xref: /openbmc/linux/drivers/spi/spi-fsi.c (revision 36fe4655)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // Copyright (C) IBM Corporation 2020
3 
4 #include <linux/bitfield.h>
5 #include <linux/bits.h>
6 #include <linux/fsi.h>
7 #include <linux/jiffies.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/spi/spi.h>
12 
13 #define FSI_ENGID_SPI			0x23
14 #define FSI_MBOX_ROOT_CTRL_8		0x2860
15 #define  FSI_MBOX_ROOT_CTRL_8_SPI_MUX	 0xf0000000
16 
17 #define FSI2SPI_DATA0			0x00
18 #define FSI2SPI_DATA1			0x04
19 #define FSI2SPI_CMD			0x08
20 #define  FSI2SPI_CMD_WRITE		 BIT(31)
21 #define FSI2SPI_RESET			0x18
22 #define FSI2SPI_STATUS			0x1c
23 #define  FSI2SPI_STATUS_ANY_ERROR	 BIT(31)
24 #define FSI2SPI_IRQ			0x20
25 
26 #define SPI_FSI_BASE			0x70000
27 #define SPI_FSI_INIT_TIMEOUT_MS		1000
28 #define SPI_FSI_MAX_XFR_SIZE		2048
29 #define SPI_FSI_MAX_XFR_SIZE_RESTRICTED	32
30 
31 #define SPI_FSI_ERROR			0x0
32 #define SPI_FSI_COUNTER_CFG		0x1
33 #define  SPI_FSI_COUNTER_CFG_LOOPS(x)	 (((u64)(x) & 0xffULL) << 32)
34 #define  SPI_FSI_COUNTER_CFG_N2_RX	 BIT_ULL(8)
35 #define  SPI_FSI_COUNTER_CFG_N2_TX	 BIT_ULL(9)
36 #define  SPI_FSI_COUNTER_CFG_N2_IMPLICIT BIT_ULL(10)
37 #define  SPI_FSI_COUNTER_CFG_N2_RELOAD	 BIT_ULL(11)
38 #define SPI_FSI_CFG1			0x2
39 #define SPI_FSI_CLOCK_CFG		0x3
40 #define  SPI_FSI_CLOCK_CFG_MM_ENABLE	 BIT_ULL(32)
41 #define  SPI_FSI_CLOCK_CFG_ECC_DISABLE	 (BIT_ULL(35) | BIT_ULL(33))
42 #define  SPI_FSI_CLOCK_CFG_RESET1	 (BIT_ULL(36) | BIT_ULL(38))
43 #define  SPI_FSI_CLOCK_CFG_RESET2	 (BIT_ULL(37) | BIT_ULL(39))
44 #define  SPI_FSI_CLOCK_CFG_MODE		 (BIT_ULL(41) | BIT_ULL(42))
45 #define  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL	 GENMASK_ULL(51, 44)
46 #define   SPI_FSI_CLOCK_CFG_SCK_NO_DEL	  BIT_ULL(51)
47 #define  SPI_FSI_CLOCK_CFG_SCK_DIV	 GENMASK_ULL(63, 52)
48 #define SPI_FSI_MMAP			0x4
49 #define SPI_FSI_DATA_TX			0x5
50 #define SPI_FSI_DATA_RX			0x6
51 #define SPI_FSI_SEQUENCE		0x7
52 #define  SPI_FSI_SEQUENCE_STOP		 0x00
53 #define  SPI_FSI_SEQUENCE_SEL_SLAVE(x)	 (0x10 | ((x) & 0xf))
54 #define  SPI_FSI_SEQUENCE_SHIFT_OUT(x)	 (0x30 | ((x) & 0xf))
55 #define  SPI_FSI_SEQUENCE_SHIFT_IN(x)	 (0x40 | ((x) & 0xf))
56 #define  SPI_FSI_SEQUENCE_COPY_DATA_TX	 0xc0
57 #define  SPI_FSI_SEQUENCE_BRANCH(x)	 (0xe0 | ((x) & 0xf))
58 #define SPI_FSI_STATUS			0x8
59 #define  SPI_FSI_STATUS_ERROR		 \
60 	(GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12))
61 #define  SPI_FSI_STATUS_SEQ_STATE	 GENMASK_ULL(55, 48)
62 #define   SPI_FSI_STATUS_SEQ_STATE_IDLE	  BIT_ULL(48)
63 #define  SPI_FSI_STATUS_TDR_UNDERRUN	 BIT_ULL(57)
64 #define  SPI_FSI_STATUS_TDR_OVERRUN	 BIT_ULL(58)
65 #define  SPI_FSI_STATUS_TDR_FULL	 BIT_ULL(59)
66 #define  SPI_FSI_STATUS_RDR_UNDERRUN	 BIT_ULL(61)
67 #define  SPI_FSI_STATUS_RDR_OVERRUN	 BIT_ULL(62)
68 #define  SPI_FSI_STATUS_RDR_FULL	 BIT_ULL(63)
69 #define  SPI_FSI_STATUS_ANY_ERROR	 \
70 	(SPI_FSI_STATUS_ERROR | \
71 	 SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \
72 	 SPI_FSI_STATUS_RDR_OVERRUN)
73 #define SPI_FSI_PORT_CTRL		0x9
74 
75 struct fsi_spi {
76 	struct device *dev;	/* SPI controller device */
77 	struct fsi_device *fsi;	/* FSI2SPI CFAM engine device */
78 	u32 base;
79 	size_t max_xfr_size;
80 	bool restricted;
81 };
82 
83 struct fsi_spi_sequence {
84 	int bit;
85 	u64 data;
86 };
87 
88 static int fsi_spi_check_mux(struct fsi_device *fsi, struct device *dev)
89 {
90 	int rc;
91 	u32 root_ctrl_8;
92 	__be32 root_ctrl_8_be;
93 
94 	rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8_be,
95 			    sizeof(root_ctrl_8_be));
96 	if (rc)
97 		return rc;
98 
99 	root_ctrl_8 = be32_to_cpu(root_ctrl_8_be);
