xref: /openbmc/linux/drivers/spi/spi-fsi.c (revision f94059f8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // Copyright (C) IBM Corporation 2020
3 
4 #include <linux/bitfield.h>
5 #include <linux/bits.h>
6 #include <linux/fsi.h>
7 #include <linux/jiffies.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/spi/spi.h>
12 
13 #define FSI_ENGID_SPI			0x23
14 #define FSI_MBOX_ROOT_CTRL_8		0x2860
15 #define  FSI_MBOX_ROOT_CTRL_8_SPI_MUX	 0xf0000000
16 
17 #define FSI2SPI_DATA0			0x00
18 #define FSI2SPI_DATA1			0x04
19 #define FSI2SPI_CMD			0x08
20 #define  FSI2SPI_CMD_WRITE		 BIT(31)
21 #define FSI2SPI_RESET			0x18
22 #define FSI2SPI_STATUS			0x1c
23 #define  FSI2SPI_STATUS_ANY_ERROR	 BIT(31)
24 #define FSI2SPI_IRQ			0x20
25 
26 #define SPI_FSI_BASE			0x70000
27 #define SPI_FSI_INIT_TIMEOUT_MS		1000
28 #define SPI_FSI_STATUS_TIMEOUT_MS	100
29 #define SPI_FSI_MAX_RX_SIZE		8
30 #define SPI_FSI_MAX_TX_SIZE		40
31 
32 #define SPI_FSI_ERROR			0x0
33 #define SPI_FSI_COUNTER_CFG		0x1
34 #define SPI_FSI_CFG1			0x2
35 #define SPI_FSI_CLOCK_CFG		0x3
36 #define  SPI_FSI_CLOCK_CFG_MM_ENABLE	 BIT_ULL(32)
37 #define  SPI_FSI_CLOCK_CFG_ECC_DISABLE	 (BIT_ULL(35) | BIT_ULL(33))
38 #define  SPI_FSI_CLOCK_CFG_RESET1	 (BIT_ULL(36) | BIT_ULL(38))
39 #define  SPI_FSI_CLOCK_CFG_RESET2	 (BIT_ULL(37) | BIT_ULL(39))
40 #define  SPI_FSI_CLOCK_CFG_MODE		 (BIT_ULL(41) | BIT_ULL(42))
41 #define  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL	 GENMASK_ULL(51, 44)
42 #define   SPI_FSI_CLOCK_CFG_SCK_NO_DEL	  BIT_ULL(51)
43 #define  SPI_FSI_CLOCK_CFG_SCK_DIV	 GENMASK_ULL(63, 52)
44 #define SPI_FSI_MMAP			0x4
45 #define SPI_FSI_DATA_TX			0x5
46 #define SPI_FSI_DATA_RX			0x6
47 #define SPI_FSI_SEQUENCE		0x7
48 #define  SPI_FSI_SEQUENCE_STOP		 0x00
49 #define  SPI_FSI_SEQUENCE_SEL_SLAVE(x)	 (0x10 | ((x) & 0xf))
50 #define  SPI_FSI_SEQUENCE_SHIFT_OUT(x)	 (0x30 | ((x) & 0xf))
51 #define  SPI_FSI_SEQUENCE_SHIFT_IN(x)	 (0x40 | ((x) & 0xf))
52 #define  SPI_FSI_SEQUENCE_COPY_DATA_TX	 0xc0
53 #define  SPI_FSI_SEQUENCE_BRANCH(x)	 (0xe0 | ((x) & 0xf))
54 #define SPI_FSI_STATUS			0x8
55 #define  SPI_FSI_STATUS_ERROR		 \
56 	(GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12))
57 #define  SPI_FSI_STATUS_SEQ_STATE	 GENMASK_ULL(55, 48)
58 #define   SPI_FSI_STATUS_SEQ_STATE_IDLE	  BIT_ULL(48)
59 #define  SPI_FSI_STATUS_TDR_UNDERRUN	 BIT_ULL(57)
60 #define  SPI_FSI_STATUS_TDR_OVERRUN	 BIT_ULL(58)
61 #define  SPI_FSI_STATUS_TDR_FULL	 BIT_ULL(59)
62 #define  SPI_FSI_STATUS_RDR_UNDERRUN	 BIT_ULL(61)
63 #define  SPI_FSI_STATUS_RDR_OVERRUN	 BIT_ULL(62)
64 #define  SPI_FSI_STATUS_RDR_FULL	 BIT_ULL(63)
65 #define  SPI_FSI_STATUS_ANY_ERROR	 \
66 	(SPI_FSI_STATUS_ERROR | \
67 	 SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \
68 	 SPI_FSI_STATUS_RDR_OVERRUN)
69 #define SPI_FSI_PORT_CTRL		0x9
70 
71 struct fsi2spi {
72 	struct fsi_device *fsi; /* FSI2SPI CFAM engine device */
73 	struct mutex lock; /* lock access to the device */
74 };
75 
76 struct fsi_spi {
77 	struct device *dev;	/* SPI controller device */
78 	struct fsi2spi *bridge; /* FSI2SPI device */
79 	u32 base;
80 };
81 
82 struct fsi_spi_sequence {
83 	int bit;
84 	u64 data;
85 };
86 
87 static int fsi_spi_check_mux(struct fsi_device *fsi, struct device *dev)
88 {
89 	int rc;
90 	u32 root_ctrl_8;
91 	__be32 root_ctrl_8_be;
92 
93 	rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8_be,
94 			    sizeof(root_ctrl_8_be));
95 	if (rc)
96 		return rc;
97 
98 	root_ctrl_8 = be32_to_cpu(root_ctrl_8_be);
99 	dev_dbg(dev, "Root control register 8: %08x\n", root_ctrl_8);
100 	if ((root_ctrl_8 & FSI_MBOX_ROOT_CTRL_8_SPI_MUX) ==
101 	     FSI_MBOX_ROOT_CTRL_8_SPI_MUX)
102 		return 0;
103 
104 	return -ENOLINK;
105 }
106 
107 static int fsi_spi_check_status(struct fsi_spi *ctx)
108 {
109 	int rc;
110 	u32 sts;
111 	__be32 sts_be;
112 
113 	rc = fsi_device_read(ctx->bridge->fsi, FSI2SPI_STATUS, &sts_be,
114 			     sizeof(sts_be));
115 	if (rc)
116 		return rc;
117 
118 	sts = be32_to_cpu(sts_be);
119 	if (sts & FSI2SPI_STATUS_ANY_ERROR) {
120 		dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts);
121 		return -EIO;
122 	}
123 
124 	return 0;
125 }
126 
127 static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value)
128 {
129 	int rc = 0;
130 	__be32 cmd_be;
131 	__be32 data_be;
132 	u32 cmd = offset + ctx->base;
133 	struct fsi2spi *bridge = ctx->bridge;
134 
135 	*value = 0ULL;
136 
137 	if (cmd & FSI2SPI_CMD_WRITE)
138 		return -EINVAL;
139 
140 	rc = mutex_lock_interruptible(&bridge->lock);
141 	if (rc)
142 		return rc;
143 
144 	cmd_be = cpu_to_be32(cmd);
145 	rc = fsi_device_write(bridge->fsi, FSI2SPI_CMD, &cmd_be,
146 			      sizeof(cmd_be));
147 	if (rc)
148 		goto unlock;
149 
150 	rc = fsi_spi_check_status(ctx);
151 	if (rc)
152 		goto unlock;
153 
154 	rc = fsi_device_read(bridge->fsi, FSI2SPI_DATA0, &data_be,
155 			     sizeof(data_be));
156 	if (rc)
157 		goto unlock;
158 
159 	*value |= (u64)be32_to_cpu(data_be) << 32;
160 
161 	rc = fsi_device_read(bridge->fsi, FSI2SPI_DATA1, &data_be,
162 			     sizeof(data_be));
163 	if (rc)
164 		goto unlock;
165 
166 	*value |= (u64)be32_to_cpu(data_be);
167 	dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value);
168 
169 unlock:
170 	mutex_unlock(&bridge->lock);
171 	return rc;
172 }
173 
174 static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value)
175 {
176 	int rc = 0;
177 	__be32 cmd_be;
178 	__be32 data_be;
179 	u32 cmd = offset + ctx->base;
180 	struct fsi2spi *bridge = ctx->bridge;
181 
