xref: /openbmc/linux/drivers/spi/spi-fsl-dspi.c (revision 12eb4683)
1 /*
2  * drivers/spi/spi-fsl-dspi.c
3  *
4  * Copyright 2013 Freescale Semiconductor, Inc.
5  *
6  * Freescale DSPI driver
7  * This file contains a driver for the Freescale DSPI
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/interrupt.h>
19 #include <linux/errno.h>
20 #include <linux/platform_device.h>
21 #include <linux/sched.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/clk.h>
25 #include <linux/err.h>
26 #include <linux/spi/spi.h>
27 #include <linux/spi/spi_bitbang.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 
32 #define DRIVER_NAME "fsl-dspi"
33 
34 #define TRAN_STATE_RX_VOID		0x01
35 #define TRAN_STATE_TX_VOID		0x02
36 #define TRAN_STATE_WORD_ODD_NUM	0x04
37 
38 #define DSPI_FIFO_SIZE			4
39 
40 #define SPI_MCR		0x00
41 #define SPI_MCR_MASTER		(1 << 31)
42 #define SPI_MCR_PCSIS		(0x3F << 16)
43 #define SPI_MCR_CLR_TXF	(1 << 11)
44 #define SPI_MCR_CLR_RXF	(1 << 10)
45 
46 #define SPI_TCR			0x08
47 
48 #define SPI_CTAR(x)		(0x0c + (x * 4))
49 #define SPI_CTAR_FMSZ(x)	(((x) & 0x0000000f) << 27)
50 #define SPI_CTAR_CPOL(x)	((x) << 26)
51 #define SPI_CTAR_CPHA(x)	((x) << 25)
52 #define SPI_CTAR_LSBFE(x)	((x) << 24)
53 #define SPI_CTAR_PCSSCR(x)	(((x) & 0x00000003) << 22)
54 #define SPI_CTAR_PASC(x)	(((x) & 0x00000003) << 20)
55 #define SPI_CTAR_PDT(x)	(((x) & 0x00000003) << 18)
56 #define SPI_CTAR_PBR(x)	(((x) & 0x00000003) << 16)
57 #define SPI_CTAR_CSSCK(x)	(((x) & 0x0000000f) << 12)
58 #define SPI_CTAR_ASC(x)	(((x) & 0x0000000f) << 8)
59 #define SPI_CTAR_DT(x)		(((x) & 0x0000000f) << 4)
60 #define SPI_CTAR_BR(x)		((x) & 0x0000000f)
61 
62 #define SPI_CTAR0_SLAVE	0x0c
63 
64 #define SPI_SR			0x2c
65 #define SPI_SR_EOQF		0x10000000
66 
67 #define SPI_RSER		0x30
68 #define SPI_RSER_EOQFE		0x10000000
69 
70 #define SPI_PUSHR		0x34
71 #define SPI_PUSHR_CONT		(1 << 31)
72 #define SPI_PUSHR_CTAS(x)	(((x) & 0x00000007) << 28)
73 #define SPI_PUSHR_EOQ		(1 << 27)
74 #define SPI_PUSHR_CTCNT	(1 << 26)
75 #define SPI_PUSHR_PCS(x)	(((1 << x) & 0x0000003f) << 16)
76 #define SPI_PUSHR_TXDATA(x)	((x) & 0x0000ffff)
77 
78 #define SPI_PUSHR_SLAVE	0x34
79 
80 #define SPI_POPR		0x38
81 #define SPI_POPR_RXDATA(x)	((x) & 0x0000ffff)
82 
83 #define SPI_TXFR0		0x3c
84 #define SPI_TXFR1		0x40
85 #define SPI_TXFR2		0x44
86 #define SPI_TXFR3		0x48
87 #define SPI_RXFR0		0x7c
88 #define SPI_RXFR1		0x80
89 #define SPI_RXFR2		0x84
90 #define SPI_RXFR3		0x88
91 
92 #define SPI_FRAME_BITS(bits)	SPI_CTAR_FMSZ((bits) - 1)