100 	dev_dbg(dev, "Root control register 8: %08x\n", root_ctrl_8);
101 	if ((root_ctrl_8 & FSI_MBOX_ROOT_CTRL_8_SPI_MUX) ==
102 	     FSI_MBOX_ROOT_CTRL_8_SPI_MUX)
103 		return 0;
104 
105 	return -ENOLINK;
106 }
107 
108 static int fsi_spi_check_status(struct fsi_spi *ctx)
109 {
110 	int rc;
111 	u32 sts;
112 	__be32 sts_be;
113 
114 	rc = fsi_device_read(ctx->fsi, FSI2SPI_STATUS, &sts_be,
115 			     sizeof(sts_be));
116 	if (rc)
117 		return rc;
118 
119 	sts = be32_to_cpu(sts_be);
120 	if (sts & FSI2SPI_STATUS_ANY_ERROR) {
121 		dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts);
122 		return -EIO;
123 	}
124 
125 	return 0;
126 }
127 
128 static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value)
129 {
130 	int rc;
131 	__be32 cmd_be;
132 	__be32 data_be;
133 	u32 cmd = offset + ctx->base;
134 
135 	*value = 0ULL;
136 
137 	if (cmd & FSI2SPI_CMD_WRITE)
138 		return -EINVAL;
139 
140 	cmd_be = cpu_to_be32(cmd);
141 	rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
142 	if (rc)
143 		return rc;
144 
145 	rc = fsi_spi_check_status(ctx);
146 	if (rc)
147 		return rc;
148 
149 	rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA0, &data_be,
150 			     sizeof(data_be));
151 	if (rc)
152 		return rc;
153 
154 	*value |= (u64)be32_to_cpu(data_be) << 32;
155 
156 	rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA1, &data_be,
157 			     sizeof(data_be));
158 	if (rc)
159 		return rc;
160 
161 	*value |= (u64)be32_to_cpu(data_be);
162 	dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value);
163 
164 	return 0;
165 }
166 
167 static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value)
168 {
169 	int rc;
170 	__be32 cmd_be;
171 	__be32 data_be;
172 	u32 cmd = offset + ctx->base;
173 
174 	if (cmd & FSI2SPI_CMD_WRITE)
175 		return -EINVAL;
176 
177 	dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value);
178 
179 	data_be = cpu_to_be32(upper_32_bits(value));
180 	rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA0, &data_be,
181 			      sizeof(data_be));
182 	if (rc)
183 		return rc;
184 
185 	data_be = cpu_to_be32(lower_32_bits(value));
186 	rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA1, &data_be,
187 			      sizeof(data_be));
188 	if (rc)
189 		return rc;
190 
191 	cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE);
192 	rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
193 	if (rc)
194 		return rc;
195 
196 	return fsi_spi_check_status(ctx);
197 }
198 
199 static int fsi_spi_data_in(u64 in, u8 *rx, int len)
200 {
201 	int i;
202 	int num_bytes = min(len, 8);
203 
204 	for (i = 0; i < num_bytes; ++i)
205 		rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i)));
206 
207 	return num_bytes;
208 }
209 
210 static int fsi_spi_data_out(u64 *out, const u8 *tx, int len)
211 {
212 	int i;
213 	int num_bytes = min(len, 8);
214 	u8 *out_bytes = (u8 *)out;
215 
216 	/* Unused bytes of the tx data should be 0. */
217 	*out = 0ULL;
218 
219 	for (i = 0; i < num_bytes; ++i)
220 		out_bytes[8 - (i + 1)] = tx[i];
221 
222 	return num_bytes;
223 }
224 
225 static int fsi_spi_reset(struct fsi_spi *ctx)
226 {
227 	int rc;
228 
229 	dev_dbg(ctx->dev, "Resetting SPI controller.\n");
230 
231 	rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
232 			       SPI_FSI_CLOCK_CFG_RESET1);
233 	if (rc)
234 		return rc;
235 
236 	rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
237 			       SPI_FSI_CLOCK_CFG_RESET2);
238 	if (rc)
239 		return rc;
240 
241 	return fsi_spi_write_reg(ctx, SPI_FSI_STATUS, 0ULL);
242 }
243 
244 static int fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val)
245 {
246 	/*
247 	 * Add the next byte of instruction to the 8-byte sequence register.
