xref: /openbmc/linux/drivers/spi/spi-ep93xx.c (revision e6eb8d9b)
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/sched.h>
31 #include <linux/scatterlist.h>
32 #include <linux/spi/spi.h>
33 
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
36 
37 #define SSPCR0			0x0000
38 #define SSPCR0_MODE_SHIFT	6
39 #define SSPCR0_SCR_SHIFT	8
40 
41 #define SSPCR1			0x0004
42 #define SSPCR1_RIE		BIT(0)
43 #define SSPCR1_TIE		BIT(1)
44 #define SSPCR1_RORIE		BIT(2)
45 #define SSPCR1_LBM		BIT(3)
46 #define SSPCR1_SSE		BIT(4)
47 #define SSPCR1_MS		BIT(5)
48 #define SSPCR1_SOD		BIT(6)
49 
50 #define SSPDR			0x0008
51 
52 #define SSPSR			0x000c
53 #define SSPSR_TFE		BIT(0)
54 #define SSPSR_TNF		BIT(1)
55 #define SSPSR_RNE		BIT(2)
56 #define SSPSR_RFF		BIT(3)
57 #define SSPSR_BSY		BIT(4)
58 #define SSPCPSR			0x0010
59 
60 #define SSPIIR			0x0014
61 #define SSPIIR_RIS		BIT(0)
62 #define SSPIIR_TIS		BIT(1)
63 #define SSPIIR_RORIS		BIT(2)
64 #define SSPICR			SSPIIR
65 
66 /* timeout in milliseconds */
67 #define SPI_TIMEOUT		5
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE		8
70 
71 /**
72  * struct ep93xx_spi - EP93xx SPI controller structure
73  * @lock: spinlock that protects concurrent accesses to fields @running,
74  *        @current_msg and @msg_queue
75  * @pdev: pointer to platform device
76  * @clk: clock for the controller
77  * @regs_base: pointer to ioremap()'d registers
78  * @sspdr_phys: physical address of the SSPDR register
79  * @min_rate: minimum clock rate (in Hz) supported by the controller
80  * @max_rate: maximum clock rate (in Hz) supported by the controller
81  * @running: is the queue running
82  * @wq: workqueue used by the driver
83  * @msg_work: work that is queued for the driver
84  * @wait: wait here until given transfer is completed
85  * @msg_queue: queue for the messages
86  * @current_msg: message that is currently processed (or %NULL if none)
87  * @tx: current byte in transfer to transmit
88  * @rx: current byte in transfer to receive
89  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90  *              frame decreases this level and sending one frame increases it.
91  * @dma_rx: RX DMA channel
92  * @dma_tx: TX DMA channel
93  * @dma_rx_data: RX parameters passed to the DMA engine
94  * @dma_tx_data: TX parameters passed to the DMA engine
95  * @rx_sgt: sg table for RX transfers
96  * @tx_sgt: sg table for TX transfers
97  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98  *            the client
99  *
100  * This structure holds EP93xx SPI controller specific information. When
101  * @running is %true, driver accepts transfer requests from protocol drivers.
102  * @current_msg is used to hold pointer to the message that is currently
103  * processed. If @current_msg is %NULL, it means that no processing is going
104  * on.
105  *
106  * Most of the fields are only written once and they can be accessed without
107  * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108  * @running, and @msg_queue.
109  */
110 struct ep93xx_spi {
111 	spinlock_t			lock;
112 	const struct platform_device	*pdev;
113 	struct clk			*clk;
114 	void __iomem			*regs_base;
115 	unsigned long			sspdr_phys;
116 	unsigned long			min_rate;
117 	unsigned long			max_rate;
118 	bool				running;
119 	struct workqueue_struct		*wq;
120 	struct work_struct		msg_work;
121 	struct completion		wait;
122 	struct list_head		msg_queue;
123 	struct spi_message		*current_msg;
124 	size_t				tx;
125 	size_t				rx;
126 	size_t				fifo_level;
127 	struct dma_chan			*dma_rx;
128 	struct dma_chan			*dma_tx;
129 	struct ep93xx_dma_data		dma_rx_data;
130 	struct ep93xx_dma_data		dma_tx_data;
131 	struct sg_table			rx_sgt;
132 	struct sg_table			tx_sgt;
133 	void				*zeropage;
134 };
135 
136 /**
137  * struct ep93xx_spi_chip - SPI device hardware settings
138  * @spi: back pointer to the SPI device
139  * @rate: max rate in hz this chip supports
140  * @div_cpsr: cpsr (pre-scaler) divider
141  * @div_scr: scr divider
142  * @ops: private chip operations
143  *
144  * This structure is used to store hardware register specific settings for each
145  * SPI device. Settings are written to hardware by function
146  * ep93xx_spi_chip_setup().