93 #define SPI_FRAME_BITS_MASK	SPI_CTAR_FMSZ(0xf)
94 #define SPI_FRAME_BITS_16	SPI_CTAR_FMSZ(0xf)
95 #define SPI_FRAME_BITS_8	SPI_CTAR_FMSZ(0x7)
96 
97 #define SPI_CS_INIT		0x01
98 #define SPI_CS_ASSERT		0x02
99 #define SPI_CS_DROP		0x04
100 
101 struct chip_data {
102 	u32 mcr_val;
103 	u32 ctar_val;
104 	u16 void_write_data;
105 };
106 
107 struct fsl_dspi {
108 	struct spi_bitbang	bitbang;
109 	struct platform_device	*pdev;
110 
111 	void __iomem		*base;
112 	int			irq;
113 	struct clk 		*clk;
114 
115 	struct spi_transfer 	*cur_transfer;
116 	struct chip_data	*cur_chip;
117 	size_t			len;
118 	void			*tx;
119 	void			*tx_end;
120 	void			*rx;
121 	void			*rx_end;
122 	char			dataflags;
123 	u8			cs;
124 	u16			void_write_data;
125 
126 	wait_queue_head_t 	waitq;
127 	u32 			waitflags;
128 };
129 
130 static inline int is_double_byte_mode(struct fsl_dspi *dspi)
131 {
132 	return ((readl(dspi->base + SPI_CTAR(dspi->cs)) & SPI_FRAME_BITS_MASK)
133 			== SPI_FRAME_BITS(8)) ? 0 : 1;
134 }
135 
136 static void set_bit_mode(struct fsl_dspi *dspi, unsigned char bits)
137 {
138 	u32 temp;
139 
140 	temp = readl(dspi->base + SPI_CTAR(dspi->cs));
141 	temp &= ~SPI_FRAME_BITS_MASK;
142 	temp |= SPI_FRAME_BITS(bits);
143 	writel(temp, dspi->base + SPI_CTAR(dspi->cs));
144 }
145 
146 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
147 		unsigned long clkrate)
148 {
149 	/* Valid baud rate pre-scaler values */
150 	int pbr_tbl[4] = {2, 3, 5, 7};
151 	int brs[16] = {	2,	4,	6,	8,
152 		16,	32,	64,	128,
153 		256,	512,	1024,	2048,
154 		4096,	8192,	16384,	32768 };
155 	int temp, i = 0, j = 0;
156 
157 	temp = clkrate / 2 / speed_hz;
158 
159 	for (i = 0; i < ARRAY_SIZE(pbr_tbl); i++)
160 		for (j = 0; j < ARRAY_SIZE(brs); j++) {
161 			if (pbr_tbl[i] * brs[j] >= temp) {
162 				*pbr = i;
163 				*br = j;
164 				return;
165 			}
166 		}
167 
168 	pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld\
169 		,we use the max prescaler value.\n", speed_hz, clkrate);
170 	*pbr = ARRAY_SIZE(pbr_tbl) - 1;
171 	*br =  ARRAY_SIZE(brs) - 1;
172 }
173 
174 static int dspi_transfer_write(struct fsl_dspi *dspi)
175 {
176 	int tx_count = 0;
177 	int tx_word;
178 	u16 d16;
179 	u8  d8;
180 	u32 dspi_pushr = 0;
181 	int first = 1;
182 
183 	tx_word = is_double_byte_mode(dspi);
184 
185 	/* If we are in word mode, but only have a single byte to transfer
186 	 * then switch to byte mode temporarily.  Will switch back at the
187 	 * end of the transfer.
