xref: /openbmc/linux/drivers/spi/spi-fsl-dspi.c (revision 047f2d94)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 //
5 // Freescale DSPI driver
6 // This file contains a driver for the Freescale DSPI
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kernel.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/pinctrl/consumer.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/regmap.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spi.h>
27 #include <linux/spi/spi-fsl-dspi.h>
28 #include <linux/spi/spi_bitbang.h>
29 #include <linux/time.h>
30 
31 #define DRIVER_NAME "fsl-dspi"
32 
33 #ifdef CONFIG_M5441x
34 #define DSPI_FIFO_SIZE			16
35 #else
36 #define DSPI_FIFO_SIZE			4
37 #endif
38 #define DSPI_DMA_BUFSIZE		(DSPI_FIFO_SIZE * 1024)
39 
40 #define SPI_MCR		0x00
41 #define SPI_MCR_MASTER		(1 << 31)
42 #define SPI_MCR_PCSIS		(0x3F << 16)
43 #define SPI_MCR_CLR_TXF	(1 << 11)
44 #define SPI_MCR_CLR_RXF	(1 << 10)
45 #define SPI_MCR_XSPI		(1 << 3)
46 
47 #define SPI_TCR			0x08
48 #define SPI_TCR_GET_TCNT(x)	(((x) & 0xffff0000) >> 16)
49 
50 #define SPI_CTAR(x)		(0x0c + (((x) & 0x3) * 4))
51 #define SPI_CTAR_FMSZ(x)	(((x) & 0x0000000f) << 27)
52 #define SPI_CTAR_CPOL(x)	((x) << 26)
53 #define SPI_CTAR_CPHA(x)	((x) << 25)
54 #define SPI_CTAR_LSBFE(x)	((x) << 24)
55 #define SPI_CTAR_PCSSCK(x)	(((x) & 0x00000003) << 22)
56 #define SPI_CTAR_PASC(x)	(((x) & 0x00000003) << 20)
57 #define SPI_CTAR_PDT(x)	(((x) & 0x00000003) << 18)
58 #define SPI_CTAR_PBR(x)	(((x) & 0x00000003) << 16)
59 #define SPI_CTAR_CSSCK(x)	(((x) & 0x0000000f) << 12)
60 #define SPI_CTAR_ASC(x)	(((x) & 0x0000000f) << 8)
61 #define SPI_CTAR_DT(x)		(((x) & 0x0000000f) << 4)
62 #define SPI_CTAR_BR(x)		((x) & 0x0000000f)
63 #define SPI_CTAR_SCALE_BITS	0xf
64 
65 #define SPI_CTAR0_SLAVE	0x0c
66 
67 #define SPI_SR			0x2c
68 #define SPI_SR_EOQF		0x10000000
69 #define SPI_SR_TCFQF		0x80000000
70 #define SPI_SR_CLEAR		0xdaad0000
71 
72 #define SPI_RSER_TFFFE		BIT(25)
73 #define SPI_RSER_TFFFD		BIT(24)
74 #define SPI_RSER_RFDFE		BIT(17)
75 #define SPI_RSER_RFDFD		BIT(16)
76 
77 #define SPI_RSER		0x30
78 #define SPI_RSER_EOQFE		0x10000000
79 #define SPI_RSER_TCFQE		0x80000000
80 
81 #define SPI_PUSHR		0x34
82 #define SPI_PUSHR_CMD_CONT	(1 << 15)
83 #define SPI_PUSHR_CONT		(SPI_PUSHR_CMD_CONT << 16)
84 #define SPI_PUSHR_CMD_CTAS(x)	(((x) & 0x0003) << 12)
85 #define SPI_PUSHR_CTAS(x)	(SPI_PUSHR_CMD_CTAS(x) << 16)
86 #define SPI_PUSHR_CMD_EOQ	(1 << 11)
87 #define SPI_PUSHR_EOQ		(SPI_PUSHR_CMD_EOQ << 16)
88 #define SPI_PUSHR_CMD_CTCNT	(1 << 10)
89 #define SPI_PUSHR_CTCNT		(SPI_PUSHR_CMD_CTCNT << 16)
90 #define SPI_PUSHR_CMD_PCS(x)	((1 << x) & 0x003f)
91 #define SPI_PUSHR_PCS(x)	(SPI_PUSHR_CMD_PCS(x) << 16)
92 #define SPI_PUSHR_TXDATA(x)	((x) & 0x0000ffff)
93 
94 #define SPI_PUSHR_SLAVE	0x34
95 
96 #define SPI_POPR		0x38
97 #define SPI_POPR_RXDATA(x)	((x) & 0x0000ffff)
98 
99 #define SPI_TXFR0		0x3c
100 #define SPI_TXFR1		0x40
101 #define SPI_TXFR2		0x44
102 #define SPI_TXFR3		0x48
103 #define SPI_RXFR0		0x7c
104 #define SPI_RXFR1		0x80
105 #define SPI_RXFR2		0x84
106 #define SPI_RXFR3		0x88
107 
108 #define SPI_CTARE(x)		(0x11c + (((x) & 0x3) * 4))
109 #define SPI_CTARE_FMSZE(x)	(((x) & 0x1) << 16)
110 #define SPI_CTARE_DTCP(x)	((x) & 0x7ff)
111 
112 #define SPI_SREX		0x13c
113 
114 #define SPI_FRAME_BITS(bits)	SPI_CTAR_FMSZ((bits) - 1)
115 #define SPI_FRAME_BITS_MASK	SPI_CTAR_FMSZ(0xf)
116 #define SPI_FRAME_BITS_16	SPI_CTAR_FMSZ(0xf)
117 #define SPI_FRAME_BITS_8	SPI_CTAR_FMSZ(0x7)
118 
119 #define SPI_FRAME_EBITS(bits)	SPI_CTARE_FMSZE(((bits) - 1) >> 4)
120 #define SPI_FRAME_EBITS_MASK	SPI_CTARE_FMSZE(1)
121 
122 /* Register offsets for regmap_pushr */
123 #define PUSHR_CMD		0x0
124 #define PUSHR_TX		0x2
125 
126 #define SPI_CS_INIT		0x01
127 #define SPI_CS_ASSERT		0x02
128 #define SPI_CS_DROP		0x04
129 
130 #define DMA_COMPLETION_TIMEOUT	msecs_to_jiffies(3000)
131 
132 struct chip_data {
133 	u32 ctar_val;
134 	u16 void_write_data;
135 };
136 
137 enum dspi_trans_mode {
138 	DSPI_EOQ_MODE = 0,
139 	DSPI_TCFQ_MODE,
140 	DSPI_DMA_MODE,
141 };
142 
143 struct fsl_dspi_devtype_data {
