xref: /openbmc/linux/drivers/spi/spi-fsi.c (revision e6e8c6c2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // Copyright (C) IBM Corporation 2020
3 
4 #include <linux/bitfield.h>
5 #include <linux/bits.h>
6 #include <linux/fsi.h>
7 #include <linux/jiffies.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/spi/spi.h>
12 
13 #define FSI_ENGID_SPI			0x23
14 #define FSI_MBOX_ROOT_CTRL_8		0x2860
15 #define  FSI_MBOX_ROOT_CTRL_8_SPI_MUX	 0xf0000000
16 
17 #define FSI2SPI_DATA0			0x00
18 #define FSI2SPI_DATA1			0x04
19 #define FSI2SPI_CMD			0x08
20 #define  FSI2SPI_CMD_WRITE		 BIT(31)
21 #define FSI2SPI_RESET			0x18
22 #define FSI2SPI_STATUS			0x1c
23 #define  FSI2SPI_STATUS_ANY_ERROR	 BIT(31)
24 #define FSI2SPI_IRQ			0x20
25 
26 #define SPI_FSI_BASE			0x70000
27 #define SPI_FSI_TIMEOUT_MS		1000
28 #define SPI_FSI_MAX_RX_SIZE		8
29 #define SPI_FSI_MAX_TX_SIZE		40
30 
31 #define SPI_FSI_ERROR			0x0
32 #define SPI_FSI_COUNTER_CFG		0x1
33 #define SPI_FSI_CFG1			0x2
34 #define SPI_FSI_CLOCK_CFG		0x3
35 #define  SPI_FSI_CLOCK_CFG_MM_ENABLE	 BIT_ULL(32)
36 #define  SPI_FSI_CLOCK_CFG_ECC_DISABLE	 (BIT_ULL(35) | BIT_ULL(33))
37 #define  SPI_FSI_CLOCK_CFG_RESET1	 (BIT_ULL(36) | BIT_ULL(38))
38 #define  SPI_FSI_CLOCK_CFG_RESET2	 (BIT_ULL(37) | BIT_ULL(39))
39 #define  SPI_FSI_CLOCK_CFG_MODE		 (BIT_ULL(41) | BIT_ULL(42))
40 #define  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL	 GENMASK_ULL(51, 44)
41 #define   SPI_FSI_CLOCK_CFG_SCK_NO_DEL	  BIT_ULL(51)
42 #define  SPI_FSI_CLOCK_CFG_SCK_DIV	 GENMASK_ULL(63, 52)
43 #define SPI_FSI_MMAP			0x4
44 #define SPI_FSI_DATA_TX			0x5
45 #define SPI_FSI_DATA_RX			0x6
46 #define SPI_FSI_SEQUENCE		0x7
47 #define  SPI_FSI_SEQUENCE_STOP		 0x00
48 #define  SPI_FSI_SEQUENCE_SEL_SLAVE(x)	 (0x10 | ((x) & 0xf))
49 #define  SPI_FSI_SEQUENCE_SHIFT_OUT(x)	 (0x30 | ((x) & 0xf))
50 #define  SPI_FSI_SEQUENCE_SHIFT_IN(x)	 (0x40 | ((x) & 0xf))
51 #define  SPI_FSI_SEQUENCE_COPY_DATA_TX	 0xc0
52 #define  SPI_FSI_SEQUENCE_BRANCH(x)	 (0xe0 | ((x) & 0xf))
53 #define SPI_FSI_STATUS			0x8
54 #define  SPI_FSI_STATUS_ERROR		 \
55 	(GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12))
56 #define  SPI_FSI_STATUS_SEQ_STATE	 GENMASK_ULL(55, 48)
57 #define   SPI_FSI_STATUS_SEQ_STATE_IDLE	  BIT_ULL(48)
58 #define  SPI_FSI_STATUS_TDR_UNDERRUN	 BIT_ULL(57)
59 #define  SPI_FSI_STATUS_TDR_OVERRUN	 BIT_ULL(58)
60 #define  SPI_FSI_STATUS_TDR_FULL	 BIT_ULL(59)
61 #define  SPI_FSI_STATUS_RDR_UNDERRUN	 BIT_ULL(61)
62 #define  SPI_FSI_STATUS_RDR_OVERRUN	 BIT_ULL(62)
63 #define  SPI_FSI_STATUS_RDR_FULL	 BIT_ULL(63)
64 #define  SPI_FSI_STATUS_ANY_ERROR	 \
65 	(SPI_FSI_STATUS_ERROR | \
66 	 SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \
67 	 SPI_FSI_STATUS_RDR_OVERRUN)
