xref: /openbmc/linux/drivers/spi/spi-fsi.c (revision 94d964e5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // Copyright (C) IBM Corporation 2020
3 
4 #include <linux/bitfield.h>
5 #include <linux/bits.h>
6 #include <linux/fsi.h>
7 #include <linux/jiffies.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/spi/spi.h>
12 
13 #define FSI_ENGID_SPI			0x23
14 #define FSI_MBOX_ROOT_CTRL_8		0x2860
15 #define  FSI_MBOX_ROOT_CTRL_8_SPI_MUX	 0xf0000000
16 
17 #define FSI2SPI_DATA0			0x00
18 #define FSI2SPI_DATA1			0x04
19 #define FSI2SPI_CMD			0x08
20 #define  FSI2SPI_CMD_WRITE		 BIT(31)
21 #define FSI2SPI_RESET			0x18
22 #define FSI2SPI_STATUS			0x1c
23 #define  FSI2SPI_STATUS_ANY_ERROR	 BIT(31)
24 #define FSI2SPI_IRQ			0x20
25 
26 #define SPI_FSI_BASE			0x70000
27 #define SPI_FSI_INIT_TIMEOUT_MS		1000
28 #define SPI_FSI_MAX_RX_SIZE		8
29 #define SPI_FSI_MAX_TX_SIZE		40
30 
31 #define SPI_FSI_ERROR			0x0
32 #define SPI_FSI_COUNTER_CFG		0x1
33 #define SPI_FSI_CFG1			0x2
34 #define SPI_FSI_CLOCK_CFG		0x3
35 #define  SPI_FSI_CLOCK_CFG_MM_ENABLE	 BIT_ULL(32)
36 #define  SPI_FSI_CLOCK_CFG_ECC_DISABLE	 (BIT_ULL(35) | BIT_ULL(33))
37 #define  SPI_FSI_CLOCK_CFG_RESET1	 (BIT_ULL(36) | BIT_ULL(38))
38 #define  SPI_FSI_CLOCK_CFG_RESET2	 (BIT_ULL(37) | BIT_ULL(39))
39 #define  SPI_FSI_CLOCK_CFG_MODE		 (BIT_ULL(41) | BIT_ULL(42))
40 #define  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL	 GENMASK_ULL(51, 44)
41 #define   SPI_FSI_CLOCK_CFG_SCK_NO_DEL	  BIT_ULL(51)
42 #define  SPI_FSI_CLOCK_CFG_SCK_DIV	 GENMASK_ULL(63, 52)
43 #define SPI_FSI_MMAP			0x4
44 #define SPI_FSI_DATA_TX			0x5
45 #define SPI_FSI_DATA_RX			0x6
46 #define SPI_FSI_SEQUENCE		0x7
47 #define  SPI_FSI_SEQUENCE_STOP		 0x00
48 #define  SPI_FSI_SEQUENCE_SEL_SLAVE(x)	 (0x10 | ((x) & 0xf))
49 #define  SPI_FSI_SEQUENCE_SHIFT_OUT(x)	 (0x30 | ((x) & 0xf))
50 #define  SPI_FSI_SEQUENCE_SHIFT_IN(x)	 (0x40 | ((x) & 0xf))
51 #define  SPI_FSI_SEQUENCE_COPY_DATA_TX	 0xc0
52 #define  SPI_FSI_SEQUENCE_BRANCH(x)	 (0xe0 | ((x) & 0xf))
53 #define SPI_FSI_STATUS			0x8
54 #define  SPI_FSI_STATUS_ERROR		 \
55 	(GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12))
56 #define  SPI_FSI_STATUS_SEQ_STATE	 GENMASK_ULL(55, 48)
57 #define   SPI_FSI_STATUS_SEQ_STATE_IDLE	  BIT_ULL(48)
58 #define  SPI_FSI_STATUS_TDR_UNDERRUN	 BIT_ULL(57)
59 #define  SPI_FSI_STATUS_TDR_OVERRUN	 BIT_ULL(58)
60 #define  SPI_FSI_STATUS_TDR_FULL	 BIT_ULL(59)
61 #define  SPI_FSI_STATUS_RDR_UNDERRUN	 BIT_ULL(61)
62 #define  SPI_FSI_STATUS_RDR_OVERRUN	 BIT_ULL(62)
63 #define  SPI_FSI_STATUS_RDR_FULL	 BIT_ULL(63)
64 #define  SPI_FSI_STATUS_ANY_ERROR	 \
65 	(SPI_FSI_STATUS_ERROR | \
66 	 SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \
67 	 SPI_FSI_STATUS_RDR_OVERRUN)