144 	enum dspi_trans_mode trans_mode;
145 	u8 max_clock_factor;
146 	bool xspi_mode;
147 };
148 
149 static const struct fsl_dspi_devtype_data vf610_data = {
150 	.trans_mode = DSPI_DMA_MODE,
151 	.max_clock_factor = 2,
152 };
153 
154 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
155 	.trans_mode = DSPI_TCFQ_MODE,
156 	.max_clock_factor = 8,
157 	.xspi_mode = true,
158 };
159 
160 static const struct fsl_dspi_devtype_data ls2085a_data = {
161 	.trans_mode = DSPI_TCFQ_MODE,
162 	.max_clock_factor = 8,
163 };
164 
165 static const struct fsl_dspi_devtype_data coldfire_data = {
166 	.trans_mode = DSPI_EOQ_MODE,
167 	.max_clock_factor = 8,
168 };
169 
170 struct fsl_dspi_dma {
171 	/* Length of transfer in words of DSPI_FIFO_SIZE */
172 	u32 curr_xfer_len;
173 
174 	u32 *tx_dma_buf;
175 	struct dma_chan *chan_tx;
176 	dma_addr_t tx_dma_phys;
177 	struct completion cmd_tx_complete;
178 	struct dma_async_tx_descriptor *tx_desc;
179 
180 	u32 *rx_dma_buf;
181 	struct dma_chan *chan_rx;
182 	dma_addr_t rx_dma_phys;
183 	struct completion cmd_rx_complete;
184 	struct dma_async_tx_descriptor *rx_desc;
185 };
186 
187 struct fsl_dspi {
188 	struct spi_master	*master;
189 	struct platform_device	*pdev;
190 
191 	struct regmap		*regmap;
192 	struct regmap		*regmap_pushr;
193 	int			irq;
194 	struct clk		*clk;
195 
196 	struct spi_transfer	*cur_transfer;
197 	struct spi_message	*cur_msg;
198 	struct chip_data	*cur_chip;
199 	size_t			len;
200 	const void		*tx;
201 	void			*rx;
202 	void			*rx_end;
203 	u16			void_write_data;
204 	u16			tx_cmd;
205 	u8			bits_per_word;
206 	u8			bytes_per_word;
207 	const struct fsl_dspi_devtype_data *devtype_data;
208 
209 	wait_queue_head_t	waitq;
210 	u32			waitflags;
211 
212 	struct fsl_dspi_dma	*dma;
213 };
214 
215 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
216 {
217 	u32 txdata = 0;
218 
219 	if (dspi->tx) {
220 		if (dspi->bytes_per_word == 1)
221 			txdata = *(u8 *)dspi->tx;
222 		else if (dspi->bytes_per_word == 2)
223 			txdata = *(u16 *)dspi->tx;
224 		else  /* dspi->bytes_per_word == 4 */
225 			txdata = *(u32 *)dspi->tx;
226 		dspi->tx += dspi->bytes_per_word;
227 	}
228 	dspi->len -= dspi->bytes_per_word;
229 	return txdata;
230 }
231 
232 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
233 {
234 	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
235 
236 	if (dspi->len > 0)
237 		cmd |= SPI_PUSHR_CMD_CONT;
238 	return cmd << 16 | data;
239 }
240 
241 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
242 {
243 	if (!dspi->rx)
244 		return;
245 
246 	/* Mask of undefined bits */
247 	rxdata &= (1 << dspi->bits_per_word) - 1;
248 
249 	if (dspi->bytes_per_word == 1)
250 		*(u8 *)dspi->rx = rxdata;
251 	else if (dspi->bytes_per_word == 2)
252 		*(u16 *)dspi->rx = rxdata;
253 	else /* dspi->bytes_per_word == 4 */
254 		*(u32 *)dspi->rx = rxdata;
255 	dspi->rx += dspi->bytes_per_word;
256 }
257 
258 static void dspi_tx_dma_callback(void *arg)
259 {
260 	struct fsl_dspi *dspi = arg;
261 	struct fsl_dspi_dma *dma = dspi->dma;
262 
263 	complete(&dma->cmd_tx_complete);
264 }
265 
266 static void dspi_rx_dma_callback(void *arg)
267 {
268 	struct fsl_dspi *dspi = arg;
269 	struct fsl_dspi_dma *dma = dspi->dma;
270 	int i;
271 
272 	if (dspi->rx) {
273 		for (i = 0; i < dma->curr_xfer_len; i++)
274 			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
275 	}
276 
277 	complete(&dma->cmd_rx_complete);
278 }
279 
280 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
281 {
282 	struct fsl_dspi_dma *dma = dspi->dma;
283 	struct device *dev = &dspi->pdev->dev;
284 	int time_left;
285 	int i;
286 
287 	for (i = 0; i < dma->curr_xfer_len; i++)
288 		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
289 
290 	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
291 					dma->tx_dma_phys,
292 					dma->curr_xfer_len *
293 					DMA_SLAVE_BUSWIDTH_4_BYTES,
294 					DMA_MEM_TO_DEV,
295 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
296 	if (!dma->tx_desc) {
297 		dev_err(dev, "Not able to get desc for DMA xfer\n");
298 		return -EIO;
299 	}
300 
301 	dma->tx_desc->callback = dspi_tx_dma_callback;