147  */
148 struct ep93xx_spi_chip {
149 	const struct spi_device		*spi;
150 	unsigned long			rate;
151 	u8				div_cpsr;
152 	u8				div_scr;
153 	struct ep93xx_spi_chip_ops	*ops;
154 };
155 
156 /* converts bits per word to CR0.DSS value */
157 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
158 
159 static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
160 				u16 reg, u8 value)
161 {
162 	writeb(value, espi->regs_base + reg);
163 }
164 
165 static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
166 {
167 	return readb(spi->regs_base + reg);
168 }
169 
170 static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
171 				 u16 reg, u16 value)
172 {
173 	writew(value, espi->regs_base + reg);
174 }
175 
176 static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
177 {
178 	return readw(spi->regs_base + reg);
179 }
180 
181 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
182 {
183 	u8 regval;
184 	int err;
185 
186 	err = clk_enable(espi->clk);
187 	if (err)
188 		return err;
189 
190 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
191 	regval |= SSPCR1_SSE;
192 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
193 
194 	return 0;
195 }
196 
197 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
198 {
199 	u8 regval;
200 
201 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
202 	regval &= ~SSPCR1_SSE;
203 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
204 
205 	clk_disable(espi->clk);
206 }
207 
208 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
209 {
210 	u8 regval;
211 
212 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
213 	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
214 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
215 }
216 
217 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
218 {
219 	u8 regval;
220 
221 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
222 	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
223 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
224 }
225 
226 /**
227  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
228  * @espi: ep93xx SPI controller struct
229  * @chip: divisors are calculated for this chip
230  * @rate: desired SPI output clock rate
231  *
232  * Function calculates cpsr (clock pre-scaler) and scr divisors based on
233  * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
234  * for some reason, divisors cannot be calculated nothing is stored and
235  * %-EINVAL is returned.
236  */
237 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
238 				    struct ep93xx_spi_chip *chip,
239 				    unsigned long rate)
240 {
241 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
242 	int cpsr, scr;
243 
244 	/*
245 	 * Make sure that max value is between values supported by the
246 	 * controller. Note that minimum value is already checked in
247 	 * ep93xx_spi_transfer().
248 	 */
249 	rate = clamp(rate, espi->min_rate, espi->max_rate);
250 
251 	/*
252 	 * Calculate divisors so that we can get speed according the
253 	 * following formula:
254 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
255 	 *
256 	 * cpsr must be even number and starts from 2, scr can be any number
257 	 * between 0 and 255.
258 	 */
259 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
260 		for (scr = 0; scr <= 255; scr++) {
261 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
262 				chip->div_scr = (u8)scr;
263 				chip->div_cpsr = (u8)cpsr;
264 				return 0;
265 			}
266 		}
267 	}
268 
269 	return -EINVAL;
270 }
271 
272 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
273 {
274 	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
275 	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
276 
277 	if (chip->ops && chip->ops->cs_control)
278 		chip->ops->cs_control(spi, value);
279 }
280 
281 /**
282  * ep93xx_spi_setup() - setup an SPI device
283  * @spi: SPI device to setup
284  *
285  * This function sets up SPI device mode, speed etc. Can be called multiple
286  * times for a single device. Returns %0 in case of success, negative error in
287  * case of failure. When this function returns success, the device is
288  * deselected.