68 #define SPI_FSI_PORT_CTRL		0x9
69 
70 struct fsi2spi {
71 	struct fsi_device *fsi; /* FSI2SPI CFAM engine device */
72 	struct mutex lock; /* lock access to the device */
73 };
74 
75 struct fsi_spi {
76 	struct device *dev;	/* SPI controller device */
77 	struct fsi2spi *bridge; /* FSI2SPI device */
78 	u32 base;
79 };
80 
81 struct fsi_spi_sequence {
82 	int bit;
83 	u64 data;
84 };
85 
86 static int fsi_spi_check_mux(struct fsi_device *fsi, struct device *dev)
87 {
88 	int rc;
89 	u32 root_ctrl_8;
90 	__be32 root_ctrl_8_be;
91 
92 	rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8_be,
93 			    sizeof(root_ctrl_8_be));
94 	if (rc)
95 		return rc;
96 
97 	root_ctrl_8 = be32_to_cpu(root_ctrl_8_be);
98 	dev_dbg(dev, "Root control register 8: %08x\n", root_ctrl_8);
99 	if ((root_ctrl_8 & FSI_MBOX_ROOT_CTRL_8_SPI_MUX) ==
100 	     FSI_MBOX_ROOT_CTRL_8_SPI_MUX)
101 		return 0;
102 
103 	return -ENOLINK;
104 }
105 
106 static int fsi_spi_check_status(struct fsi_spi *ctx)
107 {
108 	int rc;
109 	u32 sts;
110 	__be32 sts_be;
111 
112 	rc = fsi_device_read(ctx->bridge->fsi, FSI2SPI_STATUS, &sts_be,
113 			     sizeof(sts_be));
114 	if (rc)
115 		return rc;
116 
117 	sts = be32_to_cpu(sts_be);
118 	if (sts & FSI2SPI_STATUS_ANY_ERROR) {
119 		dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts);
120 		return -EIO;
121 	}
122 
123 	return 0;
124 }
125 
126 static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value)
127 {
128 	int rc = 0;
129 	__be32 cmd_be;
130 	__be32 data_be;
131 	u32 cmd = offset + ctx->base;
132 	struct fsi2spi *bridge = ctx->bridge;
133 
134 	*value = 0ULL;
135 
136 	if (cmd & FSI2SPI_CMD_WRITE)
137 		return -EINVAL;
138 
139 	rc = mutex_lock_interruptible(&bridge->lock);
140 	if (rc)
141 		return rc;
142 
143 	cmd_be = cpu_to_be32(cmd);
144 	rc = fsi_device_write(bridge->fsi, FSI2SPI_CMD, &cmd_be,
145 			      sizeof(cmd_be));
146 	if (rc)
147 		goto unlock;
148 
149 	rc = fsi_spi_check_status(ctx);
150 	if (rc)
151 		goto unlock;
152 
153 	rc = fsi_device_read(bridge->fsi, FSI2SPI_DATA0, &data_be,
154 			     sizeof(data_be));
155 	if (rc)
156 		goto unlock;
157 
158 	*value |= (u64)be32_to_cpu(data_be) << 32;
159 
160 	rc = fsi_device_read(bridge->fsi, FSI2SPI_DATA1, &data_be,
161 			     sizeof(data_be));
162 	if (rc)
163 		goto unlock;
164 
165 	*value |= (u64)be32_to_cpu(data_be);
166 	dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value);
167 
168 unlock:
169 	mutex_unlock(&bridge->lock);
170 	return rc;
171 }
172 
173 static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value)
174 {
175 	int rc = 0;
176 	__be32 cmd_be;
177 	__be32 data_be;
178 	u32 cmd = offset + ctx->base;
179 	struct fsi2spi *bridge = ctx->bridge;
180 
181 	if (cmd & FSI2SPI_CMD_WRITE)