302 	dma->tx_desc->callback_param = dspi;
303 	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
304 		dev_err(dev, "DMA submit failed\n");
305 		return -EINVAL;
306 	}
307 
308 	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
309 					dma->rx_dma_phys,
310 					dma->curr_xfer_len *
311 					DMA_SLAVE_BUSWIDTH_4_BYTES,
312 					DMA_DEV_TO_MEM,
313 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
314 	if (!dma->rx_desc) {
315 		dev_err(dev, "Not able to get desc for DMA xfer\n");
316 		return -EIO;
317 	}
318 
319 	dma->rx_desc->callback = dspi_rx_dma_callback;
320 	dma->rx_desc->callback_param = dspi;
321 	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
322 		dev_err(dev, "DMA submit failed\n");
323 		return -EINVAL;
324 	}
325 
326 	reinit_completion(&dspi->dma->cmd_rx_complete);
327 	reinit_completion(&dspi->dma->cmd_tx_complete);
328 
329 	dma_async_issue_pending(dma->chan_rx);
330 	dma_async_issue_pending(dma->chan_tx);
331 
332 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
333 					DMA_COMPLETION_TIMEOUT);
334 	if (time_left == 0) {
335 		dev_err(dev, "DMA tx timeout\n");
336 		dmaengine_terminate_all(dma->chan_tx);
337 		dmaengine_terminate_all(dma->chan_rx);
338 		return -ETIMEDOUT;
339 	}
340 
341 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
342 					DMA_COMPLETION_TIMEOUT);
343 	if (time_left == 0) {
344 		dev_err(dev, "DMA rx timeout\n");
345 		dmaengine_terminate_all(dma->chan_tx);
346 		dmaengine_terminate_all(dma->chan_rx);
347 		return -ETIMEDOUT;
348 	}
349 
350 	return 0;
351 }
352 
353 static int dspi_dma_xfer(struct fsl_dspi *dspi)
354 {
355 	struct fsl_dspi_dma *dma = dspi->dma;
356 	struct device *dev = &dspi->pdev->dev;
357 	struct spi_message *message = dspi->cur_msg;
358 	int curr_remaining_bytes;
359 	int bytes_per_buffer;
360 	int ret = 0;
361 
362 	curr_remaining_bytes = dspi->len;
363 	bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
364 	while (curr_remaining_bytes) {
365 		/* Check if current transfer fits the DMA buffer */
366 		dma->curr_xfer_len = curr_remaining_bytes
367 			/ dspi->bytes_per_word;
368 		if (dma->curr_xfer_len > bytes_per_buffer)
369 			dma->curr_xfer_len = bytes_per_buffer;
370 
371 		ret = dspi_next_xfer_dma_submit(dspi);
372 		if (ret) {
373 			dev_err(dev, "DMA transfer failed\n");
374 			goto exit;
375 
376 		} else {
377 			const int len =
378 				dma->curr_xfer_len * dspi->bytes_per_word;
379 			curr_remaining_bytes -= len;
380 			message->actual_length += len;
381 			if (curr_remaining_bytes < 0)
382 				curr_remaining_bytes = 0;
383 		}
384 	}
385 
386 exit:
387 	return ret;
388 }
389 
390 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
391 {
392 	struct fsl_dspi_dma *dma;
393 	struct dma_slave_config cfg;
394 	struct device *dev = &dspi->pdev->dev;
395 	int ret;
396 
397 	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
398 	if (!dma)
399 		return -ENOMEM;
400 
401 	dma->chan_rx = dma_request_slave_channel(dev, "rx");
402 	if (!dma->chan_rx) {
403 		dev_err(dev, "rx dma channel not available\n");
404 		ret = -ENODEV;
405 		return ret;
406 	}
407 
408 	dma->chan_tx = dma_request_slave_channel(dev, "tx");
409 	if (!dma->chan_tx) {
410 		dev_err(dev, "tx dma channel not available\n");
411 		ret = -ENODEV;
412 		goto err_tx_channel;
413 	}
414 
415 	dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
416 					&dma->tx_dma_phys, GFP_KERNEL);
417 	if (!dma->tx_dma_buf) {
418 		ret = -ENOMEM;
419 		goto err_tx_dma_buf;
420 	}
421 
422 	dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
423 					&dma->rx_dma_phys, GFP_KERNEL);
424 	if (!dma->rx_dma_buf) {
425 		ret = -ENOMEM;
426 		goto err_rx_dma_buf;
427 	}
428 
429 	cfg.src_addr = phy_addr + SPI_POPR;
430 	cfg.dst_addr = phy_addr + SPI_PUSHR;
431 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
432 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
433 	cfg.src_maxburst = 1;
434 	cfg.dst_maxburst = 1;
435 
436 	cfg.direction = DMA_DEV_TO_MEM;
437 	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
438 	if (ret) {
439 		dev_err(dev, "can't configure rx dma channel\n");
440 		ret = -EINVAL;