289  */
290 static int ep93xx_spi_setup(struct spi_device *spi)
291 {
292 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
293 	struct ep93xx_spi_chip *chip;
294 
295 	chip = spi_get_ctldata(spi);
296 	if (!chip) {
297 		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
298 			spi->modalias);
299 
300 		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
301 		if (!chip)
302 			return -ENOMEM;
303 
304 		chip->spi = spi;
305 		chip->ops = spi->controller_data;
306 
307 		if (chip->ops && chip->ops->setup) {
308 			int ret = chip->ops->setup(spi);
309 			if (ret) {
310 				kfree(chip);
311 				return ret;
312 			}
313 		}
314 
315 		spi_set_ctldata(spi, chip);
316 	}
317 
318 	if (spi->max_speed_hz != chip->rate) {
319 		int err;
320 
321 		err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
322 		if (err != 0) {
323 			spi_set_ctldata(spi, NULL);
324 			kfree(chip);
325 			return err;
326 		}
327 		chip->rate = spi->max_speed_hz;
328 	}
329 
330 	ep93xx_spi_cs_control(spi, false);
331 	return 0;
332 }
333 
334 /**
335  * ep93xx_spi_transfer() - queue message to be transferred
336  * @spi: target SPI device
337  * @msg: message to be transferred
338  *
339  * This function is called by SPI device drivers when they are going to transfer
340  * a new message. It simply puts the message in the queue and schedules
341  * workqueue to perform the actual transfer later on.
342  *
343  * Returns %0 on success and negative error in case of failure.
344  */
345 static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
346 {
347 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
348 	struct spi_transfer *t;
349 	unsigned long flags;
350 
351 	if (!msg || !msg->complete)
352 		return -EINVAL;
353 
354 	/* first validate each transfer */
355 	list_for_each_entry(t, &msg->transfers, transfer_list) {
356 		if (t->speed_hz && t->speed_hz < espi->min_rate)
357 				return -EINVAL;
358 	}
359 
360 	/*
361 	 * Now that we own the message, let's initialize it so that it is
362 	 * suitable for us. We use @msg->status to signal whether there was
363 	 * error in transfer and @msg->state is used to hold pointer to the
364 	 * current transfer (or %NULL if no active current transfer).
365 	 */
366 	msg->state = NULL;
367 	msg->status = 0;
368 	msg->actual_length = 0;
369 
370 	spin_lock_irqsave(&espi->lock, flags);
371 	if (!espi->running) {
372 		spin_unlock_irqrestore(&espi->lock, flags);
373 		return -ESHUTDOWN;
374 	}
375 	list_add_tail(&msg->queue, &espi->msg_queue);
376 	queue_work(espi->wq, &espi->msg_work);
377 	spin_unlock_irqrestore(&espi->lock, flags);
378 
379 	return 0;
380 }
381 
382 /**
383  * ep93xx_spi_cleanup() - cleans up master controller specific state
384  * @spi: SPI device to cleanup
385  *
386  * This function releases master controller specific state for given @spi
387  * device.
388  */
389 static void ep93xx_spi_cleanup(struct spi_device *spi)
390 {
391 	struct ep93xx_spi_chip *chip;
392 
393 	chip = spi_get_ctldata(spi);
394 	if (chip) {
395 		if (chip->ops && chip->ops->cleanup)
396 			chip->ops->cleanup(spi);
397 		spi_set_ctldata(spi, NULL);
398 		kfree(chip);
399 	}
400 }
401 
402 /**
403  * ep93xx_spi_chip_setup() - configures hardware according to given @chip
404  * @espi: ep93xx SPI controller struct
405  * @chip: chip specific settings
406  * @bits_per_word: transfer bits_per_word
407  *
408  * This function sets up the actual hardware registers with settings given in
409  * @chip. Note that no validation is done so make sure that callers validate
410  * settings before calling this.