182 	if (cmd & FSI2SPI_CMD_WRITE)
183 		return -EINVAL;
184 
185 	rc = mutex_lock_interruptible(&bridge->lock);
186 	if (rc)
187 		return rc;
188 
189 	dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value);
190 
191 	data_be = cpu_to_be32(upper_32_bits(value));
192 	rc = fsi_device_write(bridge->fsi, FSI2SPI_DATA0, &data_be,
193 			      sizeof(data_be));
194 	if (rc)
195 		goto unlock;
196 
197 	data_be = cpu_to_be32(lower_32_bits(value));
198 	rc = fsi_device_write(bridge->fsi, FSI2SPI_DATA1, &data_be,
199 			      sizeof(data_be));
200 	if (rc)
201 		goto unlock;
202 
203 	cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE);
204 	rc = fsi_device_write(bridge->fsi, FSI2SPI_CMD, &cmd_be,
205 			      sizeof(cmd_be));
206 	if (rc)
207 		goto unlock;
208 
209 	rc = fsi_spi_check_status(ctx);
210 
211 unlock:
212 	mutex_unlock(&bridge->lock);
213 	return rc;
214 }
215 
216 static int fsi_spi_data_in(u64 in, u8 *rx, int len)
217 {
218 	int i;
219 	int num_bytes = min(len, 8);
220 
221 	for (i = 0; i < num_bytes; ++i)
222 		rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i)));
223 
224 	return num_bytes;
225 }
226 
227 static int fsi_spi_data_out(u64 *out, const u8 *tx, int len)
228 {
229 	int i;
230 	int num_bytes = min(len, 8);
231 	u8 *out_bytes = (u8 *)out;
232 
233 	/* Unused bytes of the tx data should be 0. */
234 	*out = 0ULL;
235 
236 	for (i = 0; i < num_bytes; ++i)
237 		out_bytes[8 - (i + 1)] = tx[i];
238 
239 	return num_bytes;
240 }
241 
242 static int fsi_spi_reset(struct fsi_spi *ctx)
243 {
244 	int rc;
245 
246 	dev_dbg(ctx->dev, "Resetting SPI controller.\n");
247 
248 	rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
249 			       SPI_FSI_CLOCK_CFG_RESET1);
250 	if (rc)
251 		return rc;
252 
253 	rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
254 			       SPI_FSI_CLOCK_CFG_RESET2);
255 	if (rc)
256 		return rc;
257 
258 	return fsi_spi_write_reg(ctx, SPI_FSI_STATUS, 0ULL);
259 }
260 
261 static int fsi_spi_status(struct fsi_spi *ctx, u64 *status, const char *dir)
262 {
263 	int rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, status);
264 
265 	if (rc)
266 		return rc;
267 
268 	if (*status & SPI_FSI_STATUS_ANY_ERROR) {
269 		dev_err(ctx->dev, "%s error: %016llx\n", dir, *status);
270 
271 		rc = fsi_spi_reset(ctx);
272 		if (rc)
273 			return rc;
274 
275 		return -EREMOTEIO;
276 	}
277 
278 	return 0;
279 }
280 
281 static void fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val)
282 {
283 	/*
284 	 * Add the next byte of instruction to the 8-byte sequence register.
285 	 * Then decrement the counter so that the next instruction will go in
286 	 * the right place. Return the index of the slot we just filled in the
287 	 * sequence register.