441 		goto err_slave_config;
442 	}
443 
444 	cfg.direction = DMA_MEM_TO_DEV;
445 	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
446 	if (ret) {
447 		dev_err(dev, "can't configure tx dma channel\n");
448 		ret = -EINVAL;
449 		goto err_slave_config;
450 	}
451 
452 	dspi->dma = dma;
453 	init_completion(&dma->cmd_tx_complete);
454 	init_completion(&dma->cmd_rx_complete);
455 
456 	return 0;
457 
458 err_slave_config:
459 	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
460 			dma->rx_dma_buf, dma->rx_dma_phys);
461 err_rx_dma_buf:
462 	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
463 			dma->tx_dma_buf, dma->tx_dma_phys);
464 err_tx_dma_buf:
465 	dma_release_channel(dma->chan_tx);
466 err_tx_channel:
467 	dma_release_channel(dma->chan_rx);
468 
469 	devm_kfree(dev, dma);
470 	dspi->dma = NULL;
471 
472 	return ret;
473 }
474 
475 static void dspi_release_dma(struct fsl_dspi *dspi)
476 {
477 	struct fsl_dspi_dma *dma = dspi->dma;
478 	struct device *dev = &dspi->pdev->dev;
479 
480 	if (dma) {
481 		if (dma->chan_tx) {
482 			dma_unmap_single(dev, dma->tx_dma_phys,
483 					DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
484 			dma_release_channel(dma->chan_tx);
485 		}
486 
487 		if (dma->chan_rx) {
488 			dma_unmap_single(dev, dma->rx_dma_phys,
489 					DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
490 			dma_release_channel(dma->chan_rx);
491 		}
492 	}
493 }
494 
495 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
496 		unsigned long clkrate)
497 {
498 	/* Valid baud rate pre-scaler values */
499 	int pbr_tbl[4] = {2, 3, 5, 7};
500 	int brs[16] = {	2,	4,	6,	8,
501 		16,	32,	64,	128,
502 		256,	512,	1024,	2048,
503 		4096,	8192,	16384,	32768 };
504 	int scale_needed, scale, minscale = INT_MAX;
505 	int i, j;
506 
507 	scale_needed = clkrate / speed_hz;
508 	if (clkrate % speed_hz)
509 		scale_needed++;
510 
511 	for (i = 0; i < ARRAY_SIZE(brs); i++)
512 		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
513 			scale = brs[i] * pbr_tbl[j];
514 			if (scale >= scale_needed) {
515 				if (scale < minscale) {
516 					minscale = scale;
517 					*br = i;
518 					*pbr = j;
519 				}
520 				break;
521 			}
522 		}
523 
524 	if (minscale == INT_MAX) {
525 		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
526 			speed_hz, clkrate);
527 		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
528 		*br =  ARRAY_SIZE(brs) - 1;
529 	}
530 }
531 
532 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
533 		unsigned long clkrate)
534 {
535 	int pscale_tbl[4] = {1, 3, 5, 7};
536 	int scale_needed, scale, minscale = INT_MAX;
537 	int i, j;
538 	u32 remainder;
539 
540 	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
541 			&remainder);
542 	if (remainder)
543 		scale_needed++;
544 
545 	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
546 		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
547 			scale = pscale_tbl[i] * (2 << j);
548 			if (scale >= scale_needed) {
549 				if (scale < minscale) {
550 					minscale = scale;
551 					*psc = i;
552 					*sc = j;
553 				}
554 				break;
555 			}
556 		}
557 
558 	if (minscale == INT_MAX) {
559 		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
560 			delay_ns, clkrate);
561 		*psc = ARRAY_SIZE(pscale_tbl) - 1;
562 		*sc = SPI_CTAR_SCALE_BITS;
563 	}
564 }
565 
566 static void fifo_write(struct fsl_dspi *dspi)
567 {
568 	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
569 }
570 
571 static void cmd_fifo_write(struct fsl_dspi *dspi)
572 {
573 	u16 cmd = dspi->tx_cmd;
574 
575 	if (dspi->len > 0)
576 		cmd |= SPI_PUSHR_CMD_CONT;
577 	regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
578 }
579 
580 static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
581 {
582 	regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
583 }
584 
585 static void dspi_tcfq_write(struct fsl_dspi *dspi)
586 {
587 	/* Clear transfer count */
588 	dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
589 
590 	if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
591 		/* Write two TX FIFO entries first, and then the corresponding
592 		 * CMD FIFO entry.