411  */
412 static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
413 				  const struct ep93xx_spi_chip *chip,
414 				  u8 bits_per_word)
415 {
416 	u8 dss = bits_per_word_to_dss(bits_per_word);
417 	u16 cr0;
418 
419 	cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
420 	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
421 	cr0 |= dss;
422 
423 	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
424 		chip->spi->mode, chip->div_cpsr, chip->div_scr, dss);
425 	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
426 
427 	ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
428 	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
429 }
430 
431 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
432 {
433 	if (t->bits_per_word > 8) {
434 		u16 tx_val = 0;
435 
436 		if (t->tx_buf)
437 			tx_val = ((u16 *)t->tx_buf)[espi->tx];
438 		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
439 		espi->tx += sizeof(tx_val);
440 	} else {
441 		u8 tx_val = 0;
442 
443 		if (t->tx_buf)
444 			tx_val = ((u8 *)t->tx_buf)[espi->tx];
445 		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
446 		espi->tx += sizeof(tx_val);
447 	}
448 }
449 
450 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
451 {
452 	if (t->bits_per_word > 8) {
453 		u16 rx_val;
454 
455 		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
456 		if (t->rx_buf)
457 			((u16 *)t->rx_buf)[espi->rx] = rx_val;
458 		espi->rx += sizeof(rx_val);
459 	} else {
460 		u8 rx_val;
461 
462 		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
463 		if (t->rx_buf)
464 			((u8 *)t->rx_buf)[espi->rx] = rx_val;
465 		espi->rx += sizeof(rx_val);
466 	}
467 }
468 
469 /**
470  * ep93xx_spi_read_write() - perform next RX/TX transfer
471  * @espi: ep93xx SPI controller struct
472  *
473  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
474  * called several times, the whole transfer will be completed. Returns
475  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
476  *
477  * When this function is finished, RX FIFO should be empty and TX FIFO should be
478  * full.
479  */
480 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
481 {
482 	struct spi_message *msg = espi->current_msg;
483 	struct spi_transfer *t = msg->state;
484 
485 	/* read as long as RX FIFO has frames in it */
486 	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
487 		ep93xx_do_read(espi, t);
488 		espi->fifo_level--;
489 	}
490 
491 	/* write as long as TX FIFO has room */
492 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
493 		ep93xx_do_write(espi, t);
494 		espi->fifo_level++;
495 	}
496 
497 	if (espi->rx == t->len)
498 		return 0;
499 
500 	return -EINPROGRESS;
501 }
502 
503 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
504 {
505 	/*
506 	 * Now everything is set up for the current transfer. We prime the TX
507 	 * FIFO, enable interrupts, and wait for the transfer to complete.
508 	 */
509 	if (ep93xx_spi_read_write(espi)) {
510 		ep93xx_spi_enable_interrupts(espi);
511 		wait_for_completion(&espi->wait);
512 	}
513 }
514 
515 /**
516  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
517  * @espi: ep93xx SPI controller struct
518  * @dir: DMA transfer direction
519  *
520  * Function configures the DMA, maps the buffer and prepares the DMA
521  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
522  * in case of failure.
523  */
524 static struct dma_async_tx_descriptor *
525 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
526 {
527 	struct spi_transfer *t = espi->current_msg->state;
528 	struct dma_async_tx_descriptor *txd;
529 	enum dma_slave_buswidth buswidth;
530 	struct dma_slave_config conf;
531 	struct scatterlist *sg;
532 	struct sg_table *sgt;
533 	struct dma_chan *chan;
534 	const void *buf, *pbuf;
535 	size_t len = t->len;
536 	int i, ret, nents;
537 
538 	if (t->bits_per_word > 8)
539 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
540 	else
541 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
542 
543 	memset(&conf, 0, sizeof(conf));
544 	conf.direction = dir;
545 
546 	if (dir == DMA_DEV_TO_MEM) {
547 		chan = espi->dma_rx;
548 		buf = t->rx_buf;
549 		sgt = &espi->rx_sgt;
550 
551 		conf.src_addr = espi->sspdr_phys;
552 		conf.src_addr_width = buswidth;
553 	} else {
554 		chan = espi->dma_tx;
555 		buf = t->tx_buf;
556 		sgt = &espi->tx_sgt;
557 
558 		conf.dst_addr = espi->sspdr_phys;
559 		conf.dst_addr_width = buswidth;
560 	}
561 
562 	ret = dmaengine_slave_config(chan, &conf);
563 	if (ret)
564 		return ERR_PTR(ret);
565 
566 	/*
567 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
568 	 * because we are using @espi->zeropage to provide a zero RX buffer
569 	 * for the TX transfers and we have only allocated one page for that.
570 	 *
571 	 * For performance reasons we allocate a new sg_table only when
572 	 * needed. Otherwise we will re-use the current one. Eventually the
573 	 * last sg_table is released in ep93xx_spi_release_dma().