68 #define SPI_FSI_PORT_CTRL		0x9
69 
70 struct fsi2spi {
71 	struct fsi_device *fsi; /* FSI2SPI CFAM engine device */
72 	struct mutex lock; /* lock access to the device */
73 };
74 
75 struct fsi_spi {
76 	struct device *dev;	/* SPI controller device */
77 	struct fsi2spi *bridge; /* FSI2SPI device */
78 	u32 base;
79 };
80 
81 struct fsi_spi_sequence {
82 	int bit;
83 	u64 data;
84 };
85 
86 static int fsi_spi_check_mux(struct fsi_device *fsi, struct device *dev)
87 {
88 	int rc;
89 	u32 root_ctrl_8;
90 	__be32 root_ctrl_8_be;
91 
92 	rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8_be,
93 			    sizeof(root_ctrl_8_be));
94 	if (rc)
95 		return rc;
96 
97 	root_ctrl_8 = be32_to_cpu(root_ctrl_8_be);
98 	dev_dbg(dev, "Root control register 8: %08x\n", root_ctrl_8);
99 	if ((root_ctrl_8 & FSI_MBOX_ROOT_CTRL_8_SPI_MUX) ==
100 	     FSI_MBOX_ROOT_CTRL_8_SPI_MUX)
101 		return 0;
102 
103 	return -ENOLINK;
104 }
105 
106 static int fsi_spi_check_status(struct fsi_spi *ctx)
107 {
108 	int rc;
109 	u32 sts;
110 	__be32 sts_be;
111 
112 	rc = fsi_device_read(ctx->bridge->fsi, FSI2SPI_STATUS, &sts_be,
113 			     sizeof(sts_be));
114 	if (rc)
115 		return rc;
116 
117 	sts = be32_to_cpu(sts_be);
118 	if (sts & FSI2SPI_STATUS_ANY_ERROR) {
119 		dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts);
120 		return -EIO;
121 	}
122 
123 	return 0;
124 }
125 
126 static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value)
127 {
128 	int rc = 0;
129 	__be32 cmd_be;
130 	__be32 data_be;
131 	u32 cmd = offset + ctx->base;
132 	struct fsi2spi *bridge = ctx->bridge;
133 
134 	*value = 0ULL;
135 
136 	if (cmd & FSI2SPI_CMD_WRITE)
137 		return -EINVAL;
138 
139 	rc = mutex_lock_interruptible(&bridge->lock);
140 	if (rc)
141 		return rc;
142 
143 	cmd_be = cpu_to_be32(cmd);
144 	rc = fsi_device_write(bridge->fsi, FSI2SPI_CMD, &cmd_be,
145 			      sizeof(cmd_be));
146 	if (rc)
147 		goto unlock;
148 
149 	rc = fsi_spi_check_status(ctx);
150 	if (rc)
151 		goto unlock;
152 
153 	rc = fsi_device_read(bridge->fsi, FSI2SPI_DATA0, &data_be,
154 			     sizeof(data_be));
155 	if (rc)
156 		goto unlock;
157 
158 	*value |= (u64)be32_to_cpu(data_be) << 32;
159 
160 	rc = fsi_device_read(bridge->fsi, FSI2SPI_DATA1, &data_be,
161 			     sizeof(data_be));
162 	if (rc)
163 		goto unlock;
164 
165 	*value |= (u64)be32_to_cpu(data_be);
166 	dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value);
167 
168 unlock:
169 	mutex_unlock(&bridge->lock);
170 	return rc;
171 }
172 
173 static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value)
174 {
175 	int rc = 0;
176 	__be32 cmd_be;
177 	__be32 data_be;
178 	u32 cmd = offset + ctx->base;
179 	struct fsi2spi *bridge = ctx->bridge;
180 
