186 void *rx_end; 187 char dataflags; 188 u8 cs; 189 u16 void_write_data; 190 u32 cs_change; 191 const struct fsl_dspi_devtype_data *devtype_data; 192 193 wait_queue_head_t waitq; 194 u32 waitflags; 195 196 u32 spi_tcnt; 197 struct fsl_dspi_dma *dma; 198 }; 199 200 static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word); 201 202 static inline int is_double_byte_mode(struct fsl_dspi *dspi) 203 { 204 unsigned int val; 205 206 regmap_read(dspi->regmap, SPI_CTAR(0), &val); 207 208 return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1; 209 } 210 211 static void dspi_tx_dma_callback(void *arg) 212 { 213 struct fsl_dspi *dspi = arg; 214 struct fsl_dspi_dma *dma = dspi->dma; 215 216 complete(&dma->cmd_tx_complete); 217 } 218 219 static void dspi_rx_dma_callback(void *arg) 220 { 221 struct fsl_dspi *dspi = arg; 222 struct fsl_dspi_dma *dma = dspi->dma; 223 int rx_word; 224 int i; 225 u16 d; 226 227 rx_word = is_double_byte_mode(dspi); 228 229 if (!(dspi->dataflags & TRAN_STATE_RX_VOID)) { 230 for (i = 0; i < dma->curr_xfer_len; i++) { 231 d = dspi->dma->rx_dma_buf[i]; 232 rx_word ? (*(u16 *)dspi->rx = d) : 233 (*(u8 *)dspi->rx = d); 234 dspi->rx += rx_word + 1; 235 } 236 } 237 238 complete(&dma->cmd_rx_complete); 239 } 240 241 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi) 242 { 243 struct fsl_dspi_dma *dma = dspi->dma; 244 struct device *dev = &dspi->pdev->dev; 245 int time_left; 246 int tx_word; 247 int i; 248 249 tx_word = is_double_byte_mode(dspi); 250 251 for (i = 0; i < dma->curr_xfer_len; i++) { 252 dspi->dma->tx_dma_buf[i] = dspi_data_to_pushr(dspi, tx_word); 253 if ((dspi->cs_change) && (!dspi->len)) 254 dspi->dma->tx_dma_buf[i] &= ~SPI_PUSHR_CONT; 255 } 256 257 dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx, 258 dma->tx_dma_phys, 259 dma->curr_xfer_len * 260 DMA_SLAVE_BUSWIDTH_4_BYTES, 261 DMA_MEM_TO_DEV, 262 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 263 if (!dma->tx_desc) { 264 dev_err(dev, "Not able to get desc for DMA xfer\n"); 265 return -EIO; 266 } 267 268 dma->tx_desc->callback = dspi_tx_dma_callback; 269 dma->tx_desc->callback_param = dspi; 270 if (dma_submit_error(dmaengine_submit(dma->tx_desc))) { 271 dev_err(dev, "DMA submit failed\n"); 272 return -EINVAL; 273 } 274 275 dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx, 276 dma->rx_dma_phys, 277 dma->curr_xfer_len * 278 DMA_SLAVE_BUSWIDTH_4_BYTES, 279 DMA_DEV_TO_MEM, 280 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 281 if (!dma->rx_desc) { 282 dev_err(dev, "Not able to get desc for DMA xfer\n"); 283 return -EIO; 284 } 285 286 dma->rx_desc->callback = dspi_rx_dma_callback; 287 dma->rx_desc->callback_param = dspi; 288 if (dma_submit_error(dmaengine_submit(dma->rx_desc))) { 289 dev_err(dev, "DMA submit failed\n"); 290 return -EINVAL; 291 } 292 293 reinit_completion(&dspi->dma->cmd_rx_complete); 294 reinit_completion(&dspi->dma->cmd_tx_complete); 295 296 dma_async_issue_pending(dma->chan_rx); 297 dma_async_issue_pending(dma->chan_tx); 298 299 time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete, 300 DMA_COMPLETION_TIMEOUT); 301 if (time_left == 0) { 302 dev_err(dev, "DMA tx timeout\n"); 303 dmaengine_terminate_all(dma->chan_tx); 304 dmaengine_terminate_all(dma->chan_rx); 305 return -ETIMEDOUT; 306 } 307 308 time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete, 309 DMA_COMPLETION_TIMEOUT); 310 if (time_left == 0) { 311 dev_err(dev, "DMA rx timeout\n"); 312 dmaengine_terminate_all(dma->chan_tx); 313 dmaengine_terminate_all(dma->chan_rx); 314 