574 	 */
575 
576 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
577 	if (nents != sgt->nents) {
578 		sg_free_table(sgt);
579 
580 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
581 		if (ret)
582 			return ERR_PTR(ret);
583 	}
584 
585 	pbuf = buf;
586 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
587 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
588 
589 		if (buf) {
590 			sg_set_page(sg, virt_to_page(pbuf), bytes,
591 				    offset_in_page(pbuf));
592 		} else {
593 			sg_set_page(sg, virt_to_page(espi->zeropage),
594 				    bytes, 0);
595 		}
596 
597 		pbuf += bytes;
598 		len -= bytes;
599 	}
600 
601 	if (WARN_ON(len)) {
602 		dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
603 		return ERR_PTR(-EINVAL);
604 	}
605 
606 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
607 	if (!nents)
608 		return ERR_PTR(-ENOMEM);
609 
610 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
611 	if (!txd) {
612 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
613 		return ERR_PTR(-ENOMEM);
614 	}
615 	return txd;
616 }
617 
618 /**
619  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
620  * @espi: ep93xx SPI controller struct
621  * @dir: DMA transfer direction
622  *
623  * Function finishes with the DMA transfer. After this, the DMA buffer is
624  * unmapped.
625  */
626 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
627 				  enum dma_transfer_direction dir)
628 {
629 	struct dma_chan *chan;
630 	struct sg_table *sgt;
631 
632 	if (dir == DMA_DEV_TO_MEM) {
633 		chan = espi->dma_rx;
634 		sgt = &espi->rx_sgt;
635 	} else {
636 		chan = espi->dma_tx;
637 		sgt = &espi->tx_sgt;
638 	}
639 
640 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
641 }
642 
643 static void ep93xx_spi_dma_callback(void *callback_param)
644 {
645 	complete(callback_param);
646 }
647 
648 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
649 {
650 	struct spi_message *msg = espi->current_msg;
651 	struct dma_async_tx_descriptor *rxd, *txd;
652 
653 	rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
654 	if (IS_ERR(rxd)) {
655 		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
656 		msg->status = PTR_ERR(rxd);
657 		return;
658 	}
659 
660 	txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
661 	if (IS_ERR(txd)) {
662 		ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
663 		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
664 		msg->status = PTR_ERR(txd);
665 		return;
666 	}
667 
668 	/* We are ready when RX is done */
669 	rxd->callback = ep93xx_spi_dma_callback;
670 	rxd->callback_param = &espi->wait;
671 
672 	/* Now submit both descriptors and wait while they finish */
673 	dmaengine_submit(rxd);
674 	dmaengine_submit(txd);
675 
676 	dma_async_issue_pending(espi->dma_rx);
677 	dma_async_issue_pending(espi->dma_tx);
678 
679 	wait_for_completion(&espi->wait);
680 
681 	ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
682 	ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
683 }
684 
685 /**
686  * ep93xx_spi_process_transfer() - processes one SPI transfer
687  * @espi: ep93xx SPI controller struct
688  * @msg: current message
689  * @t: transfer to process
690  *
691  * This function processes one SPI transfer given in @t. Function waits until
692  * transfer is complete (may sleep) and updates @msg->status based on whether
693  * transfer was successfully processed or not.
694  */
695 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
696 					struct spi_message *msg,
697 					struct spi_transfer *t)
698 {
699 	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
700 	int err;
701 
702 	msg->state = t;
703 
704 	err = ep93xx_spi_calc_divisors(espi, chip, t->speed_hz);
705 	if (err) {
706 		dev_err(&espi->pdev->dev, "failed to adjust speed\n");
707 		msg->status = err;
708 		return;
709 	}
710 
711 	ep93xx_spi_chip_setup(espi, chip, t->bits_per_word);
712 
713 	espi->rx = 0;
714 	espi->tx = 0;
715 
716 	/*
717 	 * There is no point of setting up DMA for the transfers which will
718 	 * fit into the FIFO and can be transferred with a single interrupt.
719 	 * So in these cases we will be using PIO and don't bother for DMA.
720 	 */
721 	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
722 		ep93xx_spi_dma_transfer(espi);
723 	else
724 		ep93xx_spi_pio_transfer(espi);
725 
726 	/*
727 	 * In case of error during transmit, we bail out from processing
728 	 * the message.
729 	 */
730 	if (msg->status)
731 		return;
732 
733 	msg->actual_length += t->len;
734 
735 	/*
736 	 * After this transfer is finished, perform any possible
737 	 * post-transfer actions requested by the protocol driver.