188 	 */
189 	if (tx_word && (dspi->len == 1)) {
190 		dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
191 		set_bit_mode(dspi, 8);
192 		tx_word = 0;
193 	}
194 
195 	while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
196 		if (tx_word) {
197 			if (dspi->len == 1)
198 				break;
199 
200 			if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) {
201 				d16 = *(u16 *)dspi->tx;
202 				dspi->tx += 2;
203 			} else {
204 				d16 = dspi->void_write_data;
205 			}
206 
207 			dspi_pushr = SPI_PUSHR_TXDATA(d16) |
208 				SPI_PUSHR_PCS(dspi->cs) |
209 				SPI_PUSHR_CTAS(dspi->cs) |
210 				SPI_PUSHR_CONT;
211 
212 			dspi->len -= 2;
213 		} else {
214 			if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) {
215 
216 				d8 = *(u8 *)dspi->tx;
217 				dspi->tx++;
218 			} else {
219 				d8 = (u8)dspi->void_write_data;
220 			}
221 
222 			dspi_pushr = SPI_PUSHR_TXDATA(d8) |
223 				SPI_PUSHR_PCS(dspi->cs) |
224 				SPI_PUSHR_CTAS(dspi->cs) |
225 				SPI_PUSHR_CONT;
226 
227 			dspi->len--;
228 		}
229 
230 		if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
231 			/* last transfer in the transfer */
232 			dspi_pushr |= SPI_PUSHR_EOQ;
233 		} else if (tx_word && (dspi->len == 1))
234 			dspi_pushr |= SPI_PUSHR_EOQ;
235 
236 		if (first) {
237 			first = 0;
238 			dspi_pushr |= SPI_PUSHR_CTCNT; /* clear counter */
239 		}
240 
241 		writel(dspi_pushr, dspi->base + SPI_PUSHR);
242 		tx_count++;
243 	}
244 
245 	return tx_count * (tx_word + 1);
246 }
247 
248 static int dspi_transfer_read(struct fsl_dspi *dspi)
249 {
250 	int rx_count = 0;
251 	int rx_word = is_double_byte_mode(dspi);
252 	u16 d;
253 	while ((dspi->rx < dspi->rx_end)
254 			&& (rx_count < DSPI_FIFO_SIZE)) {
255 		if (rx_word) {
256 			if ((dspi->rx_end - dspi->rx) == 1)
257 				break;
258 
259 			d = SPI_POPR_RXDATA(readl(dspi->base + SPI_POPR));
260 
261 			if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
262 				*(u16 *)dspi->rx = d;
263 			dspi->rx += 2;
264 
265 		} else {
266 			d = SPI_POPR_RXDATA(readl(dspi->base + SPI_POPR));
267 			if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
268 				*(u8 *)dspi->rx = d;
269 			dspi->rx++;
270 		}
271 		rx_count++;
272 	}
273 
274 	return rx_count;
275 }
276 
277 static int dspi_txrx_transfer(struct spi_device *spi, struct spi_transfer *t)
278 {
279 	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
280 	dspi->cur_transfer = t;
281 	dspi->cur_chip = spi_get_ctldata(spi);
282 	dspi->cs = spi->chip_select;
283 	dspi->void_write_data = dspi->cur_chip->void_write_data;
284 
285 	dspi->dataflags = 0;
286 	dspi->tx = (void *)t->tx_buf;
287 	dspi->tx_end = dspi->tx + t->len;
288 	dspi->rx = t->rx_buf;
289 	dspi->rx_end = dspi->rx + t->len;
290 	dspi->len = t->len;
291 
292 	if (!dspi->rx)
293 		dspi->dataflags |= TRAN_STATE_RX_VOID;
294 
295 	if (!dspi->tx)
296 		dspi->dataflags |= TRAN_STATE_TX_VOID;
297 
298 	writel(dspi->cur_chip->mcr_val, dspi->base + SPI_MCR);
299 	writel(dspi->cur_chip->ctar_val, dspi->base + SPI_CTAR(dspi->cs));
300 	writel(SPI_RSER_EOQFE, dspi->base + SPI_RSER);
301 
302 	if (t->speed_hz)
303 		writel(dspi->cur_chip->ctar_val,
304 				dspi->base + SPI_CTAR(dspi->cs));
305 
306 	dspi_transfer_write(dspi);
307 
308 	if (wait_event_interruptible(dspi->waitq, dspi->waitflags))
309 		dev_err(&dspi->pdev->dev, "wait transfer complete fail!\n");
310 	dspi->waitflags = 0;