return -ETIMEDOUT; 315 } 316 317 return 0; 318 } 319 320 static int dspi_dma_xfer(struct fsl_dspi *dspi) 321 { 322 struct fsl_dspi_dma *dma = dspi->dma; 323 struct device *dev = &dspi->pdev->dev; 324 int curr_remaining_bytes; 325 int bytes_per_buffer; 326 int word = 1; 327 int ret = 0; 328 329 if (is_double_byte_mode(dspi)) 330 word = 2; 331 curr_remaining_bytes = dspi->len; 332 bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE; 333 while (curr_remaining_bytes) { 334 /* Check if current transfer fits the DMA buffer */ 335 dma->curr_xfer_len = curr_remaining_bytes / word; 336 if (dma->curr_xfer_len > bytes_per_buffer) 337 dma->curr_xfer_len = bytes_per_buffer; 338 339 ret = dspi_next_xfer_dma_submit(dspi); 340 if (ret) { 341 dev_err(dev, "DMA transfer failed\n"); 342 goto exit; 343 344 } else { 345 curr_remaining_bytes -= dma->curr_xfer_len * word; 346 if (curr_remaining_bytes < 0) 347 curr_remaining_bytes = 0; 348 } 349 } 350 351 exit: 352 return ret; 353 } 354 355 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr) 356 { 357 struct fsl_dspi_dma *dma; 358 struct dma_slave_config cfg; 359 struct device *dev = &dspi->pdev->dev; 360 int ret; 361 362 dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL); 363 if (!dma) 364 return -ENOMEM; 365 366 dma->chan_rx = dma_request_slave_channel(dev, "rx"); 367 if (!dma->chan_rx) { 368 dev_err(dev, "rx dma channel not available\n"); 369 ret = -ENODEV; 370 return ret; 371 } 372 373 dma->chan_tx = dma_request_slave_channel(dev, "tx"); 374 if (!dma->chan_tx) { 375 dev_err(dev, "tx dma channel not available\n"); 376 ret = -ENODEV; 377 goto err_tx_channel; 378 } 379 380 dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE, 381 &dma->tx_dma_phys, GFP_KERNEL); 382 if (!dma->tx_dma_buf) { 383 ret = -ENOMEM; 384 goto err_tx_dma_buf; 385 } 386 387 dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE, 388 &dma->rx_dma_phys, GFP_KERNEL); 389 if (!dma->rx_dma_buf) { 390 ret = -ENOMEM; 391 goto err_rx_dma_buf; 392 } 393 394 cfg.src_addr = phy_addr + SPI_POPR; 395 cfg.dst_addr = phy_addr + SPI_PUSHR; 396 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 397 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 398 cfg.src_maxburst = 1; 399 cfg.dst_maxburst = 1; 400 401 cfg.direction = DMA_DEV_TO_MEM; 402 ret = dmaengine_slave_config(dma->chan_rx, &cfg); 403 if (ret) { 404 dev_err(dev, "can't configure rx dma channel\n"); 405 ret = -EINVAL; 406 goto err_slave_config; 407 } 408 409 cfg.direction = DMA_MEM_TO_DEV; 410 ret = dmaengine_slave_config(dma->chan_tx, &cfg); 411 if (ret) { 412 dev_err(dev, "can't configure tx dma channel\n"); 413 ret = -EINVAL; 414 goto err_slave_config; 415 } 416 417 dspi->dma = dma; 418 init_completion(&dma->cmd_tx_complete); 419 init_completion(&dma->cmd_rx_complete); 420 421 return 0; 422 423 err_slave_config: 424 dma_free_coherent(dev, DSPI_DMA_BUFSIZE, 425 dma->rx_dma_buf, dma->rx_dma_phys); 426 err_rx_dma_buf: 427 dma_free_coherent(dev, DSPI_DMA_BUFSIZE, 428 dma->tx_dma_buf, dma->tx_dma_phys); 429 err_tx_dma_buf: 430 dma_release_channel(dma->chan_tx); 431 err_tx_channel: 432 dma_release_channel(dma->chan_rx); 433 434 devm_kfree(dev, dma); 435 dspi->dma = NULL; 436 437 return ret; 438 } 439 440 static void dspi_release_dma(struct fsl_dspi *dspi) 441 { 442 struct fsl_dspi_dma *dma = dspi->dma; 443 struct device *dev = &dspi->pdev->dev; 444 445 if (dma) { 446 if (dma->chan_tx) { 447 dma_unmap_single(dev, dma->tx_dma_phys, 448 DSPI_DMA_BUFSIZE, DMA_TO_DEVICE); 449 dma_release_channel(dma->chan_tx); 450 } 