xref: /openbmc/linux/drivers/spi/spi-ep93xx.c (revision d4b9b578)
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/sched.h>
31 #include <linux/scatterlist.h>
32 #include <linux/spi/spi.h>
33 
34 #include <mach/dma.h>
35 #include <mach/ep93xx_spi.h>
36 
37 #define SSPCR0			0x0000
38 #define SSPCR0_MODE_SHIFT	6
39 #define SSPCR0_SCR_SHIFT	8
40 
41 #define SSPCR1			0x0004
42 #define SSPCR1_RIE		BIT(0)
43 #define SSPCR1_TIE		BIT(1)
44 #define SSPCR1_RORIE		BIT(2)
45 #define SSPCR1_LBM		BIT(3)
46 #define SSPCR1_SSE		BIT(4)
47 #define SSPCR1_MS		BIT(5)
48 #define SSPCR1_SOD		BIT(6)
49 
50 #define SSPDR			0x0008
51 
52 #define SSPSR			0x000c
53 #define SSPSR_TFE		BIT(0)
54 #define SSPSR_TNF		BIT(1)
55 #define SSPSR_RNE		BIT(2)
56 #define SSPSR_RFF		BIT(3)
57 #define SSPSR_BSY		BIT(4)
58 #define SSPCPSR			0x0010
59 
60 #define SSPIIR			0x0014
61 #define SSPIIR_RIS		BIT(0)
62 #define SSPIIR_TIS		BIT(1)
63 #define SSPIIR_RORIS		BIT(2)
64 #define SSPICR			SSPIIR
65 
66 /* timeout in milliseconds */
67 #define SPI_TIMEOUT		5
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE		8
70 
71 /**
72  * struct ep93xx_spi - EP93xx SPI controller structure
73  * @lock: spinlock that protects concurrent accesses to fields @running,
74  *        @current_msg and @msg_queue
75  * @pdev: pointer to platform device
76  * @clk: clock for the controller
77  * @regs_base: pointer to ioremap()'d registers
78  * @sspdr_phys: physical address of the SSPDR register
79  * @irq: IRQ number used by the driver
80  * @min_rate: minimum clock rate (in Hz) supported by the controller
81  * @max_rate: maximum clock rate (in Hz) supported by the controller
82  * @running: is the queue running
83  * @wq: workqueue used by the driver
84  * @msg_work: work that is queued for the driver
85  * @wait: wait here until given transfer is completed
86  * @msg_queue: queue for the messages
87  * @current_msg: message that is currently processed (or %NULL if none)
88  * @tx: current byte in transfer to transmit
89  * @rx: current byte in transfer to receive
90  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
91  *              frame decreases this level and sending one frame increases it.
92  * @dma_rx: RX DMA channel
93  * @dma_tx: TX DMA channel
94  * @dma_rx_data: RX parameters passed to the DMA engine
95  * @dma_tx_data: TX parameters passed to the DMA engine
96  * @rx_sgt: sg table for RX transfers
97  * @tx_sgt: sg table for TX transfers
98  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
99  *            the client
100  *
101  * This structure holds EP93xx SPI controller specific information. When
102  * @running is %true, driver accepts transfer requests from protocol drivers.
103  * @current_msg is used to hold pointer to the message that is currently
104  * processed. If @current_msg is %NULL, it means that no processing is going
105  * on.
106  *
107  * Most of the fields are only written once and they can be accessed without
108  * taking the @lock. Fields that are accessed concurrently are: @current_msg,
109  * @running, and @msg_queue.