181 	if (cmd & FSI2SPI_CMD_WRITE)
182 		return -EINVAL;
183 
184 	rc = mutex_lock_interruptible(&bridge->lock);
185 	if (rc)
186 		return rc;
187 
188 	dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value);
189 
190 	data_be = cpu_to_be32(upper_32_bits(value));
191 	rc = fsi_device_write(bridge->fsi, FSI2SPI_DATA0, &data_be,
192 			      sizeof(data_be));
193 	if (rc)
194 		goto unlock;
195 
196 	data_be = cpu_to_be32(lower_32_bits(value));
197 	rc = fsi_device_write(bridge->fsi, FSI2SPI_DATA1, &data_be,
198 			      sizeof(data_be));
199 	if (rc)
200 		goto unlock;
201 
202 	cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE);
203 	rc = fsi_device_write(bridge->fsi, FSI2SPI_CMD, &cmd_be,
204 			      sizeof(cmd_be));
205 	if (rc)
206 		goto unlock;
207 
208 	rc = fsi_spi_check_status(ctx);
209 
210 unlock:
211 	mutex_unlock(&bridge->lock);
212 	return rc;
213 }
214 
215 static int fsi_spi_data_in(u64 in, u8 *rx, int len)
216 {
217 	int i;
218 	int num_bytes = min(len, 8);
219 
220 	for (i = 0; i < num_bytes; ++i)
221 		rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i)));
222 
223 	return num_bytes;
224 }
225 
226 static int fsi_spi_data_out(u64 *out, const u8 *tx, int len)
227 {
228 	int i;
229 	int num_bytes = min(len, 8);
230 	u8 *out_bytes = (u8 *)out;
231 
232 	/* Unused bytes of the tx data should be 0. */
233 	*out = 0ULL;
234 
235 	for (i = 0; i < num_bytes; ++i)
236 		out_bytes[8 - (i + 1)] = tx[i];
237 
238 	return num_bytes;
239 }
240 
241 static int fsi_spi_reset(struct fsi_spi *ctx)
242 {
243 	int rc;
244 
245 	dev_dbg(ctx->dev, "Resetting SPI controller.\n");
246 
247 	rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
248 			       SPI_FSI_CLOCK_CFG_RESET1);
249 	if (rc)
250 		return rc;
251 
252 	rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
253 			       SPI_FSI_CLOCK_CFG_RESET2);
254 	if (rc)
255 		return rc;
256 
257 	return fsi_spi_write_reg(ctx, SPI_FSI_STATUS, 0ULL);
258 }
259 
260 static int fsi_spi_status(struct fsi_spi *ctx, u64 *status, const char *dir)
261 {
262 	int rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, status);
263 
264 	if (rc)
265 		return rc;
266 
267 	if (*status & SPI_FSI_STATUS_ANY_ERROR) {
268 		dev_err(ctx->dev, "%s error: %016llx\n", dir, *status);
269 
270 		rc = fsi_spi_reset(ctx);
271 		if (rc)
272 			return rc;
273 
274 		return -EREMOTEIO;
275 	}
276 
277 	return 0;
278 }
279 
280 static void fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val)
281 {
282 	/*
283 	 * Add the next byte of instruction to the 8-byte sequence register.
284 	 * Then decrement the counter so that the next instruction will go in
285 	 * the right place. Return the index of the slot we just filled in the
286 	 * sequence register.