182 		return -EINVAL;
183 
184 	rc = mutex_lock_interruptible(&bridge->lock);
185 	if (rc)
186 		return rc;
187 
188 	dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value);
189 
190 	data_be = cpu_to_be32(upper_32_bits(value));
191 	rc = fsi_device_write(bridge->fsi, FSI2SPI_DATA0, &data_be,
192 			      sizeof(data_be));
193 	if (rc)
194 		goto unlock;
195 
196 	data_be = cpu_to_be32(lower_32_bits(value));
197 	rc = fsi_device_write(bridge->fsi, FSI2SPI_DATA1, &data_be,
198 			      sizeof(data_be));
199 	if (rc)
200 		goto unlock;
201 
202 	cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE);
203 	rc = fsi_device_write(bridge->fsi, FSI2SPI_CMD, &cmd_be,
204 			      sizeof(cmd_be));
205 	if (rc)
206 		goto unlock;
207 
208 	rc = fsi_spi_check_status(ctx);
209 
210 unlock:
211 	mutex_unlock(&bridge->lock);
212 	return rc;
213 }
214 
215 static int fsi_spi_data_in(u64 in, u8 *rx, int len)
216 {
217 	int i;
218 	int num_bytes = min(len, 8);
219 
220 	for (i = 0; i < num_bytes; ++i)
221 		rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i)));
222 
223 	return num_bytes;
224 }
225 
226 static int fsi_spi_data_out(u64 *out, const u8 *tx, int len)
227 {
228 	int i;
229 	int num_bytes = min(len, 8);
230 	u8 *out_bytes = (u8 *)out;
231 
232 	/* Unused bytes of the tx data should be 0. */
233 	*out = 0ULL;
234 
235 	for (i = 0; i < num_bytes; ++i)
236 		out_bytes[8 - (i + 1)] = tx[i];
237 
238 	return num_bytes;
239 }
240 
241 static int fsi_spi_reset(struct fsi_spi *ctx)
242 {
243 	int rc;
244 
245 	dev_dbg(ctx->dev, "Resetting SPI controller.\n");
246 
247 	rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
248 			       SPI_FSI_CLOCK_CFG_RESET1);
249 	if (rc)
250 		return rc;
251 
252 	rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
253 			       SPI_FSI_CLOCK_CFG_RESET2);
254 	if (rc)
255 		return rc;
256 
257 	return fsi_spi_write_reg(ctx, SPI_FSI_STATUS, 0ULL);
258 }
259 
260 static int fsi_spi_status(struct fsi_spi *ctx, u64 *status, const char *dir)
261 {
262 	int rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, status);
263 
264 	if (rc)
265 		return rc;
266 
267 	if (*status & SPI_FSI_STATUS_ANY_ERROR) {
268 		dev_err(ctx->dev, "%s error: %016llx\n", dir, *status);
269 
270 		rc = fsi_spi_reset(ctx);
271 		if (rc)
272 			return rc;
273 
274 		return -EREMOTEIO;
275 	}
276 
277 	return 0;
278 }
279 
280 static void fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val)
281 {
282 	/*
283 	 * Add the next byte of instruction to the 8-byte sequence register.
284 	 * Then decrement the counter so that the next instruction will go in
285 	 * the right place. Return the index of the slot we just filled in the
286 	 * sequence register.