593 		 */
594 		u32 data = dspi_pop_tx(dspi);
595 
596 		if (dspi->cur_chip->ctar_val & SPI_CTAR_LSBFE(1)) {
597 			/* LSB */
598 			tx_fifo_write(dspi, data & 0xFFFF);
599 			tx_fifo_write(dspi, data >> 16);
600 		} else {
601 			/* MSB */
602 			tx_fifo_write(dspi, data >> 16);
603 			tx_fifo_write(dspi, data & 0xFFFF);
604 		}
605 		cmd_fifo_write(dspi);
606 	} else {
607 		/* Write one entry to both TX FIFO and CMD FIFO
608 		 * simultaneously.
609 		 */
610 		fifo_write(dspi);
611 	}
612 }
613 
614 static u32 fifo_read(struct fsl_dspi *dspi)
615 {
616 	u32 rxdata = 0;
617 
618 	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
619 	return rxdata;
620 }
621 
622 static void dspi_tcfq_read(struct fsl_dspi *dspi)
623 {
624 	dspi_push_rx(dspi, fifo_read(dspi));
625 }
626 
627 static void dspi_eoq_write(struct fsl_dspi *dspi)
628 {
629 	int fifo_size = DSPI_FIFO_SIZE;
630 	u16 xfer_cmd = dspi->tx_cmd;
631 
632 	/* Fill TX FIFO with as many transfers as possible */
633 	while (dspi->len && fifo_size--) {
634 		dspi->tx_cmd = xfer_cmd;
635 		/* Request EOQF for last transfer in FIFO */
636 		if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
637 			dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
638 		/* Clear transfer count for first transfer in FIFO */
639 		if (fifo_size == (DSPI_FIFO_SIZE - 1))
640 			dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
641 		/* Write combined TX FIFO and CMD FIFO entry */
642 		fifo_write(dspi);
643 	}
644 }
645 
646 static void dspi_eoq_read(struct fsl_dspi *dspi)
647 {
648 	int fifo_size = DSPI_FIFO_SIZE;
649 
650 	/* Read one FIFO entry at and push to rx buffer */
651 	while ((dspi->rx < dspi->rx_end) && fifo_size--)
652 		dspi_push_rx(dspi, fifo_read(dspi));
653 }
654 
655 static int dspi_transfer_one_message(struct spi_master *master,
656 		struct spi_message *message)
657 {
658 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
659 	struct spi_device *spi = message->spi;
660 	struct spi_transfer *transfer;
661 	int status = 0;
662 	enum dspi_trans_mode trans_mode;
663 
664 	message->actual_length = 0;
665 
666 	list_for_each_entry(transfer, &message->transfers, transfer_list) {
667 		dspi->cur_transfer = transfer;
668 		dspi->cur_msg = message;
669 		dspi->cur_chip = spi_get_ctldata(spi);
670 		/* Prepare command word for CMD FIFO */
671 		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
672 			SPI_PUSHR_CMD_PCS(spi->chip_select);
673 		if (list_is_last(&dspi->cur_transfer->transfer_list,
674 				 &dspi->cur_msg->transfers)) {
675 			/* Leave PCS activated after last transfer when
676 			 * cs_change is set.
677 			 */
678 			if (transfer->cs_change)
679 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
680 		} else {
681 			/* Keep PCS active between transfers in same message
682 			 * when cs_change is not set, and de-activate PCS
683 			 * between transfers in the same message when
684 			 * cs_change is set.