738 	 */
739 	if (t->delay_usecs) {
740 		set_current_state(TASK_UNINTERRUPTIBLE);
741 		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
742 	}
743 	if (t->cs_change) {
744 		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
745 			/*
746 			 * In case protocol driver is asking us to drop the
747 			 * chipselect briefly, we let the scheduler to handle
748 			 * any "delay" here.
749 			 */
750 			ep93xx_spi_cs_control(msg->spi, false);
751 			cond_resched();
752 			ep93xx_spi_cs_control(msg->spi, true);
753 		}
754 	}
755 }
756 
757 /*
758  * ep93xx_spi_process_message() - process one SPI message
759  * @espi: ep93xx SPI controller struct
760  * @msg: message to process
761  *
762  * This function processes a single SPI message. We go through all transfers in
763  * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
764  * asserted during the whole message (unless per transfer cs_change is set).
765  *
766  * @msg->status contains %0 in case of success or negative error code in case of
767  * failure.
768  */
769 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
770 				       struct spi_message *msg)
771 {
772 	unsigned long timeout;
773 	struct spi_transfer *t;
774 	int err;
775 
776 	/*
777 	 * Enable the SPI controller and its clock.
778 	 */
779 	err = ep93xx_spi_enable(espi);
780 	if (err) {
781 		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
782 		msg->status = err;
783 		return;
784 	}
785 
786 	/*
787 	 * Just to be sure: flush any data from RX FIFO.
788 	 */
789 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
790 	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
791 		if (time_after(jiffies, timeout)) {
792 			dev_warn(&espi->pdev->dev,
793 				 "timeout while flushing RX FIFO\n");
794 			msg->status = -ETIMEDOUT;
795 			return;
796 		}
797 		ep93xx_spi_read_u16(espi, SSPDR);
798 	}
799 
800 	/*
801 	 * We explicitly handle FIFO level. This way we don't have to check TX
802 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
803 	 */
804 	espi->fifo_level = 0;
805 
806 	/*
807 	 * Assert the chipselect.
808 	 */
809 	ep93xx_spi_cs_control(msg->spi, true);
810 
811 	list_for_each_entry(t, &msg->transfers, transfer_list) {
812 		ep93xx_spi_process_transfer(espi, msg, t);
813 		if (msg->status)
814 			break;
815 	}
816 
817 	/*
818 	 * Now the whole message is transferred (or failed for some reason). We
819 	 * deselect the device and disable the SPI controller.
820 	 */
821 	ep93xx_spi_cs_control(msg->spi, false);
822 	ep93xx_spi_disable(espi);
823 }
824 
825 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
826 
827 /**
828  * ep93xx_spi_work() - EP93xx SPI workqueue worker function
829  * @work: work struct
830  *
831  * Workqueue worker function. This function is called when there are new
832  * SPI messages to be processed. Message is taken out from the queue and then
833  * passed to ep93xx_spi_process_message().
834  *
835  * After message is transferred, protocol driver is notified by calling
836  * @msg->complete(). In case of error, @msg->status is set to negative error
837  * number, otherwise it contains zero (and @msg->actual_length is updated).
838  */
839 static void ep93xx_spi_work(struct work_struct *work)
840 {
841 	struct ep93xx_spi *espi = work_to_espi(work);
842 	struct spi_message *msg;
843 
844 	spin_lock_irq(&espi->lock);
845 	if (!espi->running || espi->current_msg ||
846 		list_empty(&espi->msg_queue)) {
847 		spin_unlock_irq(&espi->lock);
848 		return;
849 	}
850 	msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
851 	list_del_init(&msg->queue);
852 	espi->current_msg = msg;
853 	spin_unlock_irq(&espi->lock);
854 
855 	ep93xx_spi_process_message(espi, msg);
856 
857 	/*
858 	 * Update the current message and re-schedule ourselves if there are
859 	 * more messages in the queue.
860 	 */
861 	spin_lock_irq(&espi->lock);
862 	espi->current_msg = NULL;
863 	if (espi->running && !list_empty(&espi->msg_queue))
864 		queue_work(espi->wq, &espi->msg_work);
865 	spin_unlock_irq(&espi->lock);
866 
867 	/* notify the protocol driver that we are done with this message */
868 	msg->complete(msg->context);
869 }
870 
871 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
872 {
873 	struct ep93xx_spi *espi = dev_id;
874 	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
875 
876 	/*
877 	 * If we got ROR (receive overrun) interrupt we know that something is
878 	 * wrong. Just abort the message.
