xref: /openbmc/linux/drivers/spi/spi-ep93xx.c (revision f7777dcc)
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spi/spi.h>
32 
33 #include <linux/platform_data/dma-ep93xx.h>
34 #include <linux/platform_data/spi-ep93xx.h>
35 
36 #define SSPCR0			0x0000
37 #define SSPCR0_MODE_SHIFT	6
38 #define SSPCR0_SCR_SHIFT	8
39 
40 #define SSPCR1			0x0004
41 #define SSPCR1_RIE		BIT(0)
42 #define SSPCR1_TIE		BIT(1)
43 #define SSPCR1_RORIE		BIT(2)
44 #define SSPCR1_LBM		BIT(3)
45 #define SSPCR1_SSE		BIT(4)
46 #define SSPCR1_MS		BIT(5)
47 #define SSPCR1_SOD		BIT(6)
48 
49 #define SSPDR			0x0008
50 
51 #define SSPSR			0x000c
52 #define SSPSR_TFE		BIT(0)
53 #define SSPSR_TNF		BIT(1)
54 #define SSPSR_RNE		BIT(2)
55 #define SSPSR_RFF		BIT(3)
56 #define SSPSR_BSY		BIT(4)
57 #define SSPCPSR			0x0010
58 
59 #define SSPIIR			0x0014
60 #define SSPIIR_RIS		BIT(0)
61 #define SSPIIR_TIS		BIT(1)
62 #define SSPIIR_RORIS		BIT(2)
63 #define SSPICR			SSPIIR
64 
65 /* timeout in milliseconds */
66 #define SPI_TIMEOUT		5
67 /* maximum depth of RX/TX FIFO */
68 #define SPI_FIFO_SIZE		8
69 
70 /**
71  * struct ep93xx_spi - EP93xx SPI controller structure
72  * @pdev: pointer to platform device
73  * @clk: clock for the controller
74  * @regs_base: pointer to ioremap()'d registers
75  * @sspdr_phys: physical address of the SSPDR register
76  * @min_rate: minimum clock rate (in Hz) supported by the controller
77  * @max_rate: maximum clock rate (in Hz) supported by the controller
78  * @wait: wait here until given transfer is completed
79  * @current_msg: message that is currently processed (or %NULL if none)
80  * @tx: current byte in transfer to transmit
81  * @rx: current byte in transfer to receive
82  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
83  *              frame decreases this level and sending one frame increases it.
84  * @dma_rx: RX DMA channel
85  * @dma_tx: TX DMA channel
86  * @dma_rx_data: RX parameters passed to the DMA engine
87  * @dma_tx_data: TX parameters passed to the DMA engine
88  * @rx_sgt: sg table for RX transfers
89  * @tx_sgt: sg table for TX transfers
90  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
91  *            the client
92  */
93 struct ep93xx_spi {
94 	const struct platform_device	*pdev;
95 	struct clk			*clk;
96 	void __iomem			*regs_base;
97 	unsigned long			sspdr_phys;
98 	unsigned long			min_rate;
99 	unsigned long			max_rate;
100 	struct completion		wait;
101 	struct spi_message		*current_msg;
102 	size_t				tx;
103 	size_t				rx;
104 	size_t				fifo_level;
105 	struct dma_chan			*dma_rx;
106 	struct dma_chan			*dma_tx;
107 	struct ep93xx_dma_data		dma_rx_data;
108 	struct ep93xx_dma_data		dma_tx_data;
109 	struct sg_table			rx_sgt;
110 	struct sg_table			tx_sgt;
111 	void				*zeropage;
112 };
113 
114 /**
115  * struct ep93xx_spi_chip - SPI device hardware settings
116  * @spi: back pointer to the SPI device
117  * @ops: private chip operations
118  */
119 struct ep93xx_spi_chip {
120 	const struct spi_device		*spi;
121 	struct ep93xx_spi_chip_ops	*ops;
122 };
123 
124 /* converts bits per word to CR0.DSS value */
125 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
126 
127 static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
128 				u16 reg, u8 value)
129 {
130 	writeb(value, espi->regs_base + reg);
131 }
132 
133 static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
134 {
135 	return readb(spi->regs_base + reg);
136 }
137 
138 static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
139 				 u16 reg, u16 value)
140 {
141 	writew(value, espi->regs_base + reg);
142 }
143 
144 static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
145 {
146 	return readw(spi->regs_base + reg);
147 }
148 
149 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
150 {
151 	u8 regval;
152 	int err;
153 
154 	err = clk_enable(espi->clk);
155 	if (err)
156 		return err;
157 