685 			 */
686 			if (!transfer->cs_change)
687 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
688 		}
689 
690 		dspi->void_write_data = dspi->cur_chip->void_write_data;
691 
692 		dspi->tx = transfer->tx_buf;
693 		dspi->rx = transfer->rx_buf;
694 		dspi->rx_end = dspi->rx + transfer->len;
695 		dspi->len = transfer->len;
696 		/* Validated transfer specific frame size (defaults applied) */
697 		dspi->bits_per_word = transfer->bits_per_word;
698 		if (transfer->bits_per_word <= 8)
699 			dspi->bytes_per_word = 1;
700 		else if (transfer->bits_per_word <= 16)
701 			dspi->bytes_per_word = 2;
702 		else
703 			dspi->bytes_per_word = 4;
704 
705 		regmap_update_bits(dspi->regmap, SPI_MCR,
706 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
707 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
708 		regmap_write(dspi->regmap, SPI_CTAR(0),
709 			     dspi->cur_chip->ctar_val |
710 			     SPI_FRAME_BITS(transfer->bits_per_word));
711 		if (dspi->devtype_data->xspi_mode)
712 			regmap_write(dspi->regmap, SPI_CTARE(0),
713 				     SPI_FRAME_EBITS(transfer->bits_per_word)
714 				     | SPI_CTARE_DTCP(1));
715 
716 		trans_mode = dspi->devtype_data->trans_mode;
717 		switch (trans_mode) {
718 		case DSPI_EOQ_MODE:
719 			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
720 			dspi_eoq_write(dspi);
721 			break;
722 		case DSPI_TCFQ_MODE:
723 			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
724 			dspi_tcfq_write(dspi);
725 			break;
726 		case DSPI_DMA_MODE:
727 			regmap_write(dspi->regmap, SPI_RSER,
728 				SPI_RSER_TFFFE | SPI_RSER_TFFFD |
729 				SPI_RSER_RFDFE | SPI_RSER_RFDFD);
730 			status = dspi_dma_xfer(dspi);
731 			break;
732 		default:
733 			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
734 				trans_mode);
735 			status = -EINVAL;
736 			goto out;
737 		}
738 
739 		if (trans_mode != DSPI_DMA_MODE) {
740 			if (wait_event_interruptible(dspi->waitq,
741 						dspi->waitflags))
742 				dev_err(&dspi->pdev->dev,
743 					"wait transfer complete fail!\n");
744 			dspi->waitflags = 0;
745 		}
746 
747 		if (transfer->delay_usecs)
748 			udelay(transfer->delay_usecs);
749 	}
750 
751 out:
752 	message->status = status;
753 	spi_finalize_current_message(master);
754 
755 	return status;
756 }
757 
758 static int dspi_setup(struct spi_device *spi)
759 {
760 	struct chip_data *chip;
761 	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
762 	struct fsl_dspi_platform_data *pdata;
763 	u32 cs_sck_delay = 0, sck_cs_delay = 0;
764 	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
765 	unsigned char pasc = 0, asc = 0;
766 	unsigned long clkrate;
767 
768 	/* Only alloc on first setup */
769 	chip = spi_get_ctldata(spi);
770 	if (chip == NULL) {
771 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
772 		if (!chip)
773 			return -ENOMEM;
774 	}
775 
776 	pdata = dev_get_platdata(&dspi->pdev->dev);
777 
778 	if (!pdata) {
779 		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
780 				&cs_sck_delay);
781 
782 		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
783 				&sck_cs_delay);
784 	} else {
785 		cs_sck_delay = pdata->cs_sck_delay;
786 		sck_cs_delay = pdata->sck_cs_delay;
787 	}
788 
789 	chip->void_write_data = 0;
790 
791 	clkrate = clk_get_rate(dspi->clk);
792 	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
793 
794 	/* Set PCS to SCK delay scale values */
795 	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
796 
797 	/* Set After SCK delay scale values */
798 	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
799 
800 	chip->ctar_val = SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
801 		| SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
802 		| SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
803 		| SPI_CTAR_PCSSCK(pcssck)
804 		| SPI_CTAR_CSSCK(cssck)
805 		| SPI_CTAR_PASC(pasc)
806 		| SPI_CTAR_ASC(asc)
807 		| SPI_CTAR_PBR(pbr)
808 		| SPI_CTAR_BR(br);
809 
810 	spi_set_ctldata(spi, chip);
811 
812 	return 0;
813 }
814 
815 static void dspi_cleanup(struct spi_device *spi)
816 {
817 	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
818 
819 	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
820 			spi->master->bus_num, spi->chip_select);
821 
822 	kfree(chip);
823 }
824 
825 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
826 {
827 	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
828 	struct spi_message *msg = dspi->cur_msg;
829 	enum dspi_trans_mode trans_mode;
830 	u32 spi_sr, spi_tcr;
831 	u16 spi_tcnt;
832 
833 	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
834 	regmap_write(dspi->regmap, SPI_SR, spi_sr);
835 
836 
837 	if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
838 		/* Get transfer counter (in number of SPI transfers). It was
839 		 * reset to 0 when transfer(s) were started.