311 
312 	return t->len - dspi->len;
313 }
314 
315 static void dspi_chipselect(struct spi_device *spi, int value)
316 {
317 	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
318 	u32 pushr = readl(dspi->base + SPI_PUSHR);
319 
320 	switch (value) {
321 	case BITBANG_CS_ACTIVE:
322 		pushr |= SPI_PUSHR_CONT;
323 	case BITBANG_CS_INACTIVE:
324 		pushr &= ~SPI_PUSHR_CONT;
325 	}
326 
327 	writel(pushr, dspi->base + SPI_PUSHR);
328 }
329 
330 static int dspi_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
331 {
332 	struct chip_data *chip;
333 	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
334 	unsigned char br = 0, pbr = 0, fmsz = 0;
335 
336 	/* Only alloc on first setup */
337 	chip = spi_get_ctldata(spi);
338 	if (chip == NULL) {
339 		chip = kcalloc(1, sizeof(struct chip_data), GFP_KERNEL);
340 		if (!chip)
341 			return -ENOMEM;
342 	}
343 
344 	chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
345 		SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
346 	if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
347 		fmsz = spi->bits_per_word - 1;
348 	} else {
349 		pr_err("Invalid wordsize\n");
350 		kfree(chip);
351 		return -ENODEV;
352 	}
353 
354 	chip->void_write_data = 0;
355 
356 	hz_to_spi_baud(&pbr, &br,
357 			spi->max_speed_hz, clk_get_rate(dspi->clk));
358 
359 	chip->ctar_val =  SPI_CTAR_FMSZ(fmsz)
360 		| SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
361 		| SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
362 		| SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
363 		| SPI_CTAR_PBR(pbr)
364 		| SPI_CTAR_BR(br);
365 
366 	spi_set_ctldata(spi, chip);
367 
368 	return 0;
369 }
370 
371 static int dspi_setup(struct spi_device *spi)
372 {
373 	if (!spi->max_speed_hz)
374 		return -EINVAL;
375 
376 	if (!spi->bits_per_word)
377 		spi->bits_per_word = 8;
378 
379 	return dspi_setup_transfer(spi, NULL);
380 }
381 
382 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
383 {
384 	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
385 
386 	writel(SPI_SR_EOQF, dspi->base + SPI_SR);
387 
388 	dspi_transfer_read(dspi);
389 
390 	if (!dspi->len) {
391 		if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
392 			set_bit_mode(dspi, 16);
393 		dspi->waitflags = 1;
394 		wake_up_interruptible(&dspi->waitq);
395 	} else {
396 		dspi_transfer_write(dspi);
397 
398 		return IRQ_HANDLED;
399 	}
400 
401 	return IRQ_HANDLED;
402 }
403 
404 static struct of_device_id fsl_dspi_dt_ids[] = {
405 	{ .compatible = "fsl,vf610-dspi", .data = NULL, },
406 	{ /* sentinel */ }
407 };
408 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
409 
410 #ifdef CONFIG_PM_SLEEP
411 static int dspi_suspend(struct device *dev)
412 {
413 	struct spi_master *master = dev_get_drvdata(dev);
414 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
415 
416 	spi_master_suspend(master);
417 	clk_disable_unprepare(dspi->clk);
418 
419 	return 0;
420 }
421 
422 static int dspi_resume(struct device *dev)
423 {
424 
425 	struct spi_master *master = dev_get_drvdata(dev);
426 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
427 
428 	clk_prepare_enable(dspi->clk);
429 	spi_master_resume(master);
430 
431 	return 0;
432 }
433 #endif /* CONFIG_PM_SLEEP */
434 
435 static const struct dev_pm_ops dspi_pm = {
436 	SET_SYSTEM_SLEEP_PM_OPS(dspi_suspend, dspi_resume)
437 };
438 