287 	 */
288 	seq->data |= (u64)val << seq->bit;
289 	seq->bit -= 8;
290 }
291 
292 static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq)
293 {
294 	seq->bit = 56;
295 	seq->data = 0ULL;
296 }
297 
298 static int fsi_spi_transfer_data(struct fsi_spi *ctx,
299 				 struct spi_transfer *transfer)
300 {
301 	int rc = 0;
302 	u64 status = 0ULL;
303 
304 	if (transfer->tx_buf) {
305 		int nb;
306 		int sent = 0;
307 		u64 out = 0ULL;
308 		const u8 *tx = transfer->tx_buf;
309 
310 		while (transfer->len > sent) {
311 			nb = fsi_spi_data_out(&out, &tx[sent],
312 					      (int)transfer->len - sent);
313 
314 			rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out);
315 			if (rc)
316 				return rc;
317 
318 			do {
319 				rc = fsi_spi_status(ctx, &status, "TX");
320 				if (rc)
321 					return rc;
322 			} while (status & SPI_FSI_STATUS_TDR_FULL);
323 
324 			sent += nb;
325 		}
326 	} else if (transfer->rx_buf) {
327 		int recv = 0;
328 		u64 in = 0ULL;
329 		u8 *rx = transfer->rx_buf;
330 
331 		while (transfer->len > recv) {
332 			do {
333 				rc = fsi_spi_status(ctx, &status, "RX");
334 				if (rc)
335 					return rc;
336 			} while (!(status & SPI_FSI_STATUS_RDR_FULL));
337 
338 			rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in);
339 			if (rc)
340 				return rc;
341 
342 			recv += fsi_spi_data_in(in, &rx[recv],
343 						(int)transfer->len - recv);
344 		}
345 	}
346 
347 	return 0;
348 }
349 
350 static int fsi_spi_transfer_init(struct fsi_spi *ctx)
351 {
352 	int rc;
353 	bool reset = false;
354 	unsigned long end;
355 	u64 seq_state;
356 	u64 clock_cfg = 0ULL;
357 	u64 status = 0ULL;
358 	u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE |
359 		SPI_FSI_CLOCK_CFG_SCK_NO_DEL |
360 		FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 19);
361 
362 	end = jiffies + msecs_to_jiffies(SPI_FSI_INIT_TIMEOUT_MS);
363 	do {
364 		if (time_after(jiffies, end))
365 			return -ETIMEDOUT;
366 
367 		rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status);
368 		if (rc)
369 			return rc;
370 
371 		seq_state = status & SPI_FSI_STATUS_SEQ_STATE;
372 
373 		if (status & (SPI_FSI_STATUS_ANY_ERROR |
374 			      SPI_FSI_STATUS_TDR_FULL |
375 			      SPI_FSI_STATUS_RDR_FULL)) {
376 			if (reset) {
377 				dev_err(ctx->dev,
378 					"Initialization error: %08llx\n",
379 					status);
380 				return -EIO;
381 			}
382 
383 			rc = fsi_spi_reset(ctx);
384 			if (rc)
385 				return rc;
386 
387 			reset = true;
388 			continue;
389 		}
390 	} while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE));
391 
392 	rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, 0ULL);
393 	if (rc)
394 		return rc;
395 
396 	rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg);
397 	if (rc)
398 		return rc;
399 
400 	if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE |
401 			  SPI_FSI_CLOCK_CFG_ECC_DISABLE |
402 			  SPI_FSI_CLOCK_CFG_MODE |
403 			  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL |
404 			  SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg)
405 		rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
406 				       wanted_clock_cfg);
407 
408 	return rc;
409 }
410 
411 static int fsi_spi_transfer_one_message(struct spi_controller *ctlr,
412 					struct spi_message *mesg)
413 {
414 	int rc;
415 	u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(mesg->spi->chip_select + 1);
416 	unsigned int len;
417 	struct spi_transfer *transfer;
418 	struct fsi_spi *ctx = spi_controller_get_devdata(ctlr);
419 
420 	rc = fsi_spi_check_mux(ctx->bridge->fsi, ctx->dev);
421 	if (rc)
422 		goto error;
423 
424 	list_for_each_entry(transfer, &mesg->transfers, transfer_list) {
425 		struct fsi_spi_sequence seq;
426 		struct spi_transfer *next = NULL;
427 
428 		/* Sequencer must do shift out (tx) first. */