287 	 */
288 	seq->data |= (u64)val << seq->bit;
289 	seq->bit -= 8;
290 }
291 
292 static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq)
293 {
294 	seq->bit = 56;
295 	seq->data = 0ULL;
296 }
297 
298 static int fsi_spi_transfer_data(struct fsi_spi *ctx,
299 				 struct spi_transfer *transfer)
300 {
301 	int loops;
302 	int rc = 0;
303 	unsigned long end;
304 	u64 status = 0ULL;
305 
306 	if (transfer->tx_buf) {
307 		int nb;
308 		int sent = 0;
309 		u64 out = 0ULL;
310 		const u8 *tx = transfer->tx_buf;
311 
312 		while (transfer->len > sent) {
313 			nb = fsi_spi_data_out(&out, &tx[sent],
314 					      (int)transfer->len - sent);
315 
316 			rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out);
317 			if (rc)
318 				return rc;
319 
320 			loops = 0;
321 			end = jiffies + msecs_to_jiffies(SPI_FSI_TIMEOUT_MS);
322 			do {
323 				if (loops++ && time_after(jiffies, end))
324 					return -ETIMEDOUT;
325 
326 				rc = fsi_spi_status(ctx, &status, "TX");
327 				if (rc)
328 					return rc;
329 			} while (status & SPI_FSI_STATUS_TDR_FULL);
330 
331 			sent += nb;
332 		}
333 	} else if (transfer->rx_buf) {
334 		int recv = 0;
335 		u64 in = 0ULL;
336 		u8 *rx = transfer->rx_buf;
337 
338 		while (transfer->len > recv) {
339 			loops = 0;
340 			end = jiffies + msecs_to_jiffies(SPI_FSI_TIMEOUT_MS);
341 			do {
342 				if (loops++ && time_after(jiffies, end))
343 					return -ETIMEDOUT;
344 
345 				rc = fsi_spi_status(ctx, &status, "RX");
346 				if (rc)
347 					return rc;
348 			} while (!(status & SPI_FSI_STATUS_RDR_FULL));
349 
350 			rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in);
351 			if (rc)
352 				return rc;
353 
354 			recv += fsi_spi_data_in(in, &rx[recv],
355 						(int)transfer->len - recv);
356 		}
357 	}
358 
359 	return 0;
360 }
361 
362 static int fsi_spi_transfer_init(struct fsi_spi *ctx)
363 {
364 	int loops = 0;
365 	int rc;
366 	bool reset = false;
367 	unsigned long end;
368 	u64 seq_state;
369 	u64 clock_cfg = 0ULL;
370 	u64 status = 0ULL;
371 	u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE |
372 		SPI_FSI_CLOCK_CFG_SCK_NO_DEL |
373 		FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 19);
374 
375 	end = jiffies + msecs_to_jiffies(SPI_FSI_TIMEOUT_MS);
376 	do {
377 		if (loops++ && time_after(jiffies, end))
378 			return -ETIMEDOUT;
379 
380 		rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status);
381 		if (rc)
382 			return rc;
383 
384 		seq_state = status & SPI_FSI_STATUS_SEQ_STATE;
385 
386 		if (status & (SPI_FSI_STATUS_ANY_ERROR |
387 			      SPI_FSI_STATUS_TDR_FULL |
388 			      SPI_FSI_STATUS_RDR_FULL)) {
389 			if (reset) {
390 				dev_err(ctx->dev,
391 					"Initialization error: %08llx\n",
392 					status);
393 				return -EIO;
394 			}
395 
396 			rc = fsi_spi_reset(ctx);
397 			if (rc)
398 				return rc;
399 
400 			reset = true;
401 			continue;
402 		}
403 	} while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE));
404 
405 	rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, 0ULL);
406 	if (rc)
407 		return rc;
408 
409 	rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg);
410 	if (rc)
411 		return rc;
412 
413 	if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE |
414 			  SPI_FSI_CLOCK_CFG_ECC_DISABLE |
415 			  SPI_FSI_CLOCK_CFG_MODE |
416 			  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL |
417 			  SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg)
418 		rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
419 				       wanted_clock_cfg);
420 
421 	return rc;
422 }
423 
424 static int fsi_spi_transfer_one_message(struct spi_controller *ctlr,
425 					struct spi_message *mesg)
426 {
427 	int rc;
428 	u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(mesg->spi->chip_select + 1);
429 	unsigned int len;
430 	struct spi_transfer *transfer;
431 	struct fsi_spi *ctx = spi_controller_get_devdata(ctlr);
432 
433 	rc = fsi_spi_check_mux(ctx->bridge->fsi, ctx->dev);
434 	if (rc)
435 		goto error;
436 
