xref: /openbmc/linux/drivers/spi/spi-fsi.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // Copyright (C) IBM Corporation 2020
3 
4 #include <linux/bitfield.h>
5 #include <linux/bits.h>
6 #include <linux/fsi.h>
7 #include <linux/jiffies.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/spi/spi.h>
12 
13 #define FSI_ENGID_SPI			0x23
14 #define FSI_MBOX_ROOT_CTRL_8		0x2860
15 
16 #define FSI2SPI_DATA0			0x00
17 #define FSI2SPI_DATA1			0x04
18 #define FSI2SPI_CMD			0x08
19 #define  FSI2SPI_CMD_WRITE		 BIT(31)
20 #define FSI2SPI_RESET			0x18
21 #define FSI2SPI_STATUS			0x1c
22 #define  FSI2SPI_STATUS_ANY_ERROR	 BIT(31)
23 #define FSI2SPI_IRQ			0x20
24 
25 #define SPI_FSI_BASE			0x70000
26 #define SPI_FSI_INIT_TIMEOUT_MS		1000
27 #define SPI_FSI_MAX_TRANSFER_SIZE	2048
28 
29 #define SPI_FSI_ERROR			0x0
30 #define SPI_FSI_COUNTER_CFG		0x1
31 #define  SPI_FSI_COUNTER_CFG_LOOPS(x)	 (((u64)(x) & 0xffULL) << 32)
32 #define SPI_FSI_CFG1			0x2
33 #define SPI_FSI_CLOCK_CFG		0x3
34 #define  SPI_FSI_CLOCK_CFG_MM_ENABLE	 BIT_ULL(32)
35 #define  SPI_FSI_CLOCK_CFG_ECC_DISABLE	 (BIT_ULL(35) | BIT_ULL(33))
36 #define  SPI_FSI_CLOCK_CFG_RESET1	 (BIT_ULL(36) | BIT_ULL(38))
37 #define  SPI_FSI_CLOCK_CFG_RESET2	 (BIT_ULL(37) | BIT_ULL(39))
38 #define  SPI_FSI_CLOCK_CFG_MODE		 (BIT_ULL(41) | BIT_ULL(42))
39 #define  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL	 GENMASK_ULL(51, 44)
40 #define   SPI_FSI_CLOCK_CFG_SCK_NO_DEL	  BIT_ULL(51)
41 #define  SPI_FSI_CLOCK_CFG_SCK_DIV	 GENMASK_ULL(63, 52)
42 #define SPI_FSI_MMAP			0x4
43 #define SPI_FSI_DATA_TX			0x5
44 #define SPI_FSI_DATA_RX			0x6
45 #define SPI_FSI_SEQUENCE		0x7
46 #define  SPI_FSI_SEQUENCE_STOP		 0x00
47 #define  SPI_FSI_SEQUENCE_SEL_SLAVE(x)	 (0x10 | ((x) & 0xf))
48 #define  SPI_FSI_SEQUENCE_SHIFT_OUT(x)	 (0x30 | ((x) & 0xf))
49 #define  SPI_FSI_SEQUENCE_SHIFT_IN(x)	 (0x40 | ((x) & 0xf))
50 #define  SPI_FSI_SEQUENCE_COPY_DATA_TX	 0xc0
51 #define  SPI_FSI_SEQUENCE_BRANCH(x)	 (0xe0 | ((x) & 0xf))
52 #define SPI_FSI_STATUS			0x8
53 #define  SPI_FSI_STATUS_ERROR		 \
54 	(GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12))
55 #define  SPI_FSI_STATUS_SEQ_STATE	 GENMASK_ULL(55, 48)
56 #define   SPI_FSI_STATUS_SEQ_STATE_IDLE	  BIT_ULL(48)
57 #define  SPI_FSI_STATUS_TDR_UNDERRUN	 BIT_ULL(57)
58 #define  SPI_FSI_STATUS_TDR_OVERRUN	 BIT_ULL(58)
59 #define  SPI_FSI_STATUS_TDR_FULL	 BIT_ULL(59)
60 #define  SPI_FSI_STATUS_RDR_UNDERRUN	 BIT_ULL(61)
61 #define  SPI_FSI_STATUS_RDR_OVERRUN	 BIT_ULL(62)
62 #define  SPI_FSI_STATUS_RDR_FULL	 BIT_ULL(63)
63 #define  SPI_FSI_STATUS_ANY_ERROR	 \
64 	(SPI_FSI_STATUS_ERROR | SPI_FSI_STATUS_TDR_UNDERRUN | \
65 	 SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \
66 	 SPI_FSI_STATUS_RDR_OVERRUN)
67 #define SPI_FSI_PORT_CTRL		0x9
68 
69 struct fsi_spi {
70 	struct device *dev;	/* SPI controller device */
71 	struct fsi_device *fsi;	/* FSI2SPI CFAM engine device */
72 	u32 base;
73 };
74 
75 struct fsi_spi_sequence {
76 	int bit;
77 	u64 data;
78 };
79 
80 static int fsi_spi_check_status(struct fsi_spi *ctx)
81 {
82 	int rc;
83 	u32 sts;
84 	__be32 sts_be;
85 
86 	rc = fsi_device_read(ctx->fsi, FSI2SPI_STATUS, &sts_be,
87 			     sizeof(sts_be));