429 		if (!transfer->tx_buf || transfer->len > SPI_FSI_MAX_TX_SIZE) {
430 			rc = -EINVAL;
431 			goto error;
432 		}
433 
434 		dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len);
435 
436 		rc = fsi_spi_transfer_init(ctx);
437 		if (rc < 0)
438 			goto error;
439 
440 		fsi_spi_sequence_init(&seq);
441 		fsi_spi_sequence_add(&seq, seq_slave);
442 
443 		len = transfer->len;
444 		while (len > 8) {
445 			fsi_spi_sequence_add(&seq,
446 					     SPI_FSI_SEQUENCE_SHIFT_OUT(8));
447 			len -= 8;
448 		}
449 		fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SHIFT_OUT(len));
450 
451 		if (!list_is_last(&transfer->transfer_list,
452 				  &mesg->transfers)) {
453 			next = list_next_entry(transfer, transfer_list);
454 
455 			/* Sequencer can only do shift in (rx) after tx. */
456 			if (next->rx_buf) {
457 				u8 shift;
458 
459 				if (next->len > SPI_FSI_MAX_RX_SIZE) {
460 					rc = -EINVAL;
461 					goto error;
462 				}
463 
464 				dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n",
465 					next->len);
466 
467 				shift = SPI_FSI_SEQUENCE_SHIFT_IN(next->len);
468 				fsi_spi_sequence_add(&seq, shift);
469 			} else {
470 				next = NULL;
471 			}
472 		}
473 
474 		fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0));
475 
476 		rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data);
477 		if (rc)
478 			goto error;
479 
480 		rc = fsi_spi_transfer_data(ctx, transfer);
481 		if (rc)
482 			goto error;
483 
484 		if (next) {
485 			rc = fsi_spi_transfer_data(ctx, next);
486 			if (rc)
487 				goto error;
488 
489 			transfer = next;
490 		}
491 	}
492 
493 error:
494 	mesg->status = rc;
495 	spi_finalize_current_message(ctlr);
496 
497 	return rc;
498 }
499 
500 static size_t fsi_spi_max_transfer_size(struct spi_device *spi)
501 {
502 	return SPI_FSI_MAX_RX_SIZE;
503 }
504 
505 static int fsi_spi_probe(struct device *dev)
506 {
507 	int rc;
508 	struct device_node *np;
509 	int num_controllers_registered = 0;
510 	struct fsi2spi *bridge;
511 	struct fsi_device *fsi = to_fsi_dev(dev);
512 
513 	rc = fsi_spi_check_mux(fsi, dev);
514 	if (rc)
515 		return -ENODEV;
516 
517 	bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL);
518 	if (!bridge)
519 		return -ENOMEM;
520 
521 	bridge->fsi = fsi;
522 	mutex_init(&bridge->lock);
523 
524 	for_each_available_child_of_node(dev->of_node, np) {
525 		u32 base;
526 		struct fsi_spi *ctx;
527 		struct spi_controller *ctlr;
528 
529 		if (of_property_read_u32(np, "reg", &base))
530 			continue;
531 
532 		ctlr = spi_alloc_master(dev, sizeof(*ctx));
533 		if (!ctlr) {
534 			of_node_put(np);
535 			break;
536 		}
537 
538 		ctlr->dev.of_node = np;
539 		ctlr->num_chipselect = of_get_available_child_count(np) ?: 1;
540 		ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
541 		ctlr->max_transfer_size = fsi_spi_max_transfer_size;
542 		ctlr->transfer_one_message = fsi_spi_transfer_one_message;
543 
544 		ctx = spi_controller_get_devdata(ctlr);
545 		ctx->dev = &ctlr->dev;
546 		ctx->bridge = bridge;
547 		ctx->base = base + SPI_FSI_BASE;
548 
549 		rc = devm_spi_register_controller(dev, ctlr);
550 		if (rc)
551 			spi_controller_put(ctlr);
552 		else
553 			num_controllers_registered++;
554 	}
555 
556 	if (!num_controllers_registered)
557 		return -ENODEV;
558 
559 	return 0;
560 }
561 
562 static const struct fsi_device_id fsi_spi_ids[] = {
563 	{ FSI_ENGID_SPI, FSI_VERSION_ANY },
564 	{ }
565 };
566 MODULE_DEVICE_TABLE(fsi, fsi_spi_ids);
567 
568 static struct fsi_driver fsi_spi_driver = {
569 	.id_table = fsi_spi_ids,
570 	.drv = {
571 		.name = "spi-fsi",
572 		.bus = &fsi_bus_type,
573 		.probe = fsi_spi_probe,
574 	},
575 };
576 module_fsi_driver(fsi_spi_driver);
577 
578 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
579 MODULE_DESCRIPTION("FSI attached SPI controller");
580 MODULE_LICENSE("GPL");
581