437 	list_for_each_entry(transfer, &mesg->transfers, transfer_list) {
438 		struct fsi_spi_sequence seq;
439 		struct spi_transfer *next = NULL;
440 
441 		/* Sequencer must do shift out (tx) first. */
442 		if (!transfer->tx_buf || transfer->len > SPI_FSI_MAX_TX_SIZE) {
443 			rc = -EINVAL;
444 			goto error;
445 		}
446 
447 		dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len);
448 
449 		rc = fsi_spi_transfer_init(ctx);
450 		if (rc < 0)
451 			goto error;
452 
453 		fsi_spi_sequence_init(&seq);
454 		fsi_spi_sequence_add(&seq, seq_slave);
455 
456 		len = transfer->len;
457 		while (len > 8) {
458 			fsi_spi_sequence_add(&seq,
459 					     SPI_FSI_SEQUENCE_SHIFT_OUT(8));
460 			len -= 8;
461 		}
462 		fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SHIFT_OUT(len));
463 
464 		if (!list_is_last(&transfer->transfer_list,
465 				  &mesg->transfers)) {
466 			next = list_next_entry(transfer, transfer_list);
467 
468 			/* Sequencer can only do shift in (rx) after tx. */
469 			if (next->rx_buf) {
470 				u8 shift;
471 
472 				if (next->len > SPI_FSI_MAX_RX_SIZE) {
473 					rc = -EINVAL;
474 					goto error;
475 				}
476 
477 				dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n",
478 					next->len);
479 
480 				shift = SPI_FSI_SEQUENCE_SHIFT_IN(next->len);
481 				fsi_spi_sequence_add(&seq, shift);
482 			} else {
483 				next = NULL;
484 			}
485 		}
486 
487 		fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0));
488 
489 		rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data);
490 		if (rc)
491 			goto error;
492 
493 		rc = fsi_spi_transfer_data(ctx, transfer);
494 		if (rc)
495 			goto error;
496 
497 		if (next) {
498 			rc = fsi_spi_transfer_data(ctx, next);
499 			if (rc)
500 				goto error;
501 
502 			transfer = next;
503 		}
504 	}
505 
506 error:
507 	mesg->status = rc;
508 	spi_finalize_current_message(ctlr);
509 
510 	return rc;
511 }
512 
513 static size_t fsi_spi_max_transfer_size(struct spi_device *spi)
514 {
515 	return SPI_FSI_MAX_RX_SIZE;
516 }
517 
518 static int fsi_spi_probe(struct device *dev)
519 {
520 	int rc;
521 	struct device_node *np;
522 	int num_controllers_registered = 0;
523 	struct fsi2spi *bridge;
524 	struct fsi_device *fsi = to_fsi_dev(dev);
525 
526 	rc = fsi_spi_check_mux(fsi, dev);
527 	if (rc)
528 		return -ENODEV;
529 
530 	bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL);
531 	if (!bridge)
532 		return -ENOMEM;
533 
534 	bridge->fsi = fsi;
535 	mutex_init(&bridge->lock);
536 
537 	for_each_available_child_of_node(dev->of_node, np) {
538 		u32 base;
539 		struct fsi_spi *ctx;
540 		struct spi_controller *ctlr;
541 
542 		if (of_property_read_u32(np, "reg", &base))
543 			continue;
544 
545 		ctlr = spi_alloc_master(dev, sizeof(*ctx));
546 		if (!ctlr) {
547 			of_node_put(np);
548 			break;
549 		}
550 
551 		ctlr->dev.of_node = np;
552 		ctlr->num_chipselect = of_get_available_child_count(np) ?: 1;
553 		ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
554 		ctlr->max_transfer_size = fsi_spi_max_transfer_size;
555 		ctlr->transfer_one_message = fsi_spi_transfer_one_message;
556 
557 		ctx = spi_controller_get_devdata(ctlr);
558 		ctx->dev = &ctlr->dev;
559 		ctx->bridge = bridge;
560 		ctx->base = base + SPI_FSI_BASE;
561 
562 		rc = devm_spi_register_controller(dev, ctlr);
563 		if (rc)
564 			spi_controller_put(ctlr);
565 		else
566 			num_controllers_registered++;
567 	}
568 
569 	if (!num_controllers_registered)
570 		return -ENODEV;
571 
572 	return 0;
573 }
574 
575 static const struct fsi_device_id fsi_spi_ids[] = {
576 	{ FSI_ENGID_SPI, FSI_VERSION_ANY },
577 	{ }
578 };
579 MODULE_DEVICE_TABLE(fsi, fsi_spi_ids);
580 
581 static struct fsi_driver fsi_spi_driver = {
582 	.id_table = fsi_spi_ids,
583 	.drv = {
584 		.name = "spi-fsi",
585 		.bus = &fsi_bus_type,
586 		.probe = fsi_spi_probe,
587 	},
588 };
589 module_fsi_driver(fsi_spi_driver);
590 
591 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
592 MODULE_DESCRIPTION("FSI attached SPI controller");
593 MODULE_LICENSE("GPL");
594