110  */
111 struct ep93xx_spi {
112 	spinlock_t			lock;
113 	const struct platform_device	*pdev;
114 	struct clk			*clk;
115 	void __iomem			*regs_base;
116 	unsigned long			sspdr_phys;
117 	int				irq;
118 	unsigned long			min_rate;
119 	unsigned long			max_rate;
120 	bool				running;
121 	struct workqueue_struct		*wq;
122 	struct work_struct		msg_work;
123 	struct completion		wait;
124 	struct list_head		msg_queue;
125 	struct spi_message		*current_msg;
126 	size_t				tx;
127 	size_t				rx;
128 	size_t				fifo_level;
129 	struct dma_chan			*dma_rx;
130 	struct dma_chan			*dma_tx;
131 	struct ep93xx_dma_data		dma_rx_data;
132 	struct ep93xx_dma_data		dma_tx_data;
133 	struct sg_table			rx_sgt;
134 	struct sg_table			tx_sgt;
135 	void				*zeropage;
136 };
137 
138 /**
139  * struct ep93xx_spi_chip - SPI device hardware settings
140  * @spi: back pointer to the SPI device
141  * @rate: max rate in hz this chip supports
142  * @div_cpsr: cpsr (pre-scaler) divider
143  * @div_scr: scr divider
144  * @dss: bits per word (4 - 16 bits)
145  * @ops: private chip operations
146  *
147  * This structure is used to store hardware register specific settings for each
148  * SPI device. Settings are written to hardware by function
149  * ep93xx_spi_chip_setup().
150  */
151 struct ep93xx_spi_chip {
152 	const struct spi_device		*spi;
153 	unsigned long			rate;
154 	u8				div_cpsr;
155 	u8				div_scr;
156 	u8				dss;
157 	struct ep93xx_spi_chip_ops	*ops;
158 };
159 
160 /* converts bits per word to CR0.DSS value */
161 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
162 
163 static inline void
164 ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
165 {
166 	__raw_writeb(value, espi->regs_base + reg);
167 }
168 
169 static inline u8
170 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
171 {
172 	return __raw_readb(spi->regs_base + reg);
173 }
174 
175 static inline void
176 ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
177 {
178 	__raw_writew(value, espi->regs_base + reg);
179 }
180 
181 static inline u16
182 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
183 {
184 	return __raw_readw(spi->regs_base + reg);
185 }
186 
187 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
188 {
189 	u8 regval;
190 	int err;
191 
192 	err = clk_enable(espi->clk);
193 	if (err)
194 		return err;
195 
196 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
197 	regval |= SSPCR1_SSE;
198 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
199 
200 	return 0;
201 }
202 
203 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
204 {
205 	u8 regval;
206 
207 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
208 	regval &= ~SSPCR1_SSE;
209 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
210 
211 	clk_disable(espi->clk);
212 }
213 
214 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
215 {
216 	u8 regval;
217 
218 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
219 	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
220 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
221 }
222 
223 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
224 {
225 	u8 regval;
226 
227 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
228 	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
229 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
230 }
231 
232 /**
233  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
234  * @espi: ep93xx SPI controller struct
235  * @chip: divisors are calculated for this chip
236  * @rate: desired SPI output clock rate
237  *
238  * Function calculates cpsr (clock pre-scaler) and scr divisors based on
239  * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
240  * for some reason, divisors cannot be calculated nothing is stored and
241  * %-EINVAL is returned.
242  */
243 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
244 				    struct ep93xx_spi_chip *chip,
245 				    unsigned long rate)
246 {
247 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
248 	int cpsr, scr;
249 
250 	/*
251 	 * Make sure that max value is between values supported by the
252 	 * controller. Note that minimum value is already checked in
253 	 * ep93xx_spi_transfer().
254 	 */
255 	rate = clamp(rate, espi->min_rate, espi->max_rate);
256 
257 	/*
258 	 * Calculate divisors so that we can get speed according the
259 	 * following formula:
260 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
261 	 *
262 	 * cpsr must be even number and starts from 2, scr can be any number
263 	 * between 0 and 255.
264 	 */
265 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
266 		for (scr = 0; scr <= 255; scr++) {
267 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
268 				chip->div_scr = (u8)scr;
269 				chip->div_cpsr = (u8)cpsr;
270 				return 0;
271 			}
272 		}
273 	}
274 
275 	return -EINVAL;
276 }
277 
278 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
279 {
280 	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
281 	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
282 
283 	if (chip->ops && chip->ops->cs_control)
284 		chip->ops->cs_control(spi, value);
285 }
286 
287 /**
288  * ep93xx_spi_setup() - setup an SPI device
289  * @spi: SPI device to setup
290  *
291  * This function sets up SPI device mode, speed etc. Can be called multiple
292  * times for a single device. Returns %0 in case of success, negative error in
293  * case of failure. When this function returns success, the device is
294  * deselected.