158 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
159 	regval |= SSPCR1_SSE;
160 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
161 
162 	return 0;
163 }
164 
165 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
166 {
167 	u8 regval;
168 
169 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
170 	regval &= ~SSPCR1_SSE;
171 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
172 
173 	clk_disable(espi->clk);
174 }
175 
176 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
177 {
178 	u8 regval;
179 
180 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
181 	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
182 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
183 }
184 
185 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
186 {
187 	u8 regval;
188 
189 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
190 	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
191 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
192 }
193 
194 /**
195  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
196  * @espi: ep93xx SPI controller struct
197  * @rate: desired SPI output clock rate
198  * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
199  * @div_scr: pointer to return the scr divider
200  */
201 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
202 				    unsigned long rate,
203 				    u8 *div_cpsr, u8 *div_scr)
204 {
205 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
206 	int cpsr, scr;
207 
208 	/*
209 	 * Make sure that max value is between values supported by the
210 	 * controller. Note that minimum value is already checked in
211 	 * ep93xx_spi_transfer_one_message().
212 	 */
213 	rate = clamp(rate, espi->min_rate, espi->max_rate);
214 
215 	/*
216 	 * Calculate divisors so that we can get speed according the
217 	 * following formula:
218 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
219 	 *
220 	 * cpsr must be even number and starts from 2, scr can be any number
221 	 * between 0 and 255.
222 	 */
223 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
224 		for (scr = 0; scr <= 255; scr++) {
225 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
226 				*div_scr = (u8)scr;
227 				*div_cpsr = (u8)cpsr;
228 				return 0;
229 			}
230 		}
231 	}
232 
233 	return -EINVAL;
234 }
235 
236 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
237 {
238 	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
239 	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
240 
241 	if (chip->ops && chip->ops->cs_control)
242 		chip->ops->cs_control(spi, value);
243 }
244 
245 /**
246  * ep93xx_spi_setup() - setup an SPI device
247  * @spi: SPI device to setup
248  *
249  * This function sets up SPI device mode, speed etc. Can be called multiple
250  * times for a single device. Returns %0 in case of success, negative error in
251  * case of failure. When this function returns success, the device is
252  * deselected.
253  */
254 static int ep93xx_spi_setup(struct spi_device *spi)
255 {
256 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
257 	struct ep93xx_spi_chip *chip;
258 
259 	chip = spi_get_ctldata(spi);
260 	if (!chip) {
261 		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
262 			spi->modalias);
263 
264 		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
265 		if (!chip)
266 			return -ENOMEM;
267 
268 		chip->spi = spi;
269 		chip->ops = spi->controller_data;
270 
271 		if (chip->ops && chip->ops->setup) {
272 			int ret = chip->ops->setup(spi);
273 			if (ret) {
274 				kfree(chip);
275 				return ret;
276 			}
277 		}
278 
279 		spi_set_ctldata(spi, chip);
280 	}
281 
282 	ep93xx_spi_cs_control(spi, false);
283 	return 0;
284 }
285 
286 /**
287  * ep93xx_spi_cleanup() - cleans up master controller specific state
288  * @spi: SPI device to cleanup
289  *
290  * This function releases master controller specific state for given @spi
291  * device.