840 		 */
841 		regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
842 		spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
843 		/* Update total number of bytes that were transferred */
844 		msg->actual_length += spi_tcnt * dspi->bytes_per_word;
845 
846 		trans_mode = dspi->devtype_data->trans_mode;
847 		switch (trans_mode) {
848 		case DSPI_EOQ_MODE:
849 			dspi_eoq_read(dspi);
850 			break;
851 		case DSPI_TCFQ_MODE:
852 			dspi_tcfq_read(dspi);
853 			break;
854 		default:
855 			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
856 				trans_mode);
857 				return IRQ_HANDLED;
858 		}
859 
860 		if (!dspi->len) {
861 			dspi->waitflags = 1;
862 			wake_up_interruptible(&dspi->waitq);
863 		} else {
864 			switch (trans_mode) {
865 			case DSPI_EOQ_MODE:
866 				dspi_eoq_write(dspi);
867 				break;
868 			case DSPI_TCFQ_MODE:
869 				dspi_tcfq_write(dspi);
870 				break;
871 			default:
872 				dev_err(&dspi->pdev->dev,
873 					"unsupported trans_mode %u\n",
874 					trans_mode);
875 			}
876 		}
877 	}
878 
879 	return IRQ_HANDLED;
880 }
881 
882 static const struct of_device_id fsl_dspi_dt_ids[] = {
883 	{ .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
884 	{ .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
885 	{ .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
886 	{ /* sentinel */ }
887 };
888 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
889 
890 #ifdef CONFIG_PM_SLEEP
891 static int dspi_suspend(struct device *dev)
892 {
893 	struct spi_master *master = dev_get_drvdata(dev);
894 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
895 
896 	spi_master_suspend(master);
897 	clk_disable_unprepare(dspi->clk);
898 
899 	pinctrl_pm_select_sleep_state(dev);
900 
901 	return 0;
902 }
903 
904 static int dspi_resume(struct device *dev)
905 {
906 	struct spi_master *master = dev_get_drvdata(dev);
907 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
908 	int ret;
909 
910 	pinctrl_pm_select_default_state(dev);
911 
912 	ret = clk_prepare_enable(dspi->clk);
913 	if (ret)
914 		return ret;
915 	spi_master_resume(master);
916 
917 	return 0;
918 }
919 #endif /* CONFIG_PM_SLEEP */
920 
921 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
922 
923 static const struct regmap_range dspi_volatile_ranges[] = {
924 	regmap_reg_range(SPI_MCR, SPI_TCR),
925 	regmap_reg_range(SPI_SR, SPI_SR),
926 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
927 };
928 
929 static const struct regmap_access_table dspi_volatile_table = {
930 	.yes_ranges     = dspi_volatile_ranges,
931 	.n_yes_ranges   = ARRAY_SIZE(dspi_volatile_ranges),
932 };
933 
934 static const struct regmap_config dspi_regmap_config = {
935 	.reg_bits = 32,
936 	.val_bits = 32,
937 	.reg_stride = 4,
938 	.max_register = 0x88,
939 	.volatile_table = &dspi_volatile_table,
940 };
941 
942 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
943 	regmap_reg_range(SPI_MCR, SPI_TCR),
944 	regmap_reg_range(SPI_SR, SPI_SR),
945 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
946 	regmap_reg_range(SPI_SREX, SPI_SREX),
947 };
948 
949 static const struct regmap_access_table dspi_xspi_volatile_table = {
950 	.yes_ranges     = dspi_xspi_volatile_ranges,
951 	.n_yes_ranges   = ARRAY_SIZE(dspi_xspi_volatile_ranges),
952 };
953 
954 static const struct regmap_config dspi_xspi_regmap_config[] = {
955 	{
956 		.reg_bits = 32,
957 		.val_bits = 32,
958 		.reg_stride = 4,
959 		.max_register = 0x13c,
960 		.volatile_table = &dspi_xspi_volatile_table,
961 	},
962 	{
963 		.name = "pushr",
964 		.reg_bits = 16,
965 		.val_bits = 16,
966 		.reg_stride = 2,
967 		.max_register = 0x2,
968 	},
969 };
970 
971 static void dspi_init(struct fsl_dspi *dspi)
972 {
973 	regmap_write(dspi->regmap, SPI_MCR, SPI_MCR_MASTER | SPI_MCR_PCSIS |
974 		     (dspi->devtype_data->xspi_mode ? SPI_MCR_XSPI : 0));
975 	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
976 	if (dspi->devtype_data->xspi_mode)
977 		regmap_write(dspi->regmap, SPI_CTARE(0),
978 			     SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
979 }
980 
981 static int dspi_probe(struct platform_device *pdev)
982 {
983 	struct device_node *np = pdev->dev.of_node;
984 	struct spi_master *master;
985 	struct fsl_dspi *dspi;
986 	struct resource *res;
987 	const struct regmap_config *regmap_config;
988 	void __iomem *base;
989 	struct fsl_dspi_platform_data *pdata;
990 	int ret = 0, cs_num, bus_num;
991 
992 	master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
993 	if (!master)
994 		return -ENOMEM;
995 
996 	dspi = spi_master_get_devdata(master);
997 	dspi->pdev = pdev;
998 	dspi->master = master;
999 
1000 	master->transfer = NULL;