88 	if (rc)
89 		return rc;
90 
91 	sts = be32_to_cpu(sts_be);
92 	if (sts & FSI2SPI_STATUS_ANY_ERROR) {
93 		dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts);
94 		return -EIO;
95 	}
96 
97 	return 0;
98 }
99 
100 static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value)
101 {
102 	int rc;
103 	__be32 cmd_be;
104 	__be32 data_be;
105 	u32 cmd = offset + ctx->base;
106 
107 	*value = 0ULL;
108 
109 	if (cmd & FSI2SPI_CMD_WRITE)
110 		return -EINVAL;
111 
112 	cmd_be = cpu_to_be32(cmd);
113 	rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
114 	if (rc)
115 		return rc;
116 
117 	rc = fsi_spi_check_status(ctx);
118 	if (rc)
119 		return rc;
120 
121 	rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA0, &data_be,
122 			     sizeof(data_be));
123 	if (rc)
124 		return rc;
125 
126 	*value |= (u64)be32_to_cpu(data_be) << 32;
127 
128 	rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA1, &data_be,
129 			     sizeof(data_be));
130 	if (rc)
131 		return rc;
132 
133 	*value |= (u64)be32_to_cpu(data_be);
134 	dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value);
135 
136 	return 0;
137 }
138 
139 static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value)
140 {
141 	int rc;
142 	__be32 cmd_be;
143 	__be32 data_be;
144 	u32 cmd = offset + ctx->base;
145 
146 	if (cmd & FSI2SPI_CMD_WRITE)
147 		return -EINVAL;
148 
149 	dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value);
150 
151 	data_be = cpu_to_be32(upper_32_bits(value));
152 	rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA0, &data_be,
153 			      sizeof(data_be));
154 	if (rc)
155 		return rc;
156 
157 	data_be = cpu_to_be32(lower_32_bits(value));
158 	rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA1, &data_be,
159 			      sizeof(data_be));
160 	if (rc)
161 		return rc;
162 
163 	cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE);
164 	rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
165 	if (rc)
166 		return rc;
167 
168 	return fsi_spi_check_status(ctx);
169 }
170 
171 static int fsi_spi_data_in(u64 in, u8 *rx, int len)
172 {
173 	int i;
174 	int num_bytes = min(len, 8);
175 
176 	for (i = 0; i < num_bytes; ++i)
177 		rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i)));
178 
179 	return num_bytes;
180 }
181 
182 static int fsi_spi_data_out(u64 *out, const u8 *tx, int len)
183 {
184 	int i;
185 	int num_bytes = min(len, 8);
186 	u8 *out_bytes = (u8 *)out;
187 
188 	/* Unused bytes of the tx data should be 0. */
189 	*out = 0ULL;
190 
191 	for (i = 0; i < num_bytes; ++i)
192 		out_bytes[8 - (i + 1)] = tx[i];
193 
194 	return num_bytes;
195 }
196 
197 static int fsi_spi_reset(struct fsi_spi *ctx)
198 {
199 	int rc;
200 
201 	dev_dbg(ctx->dev, "Resetting SPI controller.\n");
202 
203 	rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
204 			       SPI_FSI_CLOCK_CFG_RESET1);
205 	if (rc)
206 		return rc;
207 
208 	return fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
209 				 SPI_FSI_CLOCK_CFG_RESET2);
210 }
211 
212 static int fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val)
213 {
214 	/*
215 	 * Add the next byte of instruction to the 8-byte sequence register.