295  */
296 static int ep93xx_spi_setup(struct spi_device *spi)
297 {
298 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
299 	struct ep93xx_spi_chip *chip;
300 
301 	if (spi->bits_per_word < 4 || spi->bits_per_word > 16) {
302 		dev_err(&espi->pdev->dev, "invalid bits per word %d\n",
303 			spi->bits_per_word);
304 		return -EINVAL;
305 	}
306 
307 	chip = spi_get_ctldata(spi);
308 	if (!chip) {
309 		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
310 			spi->modalias);
311 
312 		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
313 		if (!chip)
314 			return -ENOMEM;
315 
316 		chip->spi = spi;
317 		chip->ops = spi->controller_data;
318 
319 		if (chip->ops && chip->ops->setup) {
320 			int ret = chip->ops->setup(spi);
321 			if (ret) {
322 				kfree(chip);
323 				return ret;
324 			}
325 		}
326 
327 		spi_set_ctldata(spi, chip);
328 	}
329 
330 	if (spi->max_speed_hz != chip->rate) {
331 		int err;
332 
333 		err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
334 		if (err != 0) {
335 			spi_set_ctldata(spi, NULL);
336 			kfree(chip);
337 			return err;
338 		}
339 		chip->rate = spi->max_speed_hz;
340 	}
341 
342 	chip->dss = bits_per_word_to_dss(spi->bits_per_word);
343 
344 	ep93xx_spi_cs_control(spi, false);
345 	return 0;
346 }
347 
348 /**
349  * ep93xx_spi_transfer() - queue message to be transferred
350  * @spi: target SPI device
351  * @msg: message to be transferred
352  *
353  * This function is called by SPI device drivers when they are going to transfer
354  * a new message. It simply puts the message in the queue and schedules
355  * workqueue to perform the actual transfer later on.
356  *
357  * Returns %0 on success and negative error in case of failure.
358  */
359 static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
360 {
361 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
362 	struct spi_transfer *t;
363 	unsigned long flags;
364 
365 	if (!msg || !msg->complete)
366 		return -EINVAL;
367 
368 	/* first validate each transfer */
369 	list_for_each_entry(t, &msg->transfers, transfer_list) {
370 		if (t->bits_per_word) {
371 			if (t->bits_per_word < 4 || t->bits_per_word > 16)
372 				return -EINVAL;
373 		}
374 		if (t->speed_hz && t->speed_hz < espi->min_rate)
375 				return -EINVAL;
376 	}
377 
378 	/*
379 	 * Now that we own the message, let's initialize it so that it is
380 	 * suitable for us. We use @msg->status to signal whether there was
381 	 * error in transfer and @msg->state is used to hold pointer to the
382 	 * current transfer (or %NULL if no active current transfer).
383 	 */
384 	msg->state = NULL;
385 	msg->status = 0;
386 	msg->actual_length = 0;
387 
388 	spin_lock_irqsave(&espi->lock, flags);
389 	if (!espi->running) {
390 		spin_unlock_irqrestore(&espi->lock, flags);
391 		return -ESHUTDOWN;
392 	}
393 	list_add_tail(&msg->queue, &espi->msg_queue);
394 	queue_work(espi->wq, &espi->msg_work);
395 	spin_unlock_irqrestore(&espi->lock, flags);
396 
397 	return 0;
398 }
399 
400 /**
401  * ep93xx_spi_cleanup() - cleans up master controller specific state
402  * @spi: SPI device to cleanup
403  *
404  * This function releases master controller specific state for given @spi
405  * device.