1001 	master->setup = dspi_setup;
1002 	master->transfer_one_message = dspi_transfer_one_message;
1003 	master->dev.of_node = pdev->dev.of_node;
1004 
1005 	master->cleanup = dspi_cleanup;
1006 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1007 
1008 	pdata = dev_get_platdata(&pdev->dev);
1009 	if (pdata) {
1010 		master->num_chipselect = pdata->cs_num;
1011 		master->bus_num = pdata->bus_num;
1012 
1013 		dspi->devtype_data = &coldfire_data;
1014 	} else {
1015 
1016 		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1017 		if (ret < 0) {
1018 			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1019 			goto out_master_put;
1020 		}
1021 		master->num_chipselect = cs_num;
1022 
1023 		ret = of_property_read_u32(np, "bus-num", &bus_num);
1024 		if (ret < 0) {
1025 			dev_err(&pdev->dev, "can't get bus-num\n");
1026 			goto out_master_put;
1027 		}
1028 		master->bus_num = bus_num;
1029 
1030 		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1031 		if (!dspi->devtype_data) {
1032 			dev_err(&pdev->dev, "can't get devtype_data\n");
1033 			ret = -EFAULT;
1034 			goto out_master_put;
1035 		}
1036 	}
1037 
1038 	if (dspi->devtype_data->xspi_mode)
1039 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1040 	else
1041 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1042 
1043 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1044 	base = devm_ioremap_resource(&pdev->dev, res);
1045 	if (IS_ERR(base)) {
1046 		ret = PTR_ERR(base);
1047 		goto out_master_put;
1048 	}
1049 
1050 	if (dspi->devtype_data->xspi_mode)
1051 		regmap_config = &dspi_xspi_regmap_config[0];
1052 	else
1053 		regmap_config = &dspi_regmap_config;
1054 	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1055 	if (IS_ERR(dspi->regmap)) {
1056 		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1057 				PTR_ERR(dspi->regmap));
1058 		ret = PTR_ERR(dspi->regmap);
1059 		goto out_master_put;
1060 	}
1061 
1062 	if (dspi->devtype_data->xspi_mode) {
1063 		dspi->regmap_pushr = devm_regmap_init_mmio(
1064 			&pdev->dev, base + SPI_PUSHR,
1065 			&dspi_xspi_regmap_config[1]);
1066 		if (IS_ERR(dspi->regmap_pushr)) {
1067 			dev_err(&pdev->dev,
1068 				"failed to init pushr regmap: %ld\n",
1069 				PTR_ERR(dspi->regmap_pushr));
1070 			ret = PTR_ERR(dspi->regmap_pushr);
1071 			goto out_master_put;
1072 		}
1073 	}
1074 
1075 	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1076 	if (IS_ERR(dspi->clk)) {
1077 		ret = PTR_ERR(dspi->clk);
1078 		dev_err(&pdev->dev, "unable to get clock\n");
1079 		goto out_master_put;
1080 	}
1081 	ret = clk_prepare_enable(dspi->clk);
1082 	if (ret)
1083 		goto out_master_put;
1084 
1085 	dspi_init(dspi);
1086 	dspi->irq = platform_get_irq(pdev, 0);
1087 	if (dspi->irq < 0) {
1088 		dev_err(&pdev->dev, "can't get platform irq\n");
1089 		ret = dspi->irq;
1090 		goto out_clk_put;
1091 	}
1092 
1093 	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt,
1094 			       IRQF_SHARED, pdev->name, dspi);
1095 	if (ret < 0) {
1096 		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1097 		goto out_clk_put;
1098 	}
1099 
1100 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1101 		ret = dspi_request_dma(dspi, res->start);
1102 		if (ret < 0) {
1103 			dev_err(&pdev->dev, "can't get dma channels\n");
1104 			goto out_clk_put;
1105 		}
1106 	}
1107 
1108 	master->max_speed_hz =
1109 		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1110 
1111 	init_waitqueue_head(&dspi->waitq);
1112 	platform_set_drvdata(pdev, master);
1113 
1114 	ret = spi_register_master(master);
1115 	if (ret != 0) {
1116 		dev_err(&pdev->dev, "Problem registering DSPI master\n");
1117 		goto out_clk_put;
1118 	}
1119 
1120 	return ret;
1121 
1122 out_clk_put:
1123 	clk_disable_unprepare(dspi->clk);
1124 out_master_put:
1125 	spi_master_put(master);
1126 
1127 	return ret;
1128 }
1129 
1130 static int dspi_remove(struct platform_device *pdev)
1131 {
1132 	struct spi_master *master = platform_get_drvdata(pdev);
1133 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
1134 
1135 	/* Disconnect from the SPI framework */
1136 	dspi_release_dma(dspi);
1137 	clk_disable_unprepare(dspi->clk);
1138 	spi_unregister_master(dspi->master);
1139 
1140 	return 0;
1141 }
1142 
1143 static struct platform_driver fsl_dspi_driver = {
1144 	.driver.name    = DRIVER_NAME,
1145 	.driver.of_match_table = fsl_dspi_dt_ids,
1146 	.driver.owner   = THIS_MODULE,
1147 	.driver.pm = &dspi_pm,
1148 	.probe          = dspi_probe,
1149 	.remove		= dspi_remove,
1150 };
1151 module_platform_driver(fsl_dspi_driver);
1152 
1153 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1154 MODULE_LICENSE("GPL");
1155 MODULE_ALIAS("platform:" DRIVER_NAME);
1156