216 	 * Then decrement the counter so that the next instruction will go in
217 	 * the right place. Return the number of "slots" left in the sequence
218 	 * register.
219 	 */
220 	seq->data |= (u64)val << seq->bit;
221 	seq->bit -= 8;
222 
223 	return ((64 - seq->bit) / 8) - 2;
224 }
225 
226 static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq)
227 {
228 	seq->bit = 56;
229 	seq->data = 0ULL;
230 }
231 
232 static int fsi_spi_sequence_transfer(struct fsi_spi *ctx,
233 				     struct fsi_spi_sequence *seq,
234 				     struct spi_transfer *transfer)
235 {
236 	int loops;
237 	int idx;
238 	int rc;
239 	u8 len = min(transfer->len, 8U);
240 	u8 rem = transfer->len % len;
241 
242 	loops = transfer->len / len;
243 
244 	if (transfer->tx_buf) {
245 		idx = fsi_spi_sequence_add(seq,
246 					   SPI_FSI_SEQUENCE_SHIFT_OUT(len));
247 		if (rem)
248 			rem = SPI_FSI_SEQUENCE_SHIFT_OUT(rem);
249 	} else if (transfer->rx_buf) {
250 		idx = fsi_spi_sequence_add(seq,
251 					   SPI_FSI_SEQUENCE_SHIFT_IN(len));
252 		if (rem)
253 			rem = SPI_FSI_SEQUENCE_SHIFT_IN(rem);
254 	} else {
255 		return -EINVAL;
256 	}
257 
258 	if (loops > 1) {
259 		fsi_spi_sequence_add(seq, SPI_FSI_SEQUENCE_BRANCH(idx));
260 
261 		if (rem)
262 			fsi_spi_sequence_add(seq, rem);
263 
264 		rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG,
265 				       SPI_FSI_COUNTER_CFG_LOOPS(loops - 1));
266 		if (rc)
267 			return rc;
268 	}
269 
270 	return 0;
271 }
272 
273 static int fsi_spi_transfer_data(struct fsi_spi *ctx,
274 				 struct spi_transfer *transfer)
275 {
276 	int rc = 0;
277 	u64 status = 0ULL;
278 
279 	if (transfer->tx_buf) {
280 		int nb;
281 		int sent = 0;
282 		u64 out = 0ULL;
283 		const u8 *tx = transfer->tx_buf;
284 
285 		while (transfer->len > sent) {
286 			nb = fsi_spi_data_out(&out, &tx[sent],
287 					      (int)transfer->len - sent);
288 
289 			rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out);
290 			if (rc)
291 				return rc;
292 
293 			do {
294 				rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
295 						      &status);
296 				if (rc)
297 					return rc;
298 
299 				if (status & SPI_FSI_STATUS_ANY_ERROR) {
300 					rc = fsi_spi_reset(ctx);
301 					if (rc)
302 						return rc;
303 
304 					return -EREMOTEIO;
305 				}
306 			} while (status & SPI_FSI_STATUS_TDR_FULL);
307 
308 			sent += nb;
309 		}
310 	} else if (transfer->rx_buf) {
311 		int recv = 0;
312 		u64 in = 0ULL;
313 		u8 *rx = transfer->rx_buf;
314 
315 		while (transfer->len > recv) {
316 			do {
317 				rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
318 						      &status);
319 				if (rc)
320 					return rc;
321 
322 				if (status & SPI_FSI_STATUS_ANY_ERROR) {
323 					rc = fsi_spi_reset(ctx);
324 					if (rc)
325 						return rc;
326 
327 					return -EREMOTEIO;
328 				}
329 			} while (!(status & SPI_FSI_STATUS_RDR_FULL));
330 
331 			rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in);
332 			if (rc)
333 				return rc;
334 