406  */
407 static void ep93xx_spi_cleanup(struct spi_device *spi)
408 {
409 	struct ep93xx_spi_chip *chip;
410 
411 	chip = spi_get_ctldata(spi);
412 	if (chip) {
413 		if (chip->ops && chip->ops->cleanup)
414 			chip->ops->cleanup(spi);
415 		spi_set_ctldata(spi, NULL);
416 		kfree(chip);
417 	}
418 }
419 
420 /**
421  * ep93xx_spi_chip_setup() - configures hardware according to given @chip
422  * @espi: ep93xx SPI controller struct
423  * @chip: chip specific settings
424  *
425  * This function sets up the actual hardware registers with settings given in
426  * @chip. Note that no validation is done so make sure that callers validate
427  * settings before calling this.
428  */
429 static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
430 				  const struct ep93xx_spi_chip *chip)
431 {
432 	u16 cr0;
433 
434 	cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
435 	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
436 	cr0 |= chip->dss;
437 
438 	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
439 		chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
440 	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
441 
442 	ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
443 	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
444 }
445 
446 static inline int bits_per_word(const struct ep93xx_spi *espi)
447 {
448 	struct spi_message *msg = espi->current_msg;
449 	struct spi_transfer *t = msg->state;
450 
451 	return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word;
452 }
453 
454 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
455 {
456 	if (bits_per_word(espi) > 8) {
457 		u16 tx_val = 0;
458 
459 		if (t->tx_buf)
460 			tx_val = ((u16 *)t->tx_buf)[espi->tx];
461 		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
462 		espi->tx += sizeof(tx_val);
463 	} else {
464 		u8 tx_val = 0;
465 
466 		if (t->tx_buf)
467 			tx_val = ((u8 *)t->tx_buf)[espi->tx];
468 		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
469 		espi->tx += sizeof(tx_val);
470 	}
471 }
472 
473 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
474 {
475 	if (bits_per_word(espi) > 8) {
476 		u16 rx_val;
477 
478 		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
479 		if (t->rx_buf)
480 			((u16 *)t->rx_buf)[espi->rx] = rx_val;
481 		espi->rx += sizeof(rx_val);
482 	} else {
483 		u8 rx_val;
484 
485 		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
486 		if (t->rx_buf)
487 			((u8 *)t->rx_buf)[espi->rx] = rx_val;
488 		espi->rx += sizeof(rx_val);
489 	}
490 }
491 
492 /**
493  * ep93xx_spi_read_write() - perform next RX/TX transfer
494  * @espi: ep93xx SPI controller struct
495  *
496  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
497  * called several times, the whole transfer will be completed. Returns
498  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
499  *
500  * When this function is finished, RX FIFO should be empty and TX FIFO should be
501  * full.
502  */
503 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
504 {
505 	struct spi_message *msg = espi->current_msg;
506 	struct spi_transfer *t = msg->state;
507 
508 	/* read as long as RX FIFO has frames in it */
509 	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
510 		ep93xx_do_read(espi, t);
511 		espi->fifo_level--;
512 	}
513 
514 	/* write as long as TX FIFO has room */
515 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
516 		ep93xx_do_write(espi, t);
517 		espi->fifo_level++;
518 	}
519 
520 	if (espi->rx == t->len)
521 		return 0;
522 
523 	return -EINPROGRESS;
524 }
525 
526 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
527 {
528 	/*
529 	 * Now everything is set up for the current transfer. We prime the TX
530 	 * FIFO, enable interrupts, and wait for the transfer to complete.
531 	 */
532 	if (ep93xx_spi_read_write(espi)) {
533 		ep93xx_spi_enable_interrupts(espi);
534 		wait_for_completion(&espi->wait);
535 	}
536 }
537 
538 /**
539  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
540  * @espi: ep93xx SPI controller struct
541  * @dir: DMA transfer direction
542  *
543  * Function configures the DMA, maps the buffer and prepares the DMA
544  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
545  * in case of failure.