292  */
293 static void ep93xx_spi_cleanup(struct spi_device *spi)
294 {
295 	struct ep93xx_spi_chip *chip;
296 
297 	chip = spi_get_ctldata(spi);
298 	if (chip) {
299 		if (chip->ops && chip->ops->cleanup)
300 			chip->ops->cleanup(spi);
301 		spi_set_ctldata(spi, NULL);
302 		kfree(chip);
303 	}
304 }
305 
306 /**
307  * ep93xx_spi_chip_setup() - configures hardware according to given @chip
308  * @espi: ep93xx SPI controller struct
309  * @chip: chip specific settings
310  * @speed_hz: transfer speed
311  * @bits_per_word: transfer bits_per_word
312  */
313 static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
314 				 const struct ep93xx_spi_chip *chip,
315 				 u32 speed_hz, u8 bits_per_word)
316 {
317 	u8 dss = bits_per_word_to_dss(bits_per_word);
318 	u8 div_cpsr = 0;
319 	u8 div_scr = 0;
320 	u16 cr0;
321 	int err;
322 
323 	err = ep93xx_spi_calc_divisors(espi, speed_hz, &div_cpsr, &div_scr);
324 	if (err)
325 		return err;
326 
327 	cr0 = div_scr << SSPCR0_SCR_SHIFT;
328 	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
329 	cr0 |= dss;
330 
331 	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
332 		chip->spi->mode, div_cpsr, div_scr, dss);
333 	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
334 
335 	ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr);
336 	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
337 
338 	return 0;
339 }
340 
341 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
342 {
343 	if (t->bits_per_word > 8) {
344 		u16 tx_val = 0;
345 
346 		if (t->tx_buf)
347 			tx_val = ((u16 *)t->tx_buf)[espi->tx];
348 		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
349 		espi->tx += sizeof(tx_val);
350 	} else {
351 		u8 tx_val = 0;
352 
353 		if (t->tx_buf)
354 			tx_val = ((u8 *)t->tx_buf)[espi->tx];
355 		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
356 		espi->tx += sizeof(tx_val);
357 	}
358 }
359 
360 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
361 {
362 	if (t->bits_per_word > 8) {
363 		u16 rx_val;
364 
365 		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
366 		if (t->rx_buf)
367 			((u16 *)t->rx_buf)[espi->rx] = rx_val;
368 		espi->rx += sizeof(rx_val);
369 	} else {
370 		u8 rx_val;
371 
372 		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
373 		if (t->rx_buf)
374 			((u8 *)t->rx_buf)[espi->rx] = rx_val;
375 		espi->rx += sizeof(rx_val);
376 	}
377 }
378 
379 /**
380  * ep93xx_spi_read_write() - perform next RX/TX transfer
381  * @espi: ep93xx SPI controller struct
382  *
383  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
384  * called several times, the whole transfer will be completed. Returns
385  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
386  *
387  * When this function is finished, RX FIFO should be empty and TX FIFO should be
388  * full.
389  */
390 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
391 {
392 	struct spi_message *msg = espi->current_msg;
393 	struct spi_transfer *t = msg->state;
394 
395 	/* read as long as RX FIFO has frames in it */
396 	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
397 		ep93xx_do_read(espi, t);
398 		espi->fifo_level--;
399 	}
400 
401 	/* write as long as TX FIFO has room */
402 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
403 		ep93xx_do_write(espi, t);
404 		espi->fifo_level++;
405 	}
406 
407 	if (espi->rx == t->len)
408 		return 0;
409 
410 	return -EINPROGRESS;
411 }
412 
413 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
414 {
415 	/*
416 	 * Now everything is set up for the current transfer. We prime the TX
417 	 * FIFO, enable interrupts, and wait for the transfer to complete.
418 	 */
419 	if (ep93xx_spi_read_write(espi)) {
420 		ep93xx_spi_enable_interrupts(espi);
421 		wait_for_completion(&espi->wait);
422 	}
423 }
424 
425 /**
426  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
427  * @espi: ep93xx SPI controller struct
428  * @dir: DMA transfer direction
429  *
430  * Function configures the DMA, maps the buffer and prepares the DMA
431  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
432  * in case of failure.