248 	 * Then decrement the counter so that the next instruction will go in
249 	 * the right place. Return the index of the slot we just filled in the
250 	 * sequence register.
251 	 */
252 	seq->data |= (u64)val << seq->bit;
253 	seq->bit -= 8;
254 
255 	return ((64 - seq->bit) / 8) - 2;
256 }
257 
258 static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq)
259 {
260 	seq->bit = 56;
261 	seq->data = 0ULL;
262 }
263 
264 static int fsi_spi_sequence_transfer(struct fsi_spi *ctx,
265 				     struct fsi_spi_sequence *seq,
266 				     struct spi_transfer *transfer)
267 {
268 	bool docfg = false;
269 	int loops;
270 	int idx;
271 	int rc;
272 	u8 val = 0;
273 	u8 len = min(transfer->len, 8U);
274 	u8 rem = transfer->len % len;
275 	u64 cfg = 0ULL;
276 
277 	loops = transfer->len / len;
278 
279 	if (transfer->tx_buf) {
280 		val = SPI_FSI_SEQUENCE_SHIFT_OUT(len);
281 		idx = fsi_spi_sequence_add(seq, val);
282 
283 		if (rem)
284 			rem = SPI_FSI_SEQUENCE_SHIFT_OUT(rem);
285 	} else if (transfer->rx_buf) {
286 		val = SPI_FSI_SEQUENCE_SHIFT_IN(len);
287 		idx = fsi_spi_sequence_add(seq, val);
288 
289 		if (rem)
290 			rem = SPI_FSI_SEQUENCE_SHIFT_IN(rem);
291 	} else {
292 		return -EINVAL;
293 	}
294 
295 	if (ctx->restricted) {
296 		const int eidx = rem ? 5 : 6;
297 
298 		while (loops > 1 && idx <= eidx) {
299 			idx = fsi_spi_sequence_add(seq, val);
300 			loops--;
301 			docfg = true;
302 		}
303 
304 		if (loops > 1) {
305 			dev_warn(ctx->dev, "No sequencer slots; aborting.\n");
306 			return -EINVAL;
307 		}
308 	}
309 
310 	if (loops > 1) {
311 		fsi_spi_sequence_add(seq, SPI_FSI_SEQUENCE_BRANCH(idx));
312 		docfg = true;
313 	}
314 
315 	if (docfg) {
316 		cfg = SPI_FSI_COUNTER_CFG_LOOPS(loops - 1);
317 		if (transfer->rx_buf)
318 			cfg |= SPI_FSI_COUNTER_CFG_N2_RX |
319 				SPI_FSI_COUNTER_CFG_N2_TX |
320 				SPI_FSI_COUNTER_CFG_N2_IMPLICIT |
321 				SPI_FSI_COUNTER_CFG_N2_RELOAD;
322 
323 		rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, cfg);
324 		if (rc)
325 			return rc;
326 	} else {
327 		fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, 0ULL);
328 	}
329 
330 	if (rem)
331 		fsi_spi_sequence_add(seq, rem);
332 
333 	return 0;
334 }
335 
336 static int fsi_spi_transfer_data(struct fsi_spi *ctx,
337 				 struct spi_transfer *transfer)
338 {
339 	int rc = 0;
340 	u64 status = 0ULL;
341 	u64 cfg = 0ULL;
342 
343 	if (transfer->tx_buf) {
344 		int nb;
345 		int sent = 0;
346 		u64 out = 0ULL;
347 		const u8 *tx = transfer->tx_buf;
348 
349 		while (transfer->len > sent) {
350 			nb = fsi_spi_data_out(&out, &tx[sent],
351 					      (int)transfer->len - sent);
352 
353 			rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out);
354 			if (rc)
355 				return rc;
356 
357 			do {
358 				rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
359 						      &status);
360 				if (rc)
361 					return rc;
362 
363 				if (status & SPI_FSI_STATUS_ANY_ERROR) {
364 					rc = fsi_spi_reset(ctx);
365 					if (rc)
366 						return rc;
367 
368 					return -EREMOTEIO;
369 				}
370 			} while (status & SPI_FSI_STATUS_TDR_FULL);
371 
372 			sent += nb;
373 		}
374 	} else if (transfer->rx_buf) {
375 		int recv = 0;
376 		u64 in = 0ULL;
377 		u8 *rx = transfer->rx_buf;
378 
379 		rc = fsi_spi_read_reg(ctx, SPI_FSI_COUNTER_CFG, &cfg);
380 		if (rc)
381 			return rc;
382 