451 452 if (dma->chan_rx) { 453 dma_unmap_single(dev, dma->rx_dma_phys, 454 DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE); 455 dma_release_channel(dma->chan_rx); 456 } 457 } 458 } 459 460 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz, 461 unsigned long clkrate) 462 { 463 /* Valid baud rate pre-scaler values */ 464 int pbr_tbl[4] = {2, 3, 5, 7}; 465 int brs[16] = { 2, 4, 6, 8, 466 16, 32, 64, 128, 467 256, 512, 1024, 2048, 468 4096, 8192, 16384, 32768 }; 469 int scale_needed, scale, minscale = INT_MAX; 470 int i, j; 471 472 scale_needed = clkrate / speed_hz; 473 if (clkrate % speed_hz) 474 scale_needed++; 475 476 for (i = 0; i < ARRAY_SIZE(brs); i++) 477 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) { 478 scale = brs[i] * pbr_tbl[j]; 479 if (scale >= scale_needed) { 480 if (scale < minscale) { 481 minscale = scale; 482 *br = i; 483 *pbr = j; 484 } 485 break; 486 } 487 } 488 489 if (minscale == INT_MAX) { 490 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n", 491 speed_hz, clkrate); 492 *pbr = ARRAY_SIZE(pbr_tbl) - 1; 493 *br = ARRAY_SIZE(brs) - 1; 494 } 495 } 496 497 static void ns_delay_scale(char *psc, char *sc, int delay_ns, 498 unsigned long clkrate) 499 { 500 int pscale_tbl[4] = {1, 3, 5, 7}; 501 int scale_needed, scale, minscale = INT_MAX; 502 int i, j; 503 u32 remainder; 504 505 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC, 506 &remainder); 507 if (remainder) 508 scale_needed++; 509 510 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++) 511 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) { 512 scale = pscale_tbl[i] * (2 << j); 513 if (scale >= scale_needed) { 514 if (scale < minscale) { 515 minscale = scale; 516 *psc = i; 517 *sc = j; 518 } 519 break; 520 } 521 } 522 523 if (minscale == INT_MAX) { 524 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value", 525 delay_ns, clkrate); 526 *psc = ARRAY_SIZE(pscale_tbl) - 1; 527 *sc = SPI_CTAR_SCALE_BITS; 528 } 529 } 530 531 static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word) 532 { 533 u16 d16; 534 535 if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) 536 d16 = tx_word ? *(u16 *)dspi->tx : *(u8 *)dspi->tx; 537 else 538 d16 = dspi->void_write_data; 539 540 dspi->tx += tx_word + 1; 541 dspi->len -= tx_word + 1; 542 543 return SPI_PUSHR_TXDATA(d16) | 544 SPI_PUSHR_PCS(dspi->cs) | 545 SPI_PUSHR_CTAS(0) | 546 SPI_PUSHR_CONT; 547 } 548 549 static void dspi_data_from_popr(struct fsl_dspi *dspi, int rx_word) 550 { 551 u16 d; 552 unsigned int val; 553 554 regmap_read(dspi->regmap, SPI_POPR, &val); 555 d = SPI_POPR_RXDATA(val); 556 557 if (!(dspi->dataflags & TRAN_STATE_RX_VOID)) 558 rx_word ? (*(u16 *)dspi->rx = d) : (*(u8 *)dspi->rx = d); 559 560 dspi->rx += rx_word + 1; 561 } 562 563 static int dspi_eoq_write(struct fsl_dspi *dspi) 564 { 565 int tx_count = 0; 566 int tx_word; 567 u32 dspi_pushr = 0; 568 569 tx_word = is_double_byte_mode(dspi); 570 571 while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) { 572 /* If we are in word mode, only have a single byte to transfer 573 * switch to byte mode temporarily. Will switch back at the 574 * end of the transfer. 