433  */
434 static struct dma_async_tx_descriptor *
435 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
436 {
437 	struct spi_transfer *t = espi->current_msg->state;
438 	struct dma_async_tx_descriptor *txd;
439 	enum dma_slave_buswidth buswidth;
440 	struct dma_slave_config conf;
441 	struct scatterlist *sg;
442 	struct sg_table *sgt;
443 	struct dma_chan *chan;
444 	const void *buf, *pbuf;
445 	size_t len = t->len;
446 	int i, ret, nents;
447 
448 	if (t->bits_per_word > 8)
449 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
450 	else
451 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
452 
453 	memset(&conf, 0, sizeof(conf));
454 	conf.direction = dir;
455 
456 	if (dir == DMA_DEV_TO_MEM) {
457 		chan = espi->dma_rx;
458 		buf = t->rx_buf;
459 		sgt = &espi->rx_sgt;
460 
461 		conf.src_addr = espi->sspdr_phys;
462 		conf.src_addr_width = buswidth;
463 	} else {
464 		chan = espi->dma_tx;
465 		buf = t->tx_buf;
466 		sgt = &espi->tx_sgt;
467 
468 		conf.dst_addr = espi->sspdr_phys;
469 		conf.dst_addr_width = buswidth;
470 	}
471 
472 	ret = dmaengine_slave_config(chan, &conf);
473 	if (ret)
474 		return ERR_PTR(ret);
475 
476 	/*
477 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
478 	 * because we are using @espi->zeropage to provide a zero RX buffer
479 	 * for the TX transfers and we have only allocated one page for that.
480 	 *
481 	 * For performance reasons we allocate a new sg_table only when
482 	 * needed. Otherwise we will re-use the current one. Eventually the
483 	 * last sg_table is released in ep93xx_spi_release_dma().
484 	 */
485 
486 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
487 	if (nents != sgt->nents) {
488 		sg_free_table(sgt);
489 
490 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
491 		if (ret)
492 			return ERR_PTR(ret);
493 	}
494 
495 	pbuf = buf;
496 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
497 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
498 
499 		if (buf) {
500 			sg_set_page(sg, virt_to_page(pbuf), bytes,
501 				    offset_in_page(pbuf));
502 		} else {
503 			sg_set_page(sg, virt_to_page(espi->zeropage),
504 				    bytes, 0);
505 		}
506 
507 		pbuf += bytes;
508 		len -= bytes;
509 	}
510 
511 	if (WARN_ON(len)) {
512 		dev_warn(&espi->pdev->dev, "len = %zu expected 0!", len);
513 		return ERR_PTR(-EINVAL);
514 	}
515 
516 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
517 	if (!nents)
518 		return ERR_PTR(-ENOMEM);
519 
520 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
521 	if (!txd) {
522 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
523 		return ERR_PTR(-ENOMEM);
524 	}
525 	return txd;
526 }
527 
528 /**
529  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
530  * @espi: ep93xx SPI controller struct
531  * @dir: DMA transfer direction
532  *
533  * Function finishes with the DMA transfer. After this, the DMA buffer is
534  * unmapped.
535  */
536 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
537 				  enum dma_transfer_direction dir)
538 {
539 	struct dma_chan *chan;
540 	struct sg_table *sgt;
541 
542 	if (dir == DMA_DEV_TO_MEM) {
543 		chan = espi->dma_rx;
544 		sgt = &espi->rx_sgt;
545 	} else {
546 		chan = espi->dma_tx;
547 		sgt = &espi->tx_sgt;
548 	}
549 
550 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
551 }
552 
553 static void ep93xx_spi_dma_callback(void *callback_param)
554 {
555 	complete(callback_param);
556 }
557 
558 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
559 {
560 	struct spi_message *msg = espi->current_msg;
561 	struct dma_async_tx_descriptor *rxd, *txd;
562 
563 	rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
564 	if (IS_ERR(rxd)) {
565 		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
566 		msg->status = PTR_ERR(rxd);
567 		return;
568 	}
569 
570 	txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
571 	if (IS_ERR(txd)) {
572 		ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
573 		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
574 		msg->status = PTR_ERR(txd);
575 		return;
576 	}
577 
578 	/* We are ready when RX is done */
579 	rxd->callback = ep93xx_spi_dma_callback;
580 	rxd->callback_param = &espi->wait;
581 
582 	/* Now submit both descriptors and wait while they finish */
583 	dmaengine_submit(rxd);
584 	dmaengine_submit(txd);
585 
586 	dma_async_issue_pending(espi->dma_rx);
587 	dma_async_issue_pending(espi->dma_tx);
588 
589 	wait_for_completion(&espi->wait);
590 
591 	ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
592 	ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
593 }
594 
595 /**
596  * ep93xx_spi_process_transfer() - processes one SPI transfer
597  * @espi: ep93xx SPI controller struct
598  * @msg: current message
599  * @t: transfer to process
600  *
601  * This function processes one SPI transfer given in @t. Function waits until
602  * transfer is complete (may sleep) and updates @msg->status based on whether
603  * transfer was successfully processed or not.