335 			recv += fsi_spi_data_in(in, &rx[recv],
336 						(int)transfer->len - recv);
337 		}
338 	}
339 
340 	return 0;
341 }
342 
343 static int fsi_spi_transfer_init(struct fsi_spi *ctx)
344 {
345 	int rc;
346 	bool reset = false;
347 	unsigned long end;
348 	u64 seq_state;
349 	u64 clock_cfg = 0ULL;
350 	u64 status = 0ULL;
351 	u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE |
352 		SPI_FSI_CLOCK_CFG_SCK_NO_DEL |
353 		FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 4);
354 
355 	end = jiffies + msecs_to_jiffies(SPI_FSI_INIT_TIMEOUT_MS);
356 	do {
357 		if (time_after(jiffies, end))
358 			return -ETIMEDOUT;
359 
360 		rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status);
361 		if (rc)
362 			return rc;
363 
364 		seq_state = status & SPI_FSI_STATUS_SEQ_STATE;
365 
366 		if (status & (SPI_FSI_STATUS_ANY_ERROR |
367 			      SPI_FSI_STATUS_TDR_FULL |
368 			      SPI_FSI_STATUS_RDR_FULL)) {
369 			if (reset)
370 				return -EIO;
371 
372 			rc = fsi_spi_reset(ctx);
373 			if (rc)
374 				return rc;
375 
376 			reset = true;
377 			continue;
378 		}
379 	} while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE));
380 
381 	rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg);
382 	if (rc)
383 		return rc;
384 
385 	if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE |
386 			  SPI_FSI_CLOCK_CFG_ECC_DISABLE |
387 			  SPI_FSI_CLOCK_CFG_MODE |
388 			  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL |
389 			  SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg)
390 		rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
391 				       wanted_clock_cfg);
392 
393 	return rc;
394 }
395 
396 static int fsi_spi_transfer_one_message(struct spi_controller *ctlr,
397 					struct spi_message *mesg)
398 {
399 	int rc = 0;
400 	u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(mesg->spi->chip_select + 1);
401 	struct spi_transfer *transfer;
402 	struct fsi_spi *ctx = spi_controller_get_devdata(ctlr);
403 
404 	list_for_each_entry(transfer, &mesg->transfers, transfer_list) {
405 		struct fsi_spi_sequence seq;
406 		struct spi_transfer *next = NULL;
407 
408 		/* Sequencer must do shift out (tx) first. */
409 		if (!transfer->tx_buf ||
410 		    transfer->len > SPI_FSI_MAX_TRANSFER_SIZE) {
411 			rc = -EINVAL;
412 			goto error;
413 		}
414 
415 		dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len);
416 
417 		rc = fsi_spi_transfer_init(ctx);
418 		if (rc < 0)
419 			goto error;
420 
421 		fsi_spi_sequence_init(&seq);
422 		fsi_spi_sequence_add(&seq, seq_slave);
423 
424 		rc = fsi_spi_sequence_transfer(ctx, &seq, transfer);
425 		if (rc)
426 			goto error;
427 
428 		if (!list_is_last(&transfer->transfer_list,
429 				  &mesg->transfers)) {
430 			next = list_next_entry(transfer, transfer_list);
431 
432 			/* Sequencer can only do shift in (rx) after tx. */
433 			if (next->rx_buf) {
434 				if (next->len > SPI_FSI_MAX_TRANSFER_SIZE) {
435 					rc = -EINVAL;
436 					goto error;
437 				}
438 