288 	 */
289 	seq->data |= (u64)val << seq->bit;
290 	seq->bit -= 8;
291 }
292 
293 static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq)
294 {
295 	seq->bit = 56;
296 	seq->data = 0ULL;
297 }
298 
299 static int fsi_spi_transfer_data(struct fsi_spi *ctx,
300 				 struct spi_transfer *transfer)
301 {
302 	int rc = 0;
303 	unsigned long end;
304 	u64 status = 0ULL;
305 
306 	if (transfer->tx_buf) {
307 		int nb;
308 		int sent = 0;
309 		u64 out = 0ULL;
310 		const u8 *tx = transfer->tx_buf;
311 
312 		while (transfer->len > sent) {
313 			nb = fsi_spi_data_out(&out, &tx[sent],
314 					      (int)transfer->len - sent);
315 
316 			rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out);
317 			if (rc)
318 				return rc;
319 
320 			end = jiffies + msecs_to_jiffies(SPI_FSI_STATUS_TIMEOUT_MS);
321 			do {
322 				if (time_after(jiffies, end))
323 					return -ETIMEDOUT;
324 
325 				rc = fsi_spi_status(ctx, &status, "TX");
326 				if (rc)
327 					return rc;
328 			} while (status & SPI_FSI_STATUS_TDR_FULL);
329 
330 			sent += nb;
331 		}
332 	} else if (transfer->rx_buf) {
333 		int recv = 0;
334 		u64 in = 0ULL;
335 		u8 *rx = transfer->rx_buf;
336 
337 		while (transfer->len > recv) {
338 			end = jiffies + msecs_to_jiffies(SPI_FSI_STATUS_TIMEOUT_MS);
339 			do {
340 				if (time_after(jiffies, end))
341 					return -ETIMEDOUT;
342 
343 				rc = fsi_spi_status(ctx, &status, "RX");
344 				if (rc)
345 					return rc;
346 			} while (!(status & SPI_FSI_STATUS_RDR_FULL));
347 
348 			rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in);
349 			if (rc)
350 				return rc;
351 
352 			recv += fsi_spi_data_in(in, &rx[recv],
353 						(int)transfer->len - recv);
354 		}
355 	}
356 
357 	return 0;
358 }
359 
360 static int fsi_spi_transfer_init(struct fsi_spi *ctx)
361 {
362 	int rc;
363 	bool reset = false;
364 	unsigned long end;
365 	u64 seq_state;
366 	u64 clock_cfg = 0ULL;
367 	u64 status = 0ULL;
368 	u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE |
369 		SPI_FSI_CLOCK_CFG_SCK_NO_DEL |
370 		FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 19);
371 
372 	end = jiffies + msecs_to_jiffies(SPI_FSI_INIT_TIMEOUT_MS);
373 	do {
374 		if (time_after(jiffies, end))
375 			return -ETIMEDOUT;
376 
377 		rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status);
378 		if (rc)
379 			return rc;
380 
381 		seq_state = status & SPI_FSI_STATUS_SEQ_STATE;
382 
383 		if (status & (SPI_FSI_STATUS_ANY_ERROR |
384 			      SPI_FSI_STATUS_TDR_FULL |
385 			      SPI_FSI_STATUS_RDR_FULL)) {
386 			if (reset) {
387 				dev_err(ctx->dev,
388 					"Initialization error: %08llx\n",
389 					status);
390 				return -EIO;
391 			}
392 
393 			rc = fsi_spi_reset(ctx);
394 			if (rc)
395 				return rc;
396 
397 			reset = true;
398 			continue;
399 		}
400 	} while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE));
401 
402 	rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, 0ULL);
403 	if (rc)
404 		return rc;
405 
406 	rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg);
407 	if (rc)
408 		return rc;
409 
410 	if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE |
411 			  SPI_FSI_CLOCK_CFG_ECC_DISABLE |
412 			  SPI_FSI_CLOCK_CFG_MODE |
413 			  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL |
414 			  SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg)
415 		rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
416 				       wanted_clock_cfg);
417 
418 	return rc;
419 }
420 
421 static int fsi_spi_transfer_one_message(struct spi_controller *ctlr,
422 					struct spi_message *mesg)
423 {
424 	int rc;
425 	u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(mesg->spi->chip_select + 1);
426 	unsigned int len;
427 	struct spi_transfer *transfer;
428 	struct fsi_spi *ctx = spi_controller_get_devdata(ctlr);
429 
430 	rc = fsi_spi_check_mux(ctx->bridge->fsi, ctx->dev);
431 	if (rc)
432 		goto error;
433 
434 	list_for_each_entry(transfer, &mesg->transfers, transfer_list) {