546  */
547 static struct dma_async_tx_descriptor *
548 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
549 {
550 	struct spi_transfer *t = espi->current_msg->state;
551 	struct dma_async_tx_descriptor *txd;
552 	enum dma_slave_buswidth buswidth;
553 	struct dma_slave_config conf;
554 	struct scatterlist *sg;
555 	struct sg_table *sgt;
556 	struct dma_chan *chan;
557 	const void *buf, *pbuf;
558 	size_t len = t->len;
559 	int i, ret, nents;
560 
561 	if (bits_per_word(espi) > 8)
562 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
563 	else
564 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
565 
566 	memset(&conf, 0, sizeof(conf));
567 	conf.direction = dir;
568 
569 	if (dir == DMA_DEV_TO_MEM) {
570 		chan = espi->dma_rx;
571 		buf = t->rx_buf;
572 		sgt = &espi->rx_sgt;
573 
574 		conf.src_addr = espi->sspdr_phys;
575 		conf.src_addr_width = buswidth;
576 	} else {
577 		chan = espi->dma_tx;
578 		buf = t->tx_buf;
579 		sgt = &espi->tx_sgt;
580 
581 		conf.dst_addr = espi->sspdr_phys;
582 		conf.dst_addr_width = buswidth;
583 	}
584 
585 	ret = dmaengine_slave_config(chan, &conf);
586 	if (ret)
587 		return ERR_PTR(ret);
588 
589 	/*
590 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
591 	 * because we are using @espi->zeropage to provide a zero RX buffer
592 	 * for the TX transfers and we have only allocated one page for that.
593 	 *
594 	 * For performance reasons we allocate a new sg_table only when
595 	 * needed. Otherwise we will re-use the current one. Eventually the
596 	 * last sg_table is released in ep93xx_spi_release_dma().
597 	 */
598 
599 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
600 	if (nents != sgt->nents) {
601 		sg_free_table(sgt);
602 
603 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
604 		if (ret)
605 			return ERR_PTR(ret);
606 	}
607 
608 	pbuf = buf;
609 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
610 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
611 
612 		if (buf) {
613 			sg_set_page(sg, virt_to_page(pbuf), bytes,
614 				    offset_in_page(pbuf));
615 		} else {
616 			sg_set_page(sg, virt_to_page(espi->zeropage),
617 				    bytes, 0);
618 		}
619 
620 		pbuf += bytes;
621 		len -= bytes;
622 	}
623 
624 	if (WARN_ON(len)) {
625 		dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
626 		return ERR_PTR(-EINVAL);
627 	}
628 
629 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
630 	if (!nents)
631 		return ERR_PTR(-ENOMEM);
632 
633 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
634 	if (!txd) {
635 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
636 		return ERR_PTR(-ENOMEM);
637 	}
638 	return txd;
639 }
640 
641 /**
642  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
643  * @espi: ep93xx SPI controller struct
644  * @dir: DMA transfer direction
645  *
646  * Function finishes with the DMA transfer. After this, the DMA buffer is
647  * unmapped.
648  */
649 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
650 				  enum dma_transfer_direction dir)
651 {
652 	struct dma_chan *chan;
653 	struct sg_table *sgt;
654 
655 	if (dir == DMA_DEV_TO_MEM) {
656 		chan = espi->dma_rx;
657 		sgt = &espi->rx_sgt;
658 	} else {
659 		chan = espi->dma_tx;
660 		sgt = &espi->tx_sgt;
661 	}
662 
663 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
664 }
665 
666 static void ep93xx_spi_dma_callback(void *callback_param)
667 {
668 	complete(callback_param);
669 }
670 
671 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
672 {
673 	struct spi_message *msg = espi->current_msg;
674 	struct dma_async_tx_descriptor *rxd, *txd;
675 
676 	rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
677 	if (IS_ERR(rxd)) {
678 		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
679 		msg->status = PTR_ERR(rxd);
680 		return;
681 	}
682 
683 	txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
684 	if (IS_ERR(txd)) {
685 		ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
686 		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
687 		msg->status = PTR_ERR(txd);
688 		return;
689 	}
690 
691 	/* We are ready when RX is done */
692 	rxd->callback = ep93xx_spi_dma_callback;
693 	rxd->callback_param = &espi->wait;
694 
695 	/* Now submit both descriptors and wait while they finish */
696 	dmaengine_submit(rxd);
697 	dmaengine_submit(txd);
698 
699 	dma_async_issue_pending(espi->dma_rx);
700 	dma_async_issue_pending(espi->dma_tx);
701 
702 	wait_for_completion(&espi->wait);
703 
704 	ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
705 	ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
706 }
707 
708 /**
709  * ep93xx_spi_process_transfer() - processes one SPI transfer
710  * @espi: ep93xx SPI controller struct
711  * @msg: current message
712  * @t: transfer to process
713  *
714  * This function processes one SPI transfer given in @t. Function waits until
715  * transfer is complete (may sleep) and updates @msg->status based on whether
716  * transfer was successfully processed or not.