575 */ 576 if (tx_word && (dspi->len == 1)) { 577 dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM; 578 regmap_update_bits(dspi->regmap, SPI_CTAR(0), 579 SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8)); 580 tx_word = 0; 581 } 582 583 dspi_pushr = dspi_data_to_pushr(dspi, tx_word); 584 585 if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) { 586 /* last transfer in the transfer */ 587 dspi_pushr |= SPI_PUSHR_EOQ; 588 if ((dspi->cs_change) && (!dspi->len)) 589 dspi_pushr &= ~SPI_PUSHR_CONT; 590 } else if (tx_word && (dspi->len == 1)) 591 dspi_pushr |= SPI_PUSHR_EOQ; 592 593 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr); 594 595 tx_count++; 596 } 597 598 return tx_count * (tx_word + 1); 599 } 600 601 static int dspi_eoq_read(struct fsl_dspi *dspi) 602 { 603 int rx_count = 0; 604 int rx_word = is_double_byte_mode(dspi); 605 606 while ((dspi->rx < dspi->rx_end) 607 && (rx_count < DSPI_FIFO_SIZE)) { 608 if (rx_word && (dspi->rx_end - dspi->rx) == 1) 609 rx_word = 0; 610 611 dspi_data_from_popr(dspi, rx_word); 612 rx_count++; 613 } 614 615 return rx_count; 616 } 617 618 static int dspi_tcfq_write(struct fsl_dspi *dspi) 619 { 620 int tx_word; 621 u32 dspi_pushr = 0; 622 623 tx_word = is_double_byte_mode(dspi); 624 625 if (tx_word && (dspi->len == 1)) { 626 dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM; 627 regmap_update_bits(dspi->regmap, SPI_CTAR(0), 628 SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8)); 629 tx_word = 0; 630 } 631 632 dspi_pushr = dspi_data_to_pushr(dspi, tx_word); 633 634 if ((dspi->cs_change) && (!dspi->len)) 635 dspi_pushr &= ~SPI_PUSHR_CONT; 636 637 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr); 638 639 return tx_word + 1; 640 } 641 642 static void dspi_tcfq_read(struct fsl_dspi *dspi) 643 { 644 int rx_word = is_double_byte_mode(dspi); 645 646 if (rx_word && (dspi->rx_end - dspi->rx) == 1) 647 rx_word = 0; 648 649 dspi_data_from_popr(dspi, rx_word); 650 } 651 652 static int dspi_transfer_one_message(struct spi_master *master, 653 struct spi_message *message) 654 { 655 struct fsl_dspi *dspi = spi_master_get_devdata(master); 656 struct spi_device *spi = message->spi; 657 struct spi_transfer *transfer; 658 int status = 0; 659 enum dspi_trans_mode trans_mode; 660 u32 spi_tcr; 661 662 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr); 663 dspi->spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr); 664 665 message->actual_length = 0; 666 667 list_for_each_entry(transfer, &message->transfers, transfer_list) { 668 dspi->cur_transfer = transfer; 669 dspi->cur_msg = message; 670 dspi->cur_chip = spi_get_ctldata(spi); 671 dspi->cs = spi->chip_select; 672 dspi->cs_change = 0; 673 if (list_is_last(&dspi->cur_transfer->transfer_list, 674 &dspi->cur_msg->transfers) || transfer->cs_change) 675 dspi->cs_change = 1; 676 dspi->void_write_data = dspi->cur_chip->void_write_data; 677 678 dspi->dataflags = 0; 679 dspi->tx = (void *)transfer->tx_buf; 680 dspi->tx_end = dspi->tx + transfer->len; 681 dspi->rx = transfer->rx_buf; 682 dspi->rx_end = dspi->rx + transfer->len; 683 dspi->len = transfer->len; 684 685 if (!dspi->rx) 686 dspi->dataflags |= TRAN_STATE_RX_VOID; 687 688 if (!dspi->tx) 689 dspi->dataflags |= TRAN_STATE_TX_VOID; 690 691 regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val); 692 regmap_update_bits(dspi->regmap, SPI_MCR, 693 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF, 694 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF); 695 regmap_write(dspi->regmap, SPI_CTAR(0), 696 dspi->cur_chip->ctar_val); 697 698 trans_mode = dspi->devtype_data->trans_mode; 699 switch (trans_mode) { 700 case DSPI_EOQ_MODE: 701 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE); 702 dspi_eoq_write(dspi); 703 break; 704 case DSPI_TCFQ_MODE: 705 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE); 706 dspi_tcfq_write(dspi); 707 break; 708 case DSPI_DMA_MODE: 709 regmap_write(dspi->regmap, SPI_RSER, 710 SPI_RSER_TFFFE | SPI_RSER_TFFFD | 711 SPI_RSER_RFDFE | SPI_RSER_RFDFD); 712 status = dspi_dma_xfer(dspi); 713 break; 714 default: 715 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n", 716 trans_mode); 717 status = -EINVAL; 718 goto out; 719 } 720 721 if (trans_mode != DSPI_DMA_MODE) { 722 if (wait_event_interruptible(dspi->waitq, 723 dspi->waitflags)) 724 dev_err(&dspi->pdev->dev, 725 "wait transfer complete fail!