439 static int dspi_probe(struct platform_device *pdev)
440 {
441 	struct device_node *np = pdev->dev.of_node;
442 	struct spi_master *master;
443 	struct fsl_dspi *dspi;
444 	struct resource *res;
445 	int ret = 0, cs_num, bus_num;
446 
447 	master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
448 	if (!master)
449 		return -ENOMEM;
450 
451 	dspi = spi_master_get_devdata(master);
452 	dspi->pdev = pdev;
453 	dspi->bitbang.master = master;
454 	dspi->bitbang.chipselect = dspi_chipselect;
455 	dspi->bitbang.setup_transfer = dspi_setup_transfer;
456 	dspi->bitbang.txrx_bufs = dspi_txrx_transfer;
457 	dspi->bitbang.master->setup = dspi_setup;
458 	dspi->bitbang.master->dev.of_node = pdev->dev.of_node;
459 
460 	master->mode_bits = SPI_CPOL | SPI_CPHA;
461 	master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
462 					SPI_BPW_MASK(16);
463 
464 	ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
465 	if (ret < 0) {
466 		dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
467 		goto out_master_put;
468 	}
469 	master->num_chipselect = cs_num;
470 
471 	ret = of_property_read_u32(np, "bus-num", &bus_num);
472 	if (ret < 0) {
473 		dev_err(&pdev->dev, "can't get bus-num\n");
474 		goto out_master_put;
475 	}
476 	master->bus_num = bus_num;
477 
478 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
479 	dspi->base = devm_ioremap_resource(&pdev->dev, res);
480 	if (IS_ERR(dspi->base)) {
481 		ret = PTR_ERR(dspi->base);
482 		goto out_master_put;
483 	}
484 
485 	dspi->irq = platform_get_irq(pdev, 0);
486 	if (dspi->irq < 0) {
487 		dev_err(&pdev->dev, "can't get platform irq\n");
488 		ret = dspi->irq;
489 		goto out_master_put;
490 	}
491 
492 	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
493 			pdev->name, dspi);
494 	if (ret < 0) {
495 		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
496 		goto out_master_put;
497 	}
498 
499 	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
500 	if (IS_ERR(dspi->clk)) {
501 		ret = PTR_ERR(dspi->clk);
502 		dev_err(&pdev->dev, "unable to get clock\n");
503 		goto out_master_put;
504 	}
505 	clk_prepare_enable(dspi->clk);
506 
507 	init_waitqueue_head(&dspi->waitq);
508 	platform_set_drvdata(pdev, dspi);
509 
510 	ret = spi_bitbang_start(&dspi->bitbang);
511 	if (ret != 0) {
512 		dev_err(&pdev->dev, "Problem registering DSPI master\n");
513 		goto out_clk_put;
514 	}
515 
516 	pr_info(KERN_INFO "Freescale DSPI master initialized\n");
517 	return ret;
518 
519 out_clk_put:
520 	clk_disable_unprepare(dspi->clk);
521 out_master_put:
522 	spi_master_put(master);
523 
524 	return ret;
525 }
526 
527 static int dspi_remove(struct platform_device *pdev)
528 {
529 	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
530 
531 	/* Disconnect from the SPI framework */
532 	spi_bitbang_stop(&dspi->bitbang);
533 	clk_disable_unprepare(dspi->clk);
534 	spi_master_put(dspi->bitbang.master);
535 
536 	return 0;
537 }
538 
539 static struct platform_driver fsl_dspi_driver = {
540 	.driver.name    = DRIVER_NAME,
541 	.driver.of_match_table = fsl_dspi_dt_ids,
542 	.driver.owner   = THIS_MODULE,
543 	.driver.pm = &dspi_pm,
544 	.probe          = dspi_probe,
545 	.remove		= dspi_remove,
546 };
547 module_platform_driver(fsl_dspi_driver);
548 
549 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
550 MODULE_LICENSE("GPL");
551 MODULE_ALIAS("platform:" DRIVER_NAME);
552