717  */
718 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
719 					struct spi_message *msg,
720 					struct spi_transfer *t)
721 {
722 	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
723 
724 	msg->state = t;
725 
726 	/*
727 	 * Handle any transfer specific settings if needed. We use
728 	 * temporary chip settings here and restore original later when
729 	 * the transfer is finished.
730 	 */
731 	if (t->speed_hz || t->bits_per_word) {
732 		struct ep93xx_spi_chip tmp_chip = *chip;
733 
734 		if (t->speed_hz) {
735 			int err;
736 
737 			err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
738 						       t->speed_hz);
739 			if (err) {
740 				dev_err(&espi->pdev->dev,
741 					"failed to adjust speed\n");
742 				msg->status = err;
743 				return;
744 			}
745 		}
746 
747 		if (t->bits_per_word)
748 			tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
749 
750 		/*
751 		 * Set up temporary new hw settings for this transfer.
752 		 */
753 		ep93xx_spi_chip_setup(espi, &tmp_chip);
754 	}
755 
756 	espi->rx = 0;
757 	espi->tx = 0;
758 
759 	/*
760 	 * There is no point of setting up DMA for the transfers which will
761 	 * fit into the FIFO and can be transferred with a single interrupt.
762 	 * So in these cases we will be using PIO and don't bother for DMA.
763 	 */
764 	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
765 		ep93xx_spi_dma_transfer(espi);
766 	else
767 		ep93xx_spi_pio_transfer(espi);
768 
769 	/*
770 	 * In case of error during transmit, we bail out from processing
771 	 * the message.
772 	 */
773 	if (msg->status)
774 		return;
775 
776 	msg->actual_length += t->len;
777 
778 	/*
779 	 * After this transfer is finished, perform any possible
780 	 * post-transfer actions requested by the protocol driver.
781 	 */
782 	if (t->delay_usecs) {
783 		set_current_state(TASK_UNINTERRUPTIBLE);
784 		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
785 	}
786 	if (t->cs_change) {
787 		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
788 			/*
789 			 * In case protocol driver is asking us to drop the
790 			 * chipselect briefly, we let the scheduler to handle
791 			 * any "delay" here.
792 			 */
793 			ep93xx_spi_cs_control(msg->spi, false);
794 			cond_resched();
795 			ep93xx_spi_cs_control(msg->spi, true);
796 		}
797 	}
798 
799 	if (t->speed_hz || t->bits_per_word)
800 		ep93xx_spi_chip_setup(espi, chip);
801 }
802 
803 /*
804  * ep93xx_spi_process_message() - process one SPI message
805  * @espi: ep93xx SPI controller struct
806  * @msg: message to process
807  *
808  * This function processes a single SPI message. We go through all transfers in
809  * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
810  * asserted during the whole message (unless per transfer cs_change is set).
811  *
812  * @msg->status contains %0 in case of success or negative error code in case of
813  * failure.
814  */
815 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
816 				       struct spi_message *msg)
817 {
818 	unsigned long timeout;
819 	struct spi_transfer *t;
820 	int err;
821 
822 	/*
823 	 * Enable the SPI controller and its clock.
824 	 */
825 	err = ep93xx_spi_enable(espi);
826 	if (err) {
827 		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
828 		msg->status = err;
829 		return;
830 	}
831 
832 	/*
833 	 * Just to be sure: flush any data from RX FIFO.
834 	 */
835 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
836 	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
837 		if (time_after(jiffies, timeout)) {
838 			dev_warn(&espi->pdev->dev,
839 				 "timeout while flushing RX FIFO\n");
840 			msg->status = -ETIMEDOUT;
841 			return;
842 		}
843 		ep93xx_spi_read_u16(espi, SSPDR);
844 	}
845 
846 	/*
847 	 * We explicitly handle FIFO level. This way we don't have to check TX
848 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
849 	 */
850 	espi->fifo_level = 0;
851 
852 	/*
853 	 * Update SPI controller registers according to spi device and assert
854 	 * the chipselect.