\n"); 726 dspi->waitflags = 0; 727 } 728 729 if (transfer->delay_usecs) 730 udelay(transfer->delay_usecs); 731 } 732 733 out: 734 message->status = status; 735 spi_finalize_current_message(master); 736 737 return status; 738 } 739 740 static int dspi_setup(struct spi_device *spi) 741 { 742 struct chip_data *chip; 743 struct fsl_dspi *dspi = spi_master_get_devdata(spi->master); 744 u32 cs_sck_delay = 0, sck_cs_delay = 0; 745 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0; 746 unsigned char pasc = 0, asc = 0, fmsz = 0; 747 unsigned long clkrate; 748 749 if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) { 750 fmsz = spi->bits_per_word - 1; 751 } else { 752 pr_err("Invalid wordsize\n"); 753 return -ENODEV; 754 } 755 756 /* Only alloc on first setup */ 757 chip = spi_get_ctldata(spi); 758 if (chip == NULL) { 759 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 760 if (!chip) 761 return -ENOMEM; 762 } 763 764 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay", 765 &cs_sck_delay); 766 767 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay", 768 &sck_cs_delay); 769 770 chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS | 771 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF; 772 773 chip->void_write_data = 0; 774 775 clkrate = clk_get_rate(dspi->clk); 776 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate); 777 778 /* Set PCS to SCK delay scale values */ 779 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate); 780 781 /* Set After SCK delay scale values */ 782 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate); 783 784 chip->ctar_val = SPI_CTAR_FMSZ(fmsz) 785 | SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0) 786 | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0) 787 | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0) 788 | SPI_CTAR_PCSSCK(pcssck) 789 | SPI_CTAR_CSSCK(cssck) 790 | SPI_CTAR_PASC(pasc) 791 | SPI_CTAR_ASC(asc) 792 | SPI_CTAR_PBR(pbr) 793 | SPI_CTAR_BR(br); 794 795 spi_set_ctldata(spi, chip); 796 797 return 0; 798 } 799 800 static void dspi_cleanup(struct spi_device *spi) 801 { 802 struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi); 803 804 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n", 805 spi->master->bus_num, spi->chip_select); 806 807 kfree(chip); 808 } 809 810 static irqreturn_t dspi_interrupt(int irq, void *dev_id) 811 { 812 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id; 813 struct spi_message *msg = dspi->cur_msg; 814 enum dspi_trans_mode trans_mode; 815 u32 spi_sr, spi_tcr; 816 u32 spi_tcnt, tcnt_diff; 817 int tx_word; 818 819 regmap_read(dspi->regmap, SPI_SR, &spi_sr); 820 regmap_write(dspi->regmap, SPI_SR, spi_sr); 821 822 823 if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) { 824 tx_word = is_double_byte_mode(dspi); 825 826 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr); 827 spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr); 828 /* 829 * The width of SPI Transfer Counter in SPI_TCR is 16bits, 830 * so the max couner is 65535. When the counter reach 65535, 831 * it will wrap around, counter reset to zero. 832 * spi_tcnt my be less than dspi->spi_tcnt, it means the 833 * counter already wrapped around. 