879 	 */
880 	if (unlikely(irq_status & SSPIIR_RORIS)) {
881 		/* clear the overrun interrupt */
882 		ep93xx_spi_write_u8(espi, SSPICR, 0);
883 		dev_warn(&espi->pdev->dev,
884 			 "receive overrun, aborting the message\n");
885 		espi->current_msg->status = -EIO;
886 	} else {
887 		/*
888 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
889 		 * simply execute next data transfer.
890 		 */
891 		if (ep93xx_spi_read_write(espi)) {
892 			/*
893 			 * In normal case, there still is some processing left
894 			 * for current transfer. Let's wait for the next
895 			 * interrupt then.
896 			 */
897 			return IRQ_HANDLED;
898 		}
899 	}
900 
901 	/*
902 	 * Current transfer is finished, either with error or with success. In
903 	 * any case we disable interrupts and notify the worker to handle
904 	 * any post-processing of the message.
905 	 */
906 	ep93xx_spi_disable_interrupts(espi);
907 	complete(&espi->wait);
908 	return IRQ_HANDLED;
909 }
910 
911 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
912 {
913 	if (ep93xx_dma_chan_is_m2p(chan))
914 		return false;
915 
916 	chan->private = filter_param;
917 	return true;
918 }
919 
920 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
921 {
922 	dma_cap_mask_t mask;
923 	int ret;
924 
925 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
926 	if (!espi->zeropage)
927 		return -ENOMEM;
928 
929 	dma_cap_zero(mask);
930 	dma_cap_set(DMA_SLAVE, mask);
931 
932 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
933 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
934 	espi->dma_rx_data.name = "ep93xx-spi-rx";
935 
936 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
937 					   &espi->dma_rx_data);
938 	if (!espi->dma_rx) {
939 		ret = -ENODEV;
940 		goto fail_free_page;
941 	}
942 
943 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
944 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
945 	espi->dma_tx_data.name = "ep93xx-spi-tx";
946 
947 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
948 					   &espi->dma_tx_data);
949 	if (!espi->dma_tx) {
950 		ret = -ENODEV;
951 		goto fail_release_rx;
952 	}
953 
954 	return 0;
955 
956 fail_release_rx:
957 	dma_release_channel(espi->dma_rx);
958 	espi->dma_rx = NULL;
959 fail_free_page:
960 	free_page((unsigned long)espi->zeropage);
961 
962 	return ret;
963 }
964 
965 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
966 {
967 	if (espi->dma_rx) {
968 		dma_release_channel(espi->dma_rx);
969 		sg_free_table(&espi->rx_sgt);
970 	}
971 	if (espi->dma_tx) {
972 		dma_release_channel(espi->dma_tx);
973 		sg_free_table(&espi->tx_sgt);
974 	}
975 
976 	if (espi->zeropage)
977 		free_page((unsigned long)espi->zeropage);
978 }
979 
980 static int ep93xx_spi_probe(struct platform_device *pdev)
981 {
982 	struct spi_master *master;
983 	struct ep93xx_spi_info *info;
984 	struct ep93xx_spi *espi;
985 	struct resource *res;
986 	int irq;
987 	int error;
988 
989 	info = pdev->dev.platform_data;
990 
991 	irq = platform_get_irq(pdev, 0);
992 	if (irq < 0) {
993 		dev_err(&pdev->dev, "failed to get irq resources\n");
994 		return -EBUSY;
995 	}
996 
997 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
998 	if (!res) {
999 		dev_err(&pdev->dev, "unable to get iomem resource\n");
1000 		return -ENODEV;
1001 	}
1002 
1003 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1004 	if (!master)
1005 		return -ENOMEM;
1006 
1007 	master->setup = ep93xx_spi_setup;
1008 	master->transfer = ep93xx_spi_transfer;
1009 	master->cleanup = ep93xx_spi_cleanup;
1010 	master->bus_num = pdev->id;
1011 	master->num_chipselect = info->num_chipselect;
1012 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1013 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1014 
1015 	platform_set_drvdata(pdev, master);
1016 
1017 	espi = spi_master_get_devdata(master);
1018 
1019 	espi->clk = devm_clk_get(&pdev->dev, NULL);
1020 	if (IS_ERR(espi->clk)) {
1021 		dev_err(&pdev->dev, "unable to get spi clock\n");
1022 		error = PTR_ERR(espi->clk);
1023 		goto fail_release_master;
1024 	}
1025 
1026 	spin_lock_init(&espi->lock);
1027 	init_completion(&espi->wait);
1028 
1029 	/*
1030 	 * Calculate maximum and minimum supported clock rates
1031 	 * for the controller.