855 	 */
856 	ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
857 	ep93xx_spi_cs_control(msg->spi, true);
858 
859 	list_for_each_entry(t, &msg->transfers, transfer_list) {
860 		ep93xx_spi_process_transfer(espi, msg, t);
861 		if (msg->status)
862 			break;
863 	}
864 
865 	/*
866 	 * Now the whole message is transferred (or failed for some reason). We
867 	 * deselect the device and disable the SPI controller.
868 	 */
869 	ep93xx_spi_cs_control(msg->spi, false);
870 	ep93xx_spi_disable(espi);
871 }
872 
873 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
874 
875 /**
876  * ep93xx_spi_work() - EP93xx SPI workqueue worker function
877  * @work: work struct
878  *
879  * Workqueue worker function. This function is called when there are new
880  * SPI messages to be processed. Message is taken out from the queue and then
881  * passed to ep93xx_spi_process_message().
882  *
883  * After message is transferred, protocol driver is notified by calling
884  * @msg->complete(). In case of error, @msg->status is set to negative error
885  * number, otherwise it contains zero (and @msg->actual_length is updated).
886  */
887 static void ep93xx_spi_work(struct work_struct *work)
888 {
889 	struct ep93xx_spi *espi = work_to_espi(work);
890 	struct spi_message *msg;
891 
892 	spin_lock_irq(&espi->lock);
893 	if (!espi->running || espi->current_msg ||
894 		list_empty(&espi->msg_queue)) {
895 		spin_unlock_irq(&espi->lock);
896 		return;
897 	}
898 	msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
899 	list_del_init(&msg->queue);
900 	espi->current_msg = msg;
901 	spin_unlock_irq(&espi->lock);
902 
903 	ep93xx_spi_process_message(espi, msg);
904 
905 	/*
906 	 * Update the current message and re-schedule ourselves if there are
907 	 * more messages in the queue.
908 	 */
909 	spin_lock_irq(&espi->lock);
910 	espi->current_msg = NULL;
911 	if (espi->running && !list_empty(&espi->msg_queue))
912 		queue_work(espi->wq, &espi->msg_work);
913 	spin_unlock_irq(&espi->lock);
914 
915 	/* notify the protocol driver that we are done with this message */
916 	msg->complete(msg->context);
917 }
918 
919 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
920 {
921 	struct ep93xx_spi *espi = dev_id;
922 	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
923 
924 	/*
925 	 * If we got ROR (receive overrun) interrupt we know that something is
926 	 * wrong. Just abort the message.
927 	 */
928 	if (unlikely(irq_status & SSPIIR_RORIS)) {
929 		/* clear the overrun interrupt */
930 		ep93xx_spi_write_u8(espi, SSPICR, 0);
931 		dev_warn(&espi->pdev->dev,
932 			 "receive overrun, aborting the message\n");
933 		espi->current_msg->status = -EIO;
934 	} else {
935 		/*
936 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
937 		 * simply execute next data transfer.
938 		 */
939 		if (ep93xx_spi_read_write(espi)) {
940 			/*
941 			 * In normal case, there still is some processing left
942 			 * for current transfer. Let's wait for the next
943 			 * interrupt then.
944 			 */
945 			return IRQ_HANDLED;
946 		}
947 	}
948 
949 	/*
950 	 * Current transfer is finished, either with error or with success. In
951 	 * any case we disable interrupts and notify the worker to handle
952 	 * any post-processing of the message.