435 		struct fsi_spi_sequence seq;
436 		struct spi_transfer *next = NULL;
437 
438 		/* Sequencer must do shift out (tx) first. */
439 		if (!transfer->tx_buf || transfer->len > SPI_FSI_MAX_TX_SIZE) {
440 			rc = -EINVAL;
441 			goto error;
442 		}
443 
444 		dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len);
445 
446 		rc = fsi_spi_transfer_init(ctx);
447 		if (rc < 0)
448 			goto error;
449 
450 		fsi_spi_sequence_init(&seq);
451 		fsi_spi_sequence_add(&seq, seq_slave);
452 
453 		len = transfer->len;
454 		while (len > 8) {
455 			fsi_spi_sequence_add(&seq,
456 					     SPI_FSI_SEQUENCE_SHIFT_OUT(8));
457 			len -= 8;
458 		}
459 		fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SHIFT_OUT(len));
460 
461 		if (!list_is_last(&transfer->transfer_list,
462 				  &mesg->transfers)) {
463 			next = list_next_entry(transfer, transfer_list);
464 
465 			/* Sequencer can only do shift in (rx) after tx. */
466 			if (next->rx_buf) {
467 				u8 shift;
468 
469 				if (next->len > SPI_FSI_MAX_RX_SIZE) {
470 					rc = -EINVAL;
471 					goto error;
472 				}
473 
474 				dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n",
475 					next->len);
476 
477 				shift = SPI_FSI_SEQUENCE_SHIFT_IN(next->len);
478 				fsi_spi_sequence_add(&seq, shift);
479 			} else {
480 				next = NULL;
481 			}
482 		}
483 
484 		fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0));
485 
486 		rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data);
487 		if (rc)
488 			goto error;
489 
490 		rc = fsi_spi_transfer_data(ctx, transfer);
491 		if (rc)
492 			goto error;
493 
494 		if (next) {
495 			rc = fsi_spi_transfer_data(ctx, next);
496 			if (rc)
497 				goto error;
498 
499 			transfer = next;
500 		}
501 	}
502 
503 error:
504 	mesg->status = rc;
505 	spi_finalize_current_message(ctlr);
506 
507 	return rc;
508 }
509 
510 static size_t fsi_spi_max_transfer_size(struct spi_device *spi)
511 {
512 	return SPI_FSI_MAX_RX_SIZE;
513 }
514 
515 static int fsi_spi_probe(struct device *dev)
516 {
517 	int rc;
518 	struct device_node *np;
519 	int num_controllers_registered = 0;
520 	struct fsi2spi *bridge;
521 	struct fsi_device *fsi = to_fsi_dev(dev);
522 
523 	rc = fsi_spi_check_mux(fsi, dev);
524 	if (rc)
525 		return -ENODEV;
526 
527 	bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL);
528 	if (!bridge)
529 		return -ENOMEM;
530 
531 	bridge->fsi = fsi;
532 	mutex_init(&bridge->lock);
533 
534 	for_each_available_child_of_node(dev->of_node, np) {
535 		u32 base;
536 		struct fsi_spi *ctx;
537 		struct spi_controller *ctlr;
538 
539 		if (of_property_read_u32(np, "reg", &base))
540 			continue;
541 
542 		ctlr = spi_alloc_master(dev, sizeof(*ctx));
543 		if (!ctlr) {
544 			of_node_put(np);
545 			break;
546 		}
547 
548 		ctlr->dev.of_node = np;
549 		ctlr->num_chipselect = of_get_available_child_count(np) ?: 1;
550 		ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
551 		ctlr->max_transfer_size = fsi_spi_max_transfer_size;
552 		ctlr->transfer_one_message = fsi_spi_transfer_one_message;
553 
554 		ctx = spi_controller_get_devdata(ctlr);
555 		ctx->dev = &ctlr->dev;
556 		ctx->bridge = bridge;
557 		ctx->base = base + SPI_FSI_BASE;
558 
559 		rc = devm_spi_register_controller(dev, ctlr);
560 		if (rc)
561 			spi_controller_put(ctlr);
562 		else
563 			num_controllers_registered++;
564 	}
565 
566 	if (!num_controllers_registered)
567 		return -ENODEV;
568 
569 	return 0;
570 }
571 
572 static const struct fsi_device_id fsi_spi_ids[] = {
573 	{ FSI_ENGID_SPI, FSI_VERSION_ANY },
574 	{ }
575 };
576 MODULE_DEVICE_TABLE(fsi, fsi_spi_ids);
577 
578 static struct fsi_driver fsi_spi_driver = {
579 	.id_table = fsi_spi_ids,
580 	.drv = {
581 		.name = "spi-fsi",
582 		.bus = &fsi_bus_type,
583 		.probe = fsi_spi_probe,
584 	},
585 };
586 module_fsi_driver(fsi_spi_driver);
587 
588 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
589 MODULE_DESCRIPTION("FSI attached SPI controller");
590 MODULE_LICENSE("GPL");
591