604  */
605 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
606 					struct spi_message *msg,
607 					struct spi_transfer *t)
608 {
609 	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
610 	int err;
611 
612 	msg->state = t;
613 
614 	err = ep93xx_spi_chip_setup(espi, chip, t->speed_hz, t->bits_per_word);
615 	if (err) {
616 		dev_err(&espi->pdev->dev,
617 			"failed to setup chip for transfer\n");
618 		msg->status = err;
619 		return;
620 	}
621 
622 	espi->rx = 0;
623 	espi->tx = 0;
624 
625 	/*
626 	 * There is no point of setting up DMA for the transfers which will
627 	 * fit into the FIFO and can be transferred with a single interrupt.
628 	 * So in these cases we will be using PIO and don't bother for DMA.
629 	 */
630 	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
631 		ep93xx_spi_dma_transfer(espi);
632 	else
633 		ep93xx_spi_pio_transfer(espi);
634 
635 	/*
636 	 * In case of error during transmit, we bail out from processing
637 	 * the message.
638 	 */
639 	if (msg->status)
640 		return;
641 
642 	msg->actual_length += t->len;
643 
644 	/*
645 	 * After this transfer is finished, perform any possible
646 	 * post-transfer actions requested by the protocol driver.
647 	 */
648 	if (t->delay_usecs) {
649 		set_current_state(TASK_UNINTERRUPTIBLE);
650 		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
651 	}
652 	if (t->cs_change) {
653 		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
654 			/*
655 			 * In case protocol driver is asking us to drop the
656 			 * chipselect briefly, we let the scheduler to handle
657 			 * any "delay" here.
658 			 */
659 			ep93xx_spi_cs_control(msg->spi, false);
660 			cond_resched();
661 			ep93xx_spi_cs_control(msg->spi, true);
662 		}
663 	}
664 }
665 
666 /*
667  * ep93xx_spi_process_message() - process one SPI message
668  * @espi: ep93xx SPI controller struct
669  * @msg: message to process
670  *
671  * This function processes a single SPI message. We go through all transfers in
672  * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
673  * asserted during the whole message (unless per transfer cs_change is set).
674  *
675  * @msg->status contains %0 in case of success or negative error code in case of
676  * failure.
677  */
678 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
679 				       struct spi_message *msg)
680 {
681 	unsigned long timeout;
682 	struct spi_transfer *t;
683 	int err;
684 
685 	/*
686 	 * Enable the SPI controller and its clock.
687 	 */
688 	err = ep93xx_spi_enable(espi);
689 	if (err) {
690 		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
691 		msg->status = err;
692 		return;
693 	}
694 
695 	/*
696 	 * Just to be sure: flush any data from RX FIFO.
697 	 */
698 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
699 	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
700 		if (time_after(jiffies, timeout)) {
701 			dev_warn(&espi->pdev->dev,
702 				 "timeout while flushing RX FIFO\n");
703 			msg->status = -ETIMEDOUT;
704 			return;
705 		}
706 		ep93xx_spi_read_u16(espi, SSPDR);
707 	}
708 
709 	/*
710 	 * We explicitly handle FIFO level. This way we don't have to check TX
711 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
712 	 */
713 	espi->fifo_level = 0;
714 
715 	/*
716 	 * Assert the chipselect.