834 * SPI Transfer Counter is a counter of transmitted frames. 835 * The size of frame maybe two bytes. 836 */ 837 tcnt_diff = ((spi_tcnt + SPI_TCR_TCNT_MAX) - dspi->spi_tcnt) 838 % SPI_TCR_TCNT_MAX; 839 tcnt_diff *= (tx_word + 1); 840 if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) 841 tcnt_diff--; 842 843 msg->actual_length += tcnt_diff; 844 845 dspi->spi_tcnt = spi_tcnt; 846 847 trans_mode = dspi->devtype_data->trans_mode; 848 switch (trans_mode) { 849 case DSPI_EOQ_MODE: 850 dspi_eoq_read(dspi); 851 break; 852 case DSPI_TCFQ_MODE: 853 dspi_tcfq_read(dspi); 854 break; 855 default: 856 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n", 857 trans_mode); 858 return IRQ_HANDLED; 859 } 860 861 if (!dspi->len) { 862 if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) { 863 regmap_update_bits(dspi->regmap, 864 SPI_CTAR(0), 865 SPI_FRAME_BITS_MASK, 866 SPI_FRAME_BITS(16)); 867 dspi->dataflags &= ~TRAN_STATE_WORD_ODD_NUM; 868 } 869 870 dspi->waitflags = 1; 871 wake_up_interruptible(&dspi->waitq); 872 } else { 873 switch (trans_mode) { 874 case DSPI_EOQ_MODE: 875 dspi_eoq_write(dspi); 876 break; 877 case DSPI_TCFQ_MODE: 878 dspi_tcfq_write(dspi); 879 break; 880 default: 881 dev_err(&dspi->pdev->dev, 882 "unsupported trans_mode %u\n", 883 trans_mode); 884 } 885 } 886 } 887 888 return IRQ_HANDLED; 889 } 890 891 static const struct of_device_id fsl_dspi_dt_ids[] = { 892 { .compatible = "fsl,vf610-dspi", .data = (void *)&vf610_data, }, 893 { .compatible = "fsl,ls1021a-v1.0-dspi", 894 .data = (void *)&ls1021a_v1_data, }, 895 { .compatible = "fsl,ls2085a-dspi", .data = (void *)&ls2085a_data, }, 896 { /* sentinel */ } 897 }; 898 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids); 899 900 #ifdef CONFIG_PM_SLEEP 901 static int dspi_suspend(struct device *dev) 902 { 903 struct spi_master *master = dev_get_drvdata(dev); 904 struct fsl_dspi *dspi = spi_master_get_devdata(master); 905 906 spi_master_suspend(master); 907 clk_disable_unprepare(dspi->clk); 908 909 pinctrl_pm_select_sleep_state(dev); 910 911 return 0; 912 } 913 914 static int dspi_resume(struct device *dev) 915 { 916 struct spi_master *master = dev_get_drvdata(dev); 917 struct fsl_dspi *dspi = spi_master_get_devdata(master); 918 int ret; 919 920 pinctrl_pm_select_default_state(dev); 921 922 ret = clk_prepare_enable(dspi->clk); 923 if (ret) 924 return ret; 925 spi_master_resume(master); 926 927 return 0; 928 } 929 #endif /* CONFIG_PM_SLEEP */ 930 931 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume); 932 933 static const struct regmap_config dspi_regmap_config = { 934 .reg_bits = 32, 935 .val_bits = 32, 936 .reg_stride = 4, 937 .max_register = 0x88, 938 }; 939 940 static void dspi_init(struct fsl_dspi *dspi) 941 { 942 regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR); 943 } 944 945 static int dspi_probe(struct platform_device *pdev) 946 { 947 struct device_node *np = pdev->dev.of_node; 948 struct spi_master *master; 949 struct fsl_dspi *dspi; 950 struct resource *res; 951 void __iomem *base; 952 int ret = 0, cs_num, bus_num; 953 954 master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi)); 955 if (!master) 956 return -ENOMEM; 957 958 dspi = spi_master_get_devdata(master); 959 dspi->pdev = pdev; 960 dspi->master = master; 961 962 master->transfer = NULL; 963 master->setup = dspi_setup; 964 master->transfer_one_message = dspi_transfer_one_message; 965 master->dev.of_node = pdev->dev.of_node; 966 967 master->cleanup = dspi_cleanup; 968 master->mode_bits = SPI_CPOL | SPI_CPHA; 969 master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) | 970 SPI_BPW_MASK(16); 971 972 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num); 973 if (ret < 0) { 974 dev_err(&pdev->dev, "can't get spi-num-chipselects\n"); 975 goto out_master_put; 976 } 977 master->num_chipselect = cs_num; 978 979 ret = of_property_read_u32(np, "bus-num", &bus_num); 980 if (ret < 0) { 981 dev_err(&pdev->dev, "can't get bus-num\n"); 982 goto out_master_put; 983 } 984 master->bus_num = bus_num; 985 986 dspi->devtype_data = of_device_get_match_data(&pdev->dev); 987 if (!dspi->devtype_data) { 988 dev_err(&pdev->dev, "can't get devtype_data\n"); 989 ret = -EFAULT; 990 goto out_master_put; 991 } 992 993 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 994 base = devm_ioremap_resource(&pdev->dev, res); 995 if (IS_ERR(base)) { 996 ret = PTR_ERR(base); 997 goto out_master_put; 998 } 999 1000 dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, NULL, base, 1001 &dspi_regmap_config); 1002 if (IS_ERR(dspi->regmap)) { 1003 dev_err(&pdev->dev, "failed to init regmap: %ld\n", 1004 PTR_ERR(dspi->regmap)); 1005 ret = PTR_ERR(dspi->regmap); 1006 goto out_master_put; 1007 } 1008 1009 dspi_init(dspi); 1010 dspi->irq = platform_get_irq(pdev, 0); 1011 if (dspi->irq < 0) { 1012 dev_err(&pdev->dev, "can't get platform irq\n"); 1013 ret = dspi->irq; 1014 goto out_master_put; 1015 } 1016 1017 ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0, 1018 pdev->name, dspi); 1019 if (ret < 0) { 1020 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n"); 1021 goto out_master_put; 1022 } 1023 1024 dspi->clk = devm_clk_get(&pdev->dev, "dspi"); 1025 if (IS_ERR(dspi->clk)) { 1026 ret = PTR_ERR(dspi->clk); 1027 dev_err(&pdev->dev, "unable to get clock\n"); 1028 goto out_master_put; 1029 } 1030 ret = clk_prepare_enable(dspi->clk); 1031 if (ret) 1032 goto out_master_put; 1033 1034 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) { 1035 ret = dspi_request_dma(dspi, res->start); 1036 if (ret < 0) { 1037 dev_err(&pdev->dev, "can't get dma channels\n"); 1038 goto out_clk_put; 1039 } 1040 } 1041 1042 master->max_speed_hz = 1043 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor; 1044 1045 init_waitqueue_head(&dspi->waitq); 1046 platform_set_drvdata(pdev, master); 1047 1048 ret = spi_register_master(master); 1049 if (ret != 0) { 1050 dev_err(&pdev->dev, "Problem registering DSPI master\n"); 1051 goto out_clk_put; 1052 } 1053 1054 return ret; 1055 1056 out_clk_put: 1057 clk_disable_unprepare(dspi->clk); 1058 out_master_put: 1059 spi_master_put(master); 1060 1061 return ret; 1062 } 1063 1064 static int dspi_remove(struct platform_device *pdev) 1065 { 1066 struct spi_master *master = platform_get_drvdata(pdev); 1067 struct fsl_dspi *dspi = spi_master_get_devdata(master); 1068 1069 /* Disconnect from the SPI framework */ 1070 dspi_release_dma(dspi); 1071 clk_disable_unprepare(dspi->clk); 1072 spi_unregister_master(dspi->master); 1073 1074 return 0; 1075 } 1076 1077 static struct platform_driver fsl_dspi_driver = { 1078 .driver.name = DRIVER_NAME, 1079 .driver.of_match_table = fsl_dspi_dt_ids, 1080 .driver.owner = THIS_MODULE, 1081 .driver.pm = &dspi_pm, 1082 .probe = dspi_probe, 1083 .remove = dspi_remove, 1084 }; 1085 module_platform_driver(fsl_dspi_driver); 1086 1087 MODULE_DESCRIPTION("Freescale DSPI Controller Driver"); 1088 MODULE_LICENSE("GPL"); 1089 MODULE_ALIAS("platform:" DRIVER_NAME); 1090