1032 	 */
1033 	espi->max_rate = clk_get_rate(espi->clk) / 2;
1034 	espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1035 	espi->pdev = pdev;
1036 
1037 	espi->sspdr_phys = res->start + SSPDR;
1038 
1039 	espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
1040 	if (IS_ERR(espi->regs_base)) {
1041 		error = PTR_ERR(espi->regs_base);
1042 		goto fail_release_master;
1043 	}
1044 
1045 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1046 				0, "ep93xx-spi", espi);
1047 	if (error) {
1048 		dev_err(&pdev->dev, "failed to request irq\n");
1049 		goto fail_release_master;
1050 	}
1051 
1052 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
1053 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1054 
1055 	espi->wq = create_singlethread_workqueue("ep93xx_spid");
1056 	if (!espi->wq) {
1057 		dev_err(&pdev->dev, "unable to create workqueue\n");
1058 		error = -ENOMEM;
1059 		goto fail_free_dma;
1060 	}
1061 	INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1062 	INIT_LIST_HEAD(&espi->msg_queue);
1063 	espi->running = true;
1064 
1065 	/* make sure that the hardware is disabled */
1066 	ep93xx_spi_write_u8(espi, SSPCR1, 0);
1067 
1068 	error = spi_register_master(master);
1069 	if (error) {
1070 		dev_err(&pdev->dev, "failed to register SPI master\n");
1071 		goto fail_free_queue;
1072 	}
1073 
1074 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1075 		 (unsigned long)res->start, irq);
1076 
1077 	return 0;
1078 
1079 fail_free_queue:
1080 	destroy_workqueue(espi->wq);
1081 fail_free_dma:
1082 	ep93xx_spi_release_dma(espi);
1083 fail_release_master:
1084 	spi_master_put(master);
1085 
1086 	return error;
1087 }
1088 
1089 static int ep93xx_spi_remove(struct platform_device *pdev)
1090 {
1091 	struct spi_master *master = platform_get_drvdata(pdev);
1092 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
1093 
1094 	spin_lock_irq(&espi->lock);
1095 	espi->running = false;
1096 	spin_unlock_irq(&espi->lock);
1097 
1098 	destroy_workqueue(espi->wq);
1099 
1100 	/*
1101 	 * Complete remaining messages with %-ESHUTDOWN status.
1102 	 */
1103 	spin_lock_irq(&espi->lock);
1104 	while (!list_empty(&espi->msg_queue)) {
1105 		struct spi_message *msg;
1106 
1107 		msg = list_first_entry(&espi->msg_queue,
1108 				       struct spi_message, queue);
1109 		list_del_init(&msg->queue);
1110 		msg->status = -ESHUTDOWN;
1111 		spin_unlock_irq(&espi->lock);
1112 		msg->complete(msg->context);
1113 		spin_lock_irq(&espi->lock);
1114 	}
1115 	spin_unlock_irq(&espi->lock);
1116 
1117 	ep93xx_spi_release_dma(espi);
1118 
1119 	spi_unregister_master(master);
1120 	return 0;
1121 }
1122 
1123 static struct platform_driver ep93xx_spi_driver = {
1124 	.driver		= {
1125 		.name	= "ep93xx-spi",
1126 		.owner	= THIS_MODULE,
1127 	},
1128 	.probe		= ep93xx_spi_probe,
1129 	.remove		= ep93xx_spi_remove,
1130 };
1131 module_platform_driver(ep93xx_spi_driver);
1132 
1133 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1134 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1135 MODULE_LICENSE("GPL");
1136 MODULE_ALIAS("platform:ep93xx-spi");
1137