717 	 */
718 	ep93xx_spi_cs_control(msg->spi, true);
719 
720 	list_for_each_entry(t, &msg->transfers, transfer_list) {
721 		ep93xx_spi_process_transfer(espi, msg, t);
722 		if (msg->status)
723 			break;
724 	}
725 
726 	/*
727 	 * Now the whole message is transferred (or failed for some reason). We
728 	 * deselect the device and disable the SPI controller.
729 	 */
730 	ep93xx_spi_cs_control(msg->spi, false);
731 	ep93xx_spi_disable(espi);
732 }
733 
734 static int ep93xx_spi_transfer_one_message(struct spi_master *master,
735 					   struct spi_message *msg)
736 {
737 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
738 	struct spi_transfer *t;
739 
740 	/* first validate each transfer */
741 	list_for_each_entry(t, &msg->transfers, transfer_list) {
742 		if (t->speed_hz < espi->min_rate)
743 			return -EINVAL;
744 	}
745 
746 	msg->state = NULL;
747 	msg->status = 0;
748 	msg->actual_length = 0;
749 
750 	espi->current_msg = msg;
751 	ep93xx_spi_process_message(espi, msg);
752 	espi->current_msg = NULL;
753 
754 	spi_finalize_current_message(master);
755 
756 	return 0;
757 }
758 
759 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
760 {
761 	struct ep93xx_spi *espi = dev_id;
762 	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
763 
764 	/*
765 	 * If we got ROR (receive overrun) interrupt we know that something is
766 	 * wrong. Just abort the message.
767 	 */
768 	if (unlikely(irq_status & SSPIIR_RORIS)) {
769 		/* clear the overrun interrupt */
770 		ep93xx_spi_write_u8(espi, SSPICR, 0);
771 		dev_warn(&espi->pdev->dev,
772 			 "receive overrun, aborting the message\n");
773 		espi->current_msg->status = -EIO;
774 	} else {
775 		/*
776 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
777 		 * simply execute next data transfer.
778 		 */
779 		if (ep93xx_spi_read_write(espi)) {
780 			/*
781 			 * In normal case, there still is some processing left
782 			 * for current transfer. Let's wait for the next
783 			 * interrupt then.
784 			 */
785 			return IRQ_HANDLED;
786 		}
787 	}
788 
789 	/*
790 	 * Current transfer is finished, either with error or with success. In
791 	 * any case we disable interrupts and notify the worker to handle
792 	 * any post-processing of the message.
793 	 */
794 	ep93xx_spi_disable_interrupts(espi);
795 	complete(&espi->wait);
796 	return IRQ_HANDLED;
797 }
798 
799 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
800 {
801 	if (ep93xx_dma_chan_is_m2p(chan))
802 		return false;
803 
804 	chan->private = filter_param;
805 	return true;
806 }
807 
808 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
809 {
810 	dma_cap_mask_t mask;
811 	int ret;
812 
813 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
814 	if (!espi->zeropage)
815 		return -ENOMEM;
816 
817 	dma_cap_zero(mask);
818 	dma_cap_set(DMA_SLAVE, mask);
819 
820 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
821 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
822 	espi->dma_rx_data.name = "ep93xx-spi-rx";
823 
824 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
825 					   &espi->dma_rx_data);
826 	if (!espi->dma_rx) {
827 		ret = -ENODEV;
828 		goto fail_free_page;
829 	}
830 
831 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
832 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
833 	espi->dma_tx_data.name = "ep93xx-spi-tx";
834 
835 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
836 					   &espi->dma_tx_data);
837 	if (!espi->dma_tx) {
838 		ret = -ENODEV;
839 		goto fail_release_rx;
840 	}
841 
842 	return 0;
843 
844 fail_release_rx:
845 	dma_release_channel(espi->dma_rx);
846 	espi->dma_rx = NULL;
847 fail_free_page:
848 	free_page((unsigned long)espi->zeropage);
849 
850 	return ret;
851 }
852 
853 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