383 		if (cfg & SPI_FSI_COUNTER_CFG_N2_IMPLICIT) {
384 			rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, 0);
385 			if (rc)
386 				return rc;
387 		}
388 
389 		while (transfer->len > recv) {
390 			do {
391 				rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
392 						      &status);
393 				if (rc)
394 					return rc;
395 
396 				if (status & SPI_FSI_STATUS_ANY_ERROR) {
397 					rc = fsi_spi_reset(ctx);
398 					if (rc)
399 						return rc;
400 
401 					return -EREMOTEIO;
402 				}
403 			} while (!(status & SPI_FSI_STATUS_RDR_FULL));
404 
405 			rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in);
406 			if (rc)
407 				return rc;
408 
409 			recv += fsi_spi_data_in(in, &rx[recv],
410 						(int)transfer->len - recv);
411 		}
412 	}
413 
414 	return 0;
415 }
416 
417 static int fsi_spi_transfer_init(struct fsi_spi *ctx)
418 {
419 	int rc;
420 	bool reset = false;
421 	unsigned long end;
422 	u64 seq_state;
423 	u64 clock_cfg = 0ULL;
424 	u64 status = 0ULL;
425 	u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE |
426 		SPI_FSI_CLOCK_CFG_SCK_NO_DEL |
427 		FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 19);
428 
429 	end = jiffies + msecs_to_jiffies(SPI_FSI_INIT_TIMEOUT_MS);
430 	do {
431 		if (time_after(jiffies, end))
432 			return -ETIMEDOUT;
433 
434 		rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status);
435 		if (rc)
436 			return rc;
437 
438 		seq_state = status & SPI_FSI_STATUS_SEQ_STATE;
439 
440 		if (status & (SPI_FSI_STATUS_ANY_ERROR |
441 			      SPI_FSI_STATUS_TDR_FULL |
442 			      SPI_FSI_STATUS_RDR_FULL)) {
443 			if (reset)
444 				return -EIO;
445 
446 			rc = fsi_spi_reset(ctx);
447 			if (rc)
448 				return rc;
449 
450 			reset = true;
451 			continue;
452 		}
453 	} while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE));
454 
455 	rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg);
456 	if (rc)
457 		return rc;
458 
459 	if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE |
460 			  SPI_FSI_CLOCK_CFG_ECC_DISABLE |
461 			  SPI_FSI_CLOCK_CFG_MODE |
462 			  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL |
463 			  SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg)
464 		rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
465 				       wanted_clock_cfg);
466 
467 	return rc;
468 }
469 
470 static int fsi_spi_transfer_one_message(struct spi_controller *ctlr,
471 					struct spi_message *mesg)
472 {
473 	int rc;
474 	u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(mesg->spi->chip_select + 1);
475 	struct spi_transfer *transfer;
476 	struct fsi_spi *ctx = spi_controller_get_devdata(ctlr);
477 
478 	rc = fsi_spi_check_mux(ctx->fsi, ctx->dev);
479 	if (rc)
480 		goto error;
481 
482 	list_for_each_entry(transfer, &mesg->transfers, transfer_list) {
483 		struct fsi_spi_sequence seq;
484 		struct spi_transfer *next = NULL;
485 
486 		/* Sequencer must do shift out (tx) first. */
487 		if (!transfer->tx_buf ||
488 		    transfer->len > (ctx->max_xfr_size + 8)) {
489 			rc = -EINVAL;
490 			goto error;
491 		}
492 
493 		dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len);
494 
495 		rc = fsi_spi_transfer_init(ctx);
496 		if (rc < 0)
497 			goto error;
498 
499 		fsi_spi_sequence_init(&seq);
500 		fsi_spi_sequence_add(&seq, seq_slave);
501 
502 		rc = fsi_spi_sequence_transfer(ctx, &seq, transfer);
503 		if (rc)