439 				dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n",
440 					next->len);
441 
442 				rc = fsi_spi_sequence_transfer(ctx, &seq,
443 							       next);
444 				if (rc)
445 					goto error;
446 			} else {
447 				next = NULL;
448 			}
449 		}
450 
451 		fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0));
452 
453 		rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data);
454 		if (rc)
455 			goto error;
456 
457 		rc = fsi_spi_transfer_data(ctx, transfer);
458 		if (rc)
459 			goto error;
460 
461 		if (next) {
462 			rc = fsi_spi_transfer_data(ctx, next);
463 			if (rc)
464 				goto error;
465 
466 			transfer = next;
467 		}
468 	}
469 
470 error:
471 	mesg->status = rc;
472 	spi_finalize_current_message(ctlr);
473 
474 	return rc;
475 }
476 
477 static size_t fsi_spi_max_transfer_size(struct spi_device *spi)
478 {
479 	return SPI_FSI_MAX_TRANSFER_SIZE;
480 }
481 
482 static int fsi_spi_probe(struct device *dev)
483 {
484 	int rc;
485 	u32 root_ctrl_8;
486 	struct device_node *np;
487 	int num_controllers_registered = 0;
488 	struct fsi_device *fsi = to_fsi_dev(dev);
489 
490 	/*
491 	 * Check the SPI mux before attempting to probe. If the mux isn't set
492 	 * then the SPI controllers can't access their slave devices.
493 	 */
494 	rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8,
495 			    sizeof(root_ctrl_8));
496 	if (rc)
497 		return rc;
498 
499 	if (!root_ctrl_8) {
500 		dev_dbg(dev, "SPI mux not set, aborting probe.\n");
501 		return -ENODEV;
502 	}
503 
504 	for_each_available_child_of_node(dev->of_node, np) {
505 		u32 base;
506 		struct fsi_spi *ctx;
507 		struct spi_controller *ctlr;
508 
509 		if (of_property_read_u32(np, "reg", &base))
510 			continue;
511 
512 		ctlr = spi_alloc_master(dev, sizeof(*ctx));
513 		if (!ctlr)
514 			break;
515 
516 		ctlr->dev.of_node = np;
517 		ctlr->num_chipselect = of_get_available_child_count(np) ?: 1;
518 		ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
519 		ctlr->max_transfer_size = fsi_spi_max_transfer_size;
520 		ctlr->transfer_one_message = fsi_spi_transfer_one_message;
521 
522 		ctx = spi_controller_get_devdata(ctlr);
523 		ctx->dev = &ctlr->dev;
524 		ctx->fsi = fsi;
525 		ctx->base = base + SPI_FSI_BASE;
526 
527 		rc = devm_spi_register_controller(dev, ctlr);
528 		if (rc)
529 			spi_controller_put(ctlr);
530 		else
531 			num_controllers_registered++;
532 	}
533 
534 	if (!num_controllers_registered)
535 		return -ENODEV;
536 
537 	return 0;
538 }
539 
540 static const struct fsi_device_id fsi_spi_ids[] = {
541 	{ FSI_ENGID_SPI, FSI_VERSION_ANY },
542 	{ }
543 };
544 MODULE_DEVICE_TABLE(fsi, fsi_spi_ids);
545 
546 static struct fsi_driver fsi_spi_driver = {
547 	.id_table = fsi_spi_ids,
548 	.drv = {
549 		.name = "spi-fsi",
550 		.bus = &fsi_bus_type,
551 		.probe = fsi_spi_probe,
552 	},
553 };
554 module_fsi_driver(fsi_spi_driver);
555 
556 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
557 MODULE_DESCRIPTION("FSI attached SPI controller");
558 MODULE_LICENSE("GPL");
559