854 {
855 	if (espi->dma_rx) {
856 		dma_release_channel(espi->dma_rx);
857 		sg_free_table(&espi->rx_sgt);
858 	}
859 	if (espi->dma_tx) {
860 		dma_release_channel(espi->dma_tx);
861 		sg_free_table(&espi->tx_sgt);
862 	}
863 
864 	if (espi->zeropage)
865 		free_page((unsigned long)espi->zeropage);
866 }
867 
868 static int ep93xx_spi_probe(struct platform_device *pdev)
869 {
870 	struct spi_master *master;
871 	struct ep93xx_spi_info *info;
872 	struct ep93xx_spi *espi;
873 	struct resource *res;
874 	int irq;
875 	int error;
876 
877 	info = dev_get_platdata(&pdev->dev);
878 
879 	irq = platform_get_irq(pdev, 0);
880 	if (irq < 0) {
881 		dev_err(&pdev->dev, "failed to get irq resources\n");
882 		return -EBUSY;
883 	}
884 
885 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
886 	if (!res) {
887 		dev_err(&pdev->dev, "unable to get iomem resource\n");
888 		return -ENODEV;
889 	}
890 
891 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
892 	if (!master)
893 		return -ENOMEM;
894 
895 	master->setup = ep93xx_spi_setup;
896 	master->transfer_one_message = ep93xx_spi_transfer_one_message;
897 	master->cleanup = ep93xx_spi_cleanup;
898 	master->bus_num = pdev->id;
899 	master->num_chipselect = info->num_chipselect;
900 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
901 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
902 
903 	platform_set_drvdata(pdev, master);
904 
905 	espi = spi_master_get_devdata(master);
906 
907 	espi->clk = devm_clk_get(&pdev->dev, NULL);
908 	if (IS_ERR(espi->clk)) {
909 		dev_err(&pdev->dev, "unable to get spi clock\n");
910 		error = PTR_ERR(espi->clk);
911 		goto fail_release_master;
912 	}
913 
914 	init_completion(&espi->wait);
915 
916 	/*
917 	 * Calculate maximum and minimum supported clock rates
918 	 * for the controller.
919 	 */
920 	espi->max_rate = clk_get_rate(espi->clk) / 2;
921 	espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
922 	espi->pdev = pdev;
923 
924 	espi->sspdr_phys = res->start + SSPDR;
925 
926 	espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
927 	if (IS_ERR(espi->regs_base)) {
928 		error = PTR_ERR(espi->regs_base);
929 		goto fail_release_master;
930 	}
931 
932 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
933 				0, "ep93xx-spi", espi);
934 	if (error) {
935 		dev_err(&pdev->dev, "failed to request irq\n");
936 		goto fail_release_master;
937 	}
938 
939 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
940 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
941 
942 	/* make sure that the hardware is disabled */
943 	ep93xx_spi_write_u8(espi, SSPCR1, 0);
944 
945 	error = spi_register_master(master);
946 	if (error) {
947 		dev_err(&pdev->dev, "failed to register SPI master\n");
948 		goto fail_free_dma;
949 	}
950 
951 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
952 		 (unsigned long)res->start, irq);
953 
954 	return 0;
955 
956 fail_free_dma:
957 	ep93xx_spi_release_dma(espi);
958 fail_release_master:
959 	spi_master_put(master);
960 
961 	return error;
962 }
963 
964 static int ep93xx_spi_remove(struct platform_device *pdev)
965 {
966 	struct spi_master *master = platform_get_drvdata(pdev);
967 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
968 
969 	ep93xx_spi_release_dma(espi);
970 
971 	spi_unregister_master(master);
972 	return 0;
973 }
974 
975 static struct platform_driver ep93xx_spi_driver = {
976 	.driver		= {
977 		.name	= "ep93xx-spi",
978 		.owner	= THIS_MODULE,
979 	},
980 	.probe		= ep93xx_spi_probe,
981 	.remove		= ep93xx_spi_remove,
982 };
983 module_platform_driver(ep93xx_spi_driver);
984 
985 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
986 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
987 MODULE_LICENSE("GPL");
988 MODULE_ALIAS("platform:ep93xx-spi");
989