504 			goto error;
505 
506 		if (!list_is_last(&transfer->transfer_list,
507 				  &mesg->transfers)) {
508 			next = list_next_entry(transfer, transfer_list);
509 
510 			/* Sequencer can only do shift in (rx) after tx. */
511 			if (next->rx_buf) {
512 				if (next->len > ctx->max_xfr_size) {
513 					rc = -EINVAL;
514 					goto error;
515 				}
516 
517 				dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n",
518 					next->len);
519 
520 				rc = fsi_spi_sequence_transfer(ctx, &seq,
521 							       next);
522 				if (rc)
523 					goto error;
524 			} else {
525 				next = NULL;
526 			}
527 		}
528 
529 		fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0));
530 
531 		rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data);
532 		if (rc)
533 			goto error;
534 
535 		rc = fsi_spi_transfer_data(ctx, transfer);
536 		if (rc)
537 			goto error;
538 
539 		if (next) {
540 			rc = fsi_spi_transfer_data(ctx, next);
541 			if (rc)
542 				goto error;
543 
544 			transfer = next;
545 		}
546 	}
547 
548 error:
549 	mesg->status = rc;
550 	spi_finalize_current_message(ctlr);
551 
552 	return rc;
553 }
554 
555 static size_t fsi_spi_max_transfer_size(struct spi_device *spi)
556 {
557 	struct fsi_spi *ctx = spi_controller_get_devdata(spi->controller);
558 
559 	return ctx->max_xfr_size;
560 }
561 
562 static int fsi_spi_probe(struct device *dev)
563 {
564 	int rc;
565 	struct device_node *np;
566 	int num_controllers_registered = 0;
567 	struct fsi_device *fsi = to_fsi_dev(dev);
568 
569 	rc = fsi_spi_check_mux(fsi, dev);
570 	if (rc)
571 		return -ENODEV;
572 
573 	for_each_available_child_of_node(dev->of_node, np) {
574 		u32 base;
575 		struct fsi_spi *ctx;
576 		struct spi_controller *ctlr;
577 
578 		if (of_property_read_u32(np, "reg", &base))
579 			continue;
580 
581 		ctlr = spi_alloc_master(dev, sizeof(*ctx));
582 		if (!ctlr)
583 			break;
584 
585 		ctlr->dev.of_node = np;
586 		ctlr->num_chipselect = of_get_available_child_count(np) ?: 1;
587 		ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
588 		ctlr->max_transfer_size = fsi_spi_max_transfer_size;
589 		ctlr->transfer_one_message = fsi_spi_transfer_one_message;
590 
591 		ctx = spi_controller_get_devdata(ctlr);
592 		ctx->dev = &ctlr->dev;
593 		ctx->fsi = fsi;
594 		ctx->base = base + SPI_FSI_BASE;
595 
596 		if (of_device_is_compatible(np, "ibm,fsi2spi-restricted")) {
597 			ctx->restricted = true;
598 			ctx->max_xfr_size = SPI_FSI_MAX_XFR_SIZE_RESTRICTED;
599 		} else {
600 			ctx->restricted = false;
601 			ctx->max_xfr_size = SPI_FSI_MAX_XFR_SIZE;
602 		}
603 
604 		rc = devm_spi_register_controller(dev, ctlr);
605 		if (rc)
606 			spi_controller_put(ctlr);
607 		else
608 			num_controllers_registered++;
609 	}
610 
611 	if (!num_controllers_registered)
612 		return -ENODEV;
613 
614 	return 0;
615 }
616 
617 static const struct fsi_device_id fsi_spi_ids[] = {
618 	{ FSI_ENGID_SPI, FSI_VERSION_ANY },
619 	{ }
620 };
621 MODULE_DEVICE_TABLE(fsi, fsi_spi_ids);
622 
623 static struct fsi_driver fsi_spi_driver = {
624 	.id_table = fsi_spi_ids,
625 	.drv = {
626 		.name = "spi-fsi",
627 		.bus = &fsi_bus_type,
628 		.probe = fsi_spi_probe,
629 	},
630 };
631 module_fsi_driver(fsi_spi_driver);
632 
633 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
634 MODULE_DESCRIPTION("FSI attached SPI controller");
635 MODULE_LICENSE("GPL");
636