953 	 */
954 	ep93xx_spi_disable_interrupts(espi);
955 	complete(&espi->wait);
956 	return IRQ_HANDLED;
957 }
958 
959 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
960 {
961 	if (ep93xx_dma_chan_is_m2p(chan))
962 		return false;
963 
964 	chan->private = filter_param;
965 	return true;
966 }
967 
968 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
969 {
970 	dma_cap_mask_t mask;
971 	int ret;
972 
973 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
974 	if (!espi->zeropage)
975 		return -ENOMEM;
976 
977 	dma_cap_zero(mask);
978 	dma_cap_set(DMA_SLAVE, mask);
979 
980 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
981 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
982 	espi->dma_rx_data.name = "ep93xx-spi-rx";
983 
984 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
985 					   &espi->dma_rx_data);
986 	if (!espi->dma_rx) {
987 		ret = -ENODEV;
988 		goto fail_free_page;
989 	}
990 
991 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
992 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
993 	espi->dma_tx_data.name = "ep93xx-spi-tx";
994 
995 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
996 					   &espi->dma_tx_data);
997 	if (!espi->dma_tx) {
998 		ret = -ENODEV;
999 		goto fail_release_rx;
1000 	}
1001 
1002 	return 0;
1003 
1004 fail_release_rx:
1005 	dma_release_channel(espi->dma_rx);
1006 	espi->dma_rx = NULL;
1007 fail_free_page:
1008 	free_page((unsigned long)espi->zeropage);
1009 
1010 	return ret;
1011 }
1012 
1013 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1014 {
1015 	if (espi->dma_rx) {
1016 		dma_release_channel(espi->dma_rx);
1017 		sg_free_table(&espi->rx_sgt);
1018 	}
1019 	if (espi->dma_tx) {
1020 		dma_release_channel(espi->dma_tx);
1021 		sg_free_table(&espi->tx_sgt);
1022 	}
1023 
1024 	if (espi->zeropage)
1025 		free_page((unsigned long)espi->zeropage);
1026 }
1027 
1028 static int __devinit ep93xx_spi_probe(struct platform_device *pdev)
1029 {
1030 	struct spi_master *master;
1031 	struct ep93xx_spi_info *info;
1032 	struct ep93xx_spi *espi;
1033 	struct resource *res;
1034 	int error;
1035 
1036 	info = pdev->dev.platform_data;
1037 
1038 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1039 	if (!master) {
1040 		dev_err(&pdev->dev, "failed to allocate spi master\n");
1041 		return -ENOMEM;
1042 	}
1043 
1044 	master->setup = ep93xx_spi_setup;
1045 	master->transfer = ep93xx_spi_transfer;
1046 	master->cleanup = ep93xx_spi_cleanup;
1047 	master->bus_num = pdev->id;
1048 	master->num_chipselect = info->num_chipselect;
1049 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1050 
1051 	platform_set_drvdata(pdev, master);
1052 
1053 	espi = spi_master_get_devdata(master);
1054 
1055 	espi->clk = clk_get(&pdev->dev, NULL);
1056 	if (IS_ERR(espi->clk)) {
1057 		dev_err(&pdev->dev, "unable to get spi clock\n");
1058 		error = PTR_ERR(espi->clk);
1059 		goto fail_release_master;
1060 	}
1061 
1062 	spin_lock_init(&espi->lock);
1063 	init_completion(&espi->wait);
1064 
1065 	/*
1066 	 * Calculate maximum and minimum supported clock rates
1067 	 * for the controller.
1068 	 */
1069 	espi->max_rate = clk_get_rate(espi->clk) / 2;
1070 	espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1071 	espi->pdev = pdev;
1072 
1073 	espi->irq = platform_get_irq(pdev, 0);
1074 	if (espi->irq < 0) {
1075 		error = -EBUSY;
1076 		dev_err(&pdev->dev, "failed to get irq resources\n");
1077 		goto fail_put_clock;
1078 	}
1079 
1080 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1081 	if (!res) {
1082 		dev_err(&pdev->dev, "unable to get iomem resource\n");
1083 		error = -ENODEV;
1084 		goto fail_put_clock;
1085 	}
1086 
1087 	res = request_mem_region(res->start, resource_size(res), pdev->name);
1088 	if (!res) {
1089 		dev_err(&pdev->dev, "unable to request iomem resources\n");
1090 		error = -EBUSY;
1091 		goto fail_put_clock;
1092 	}
1093 
1094 	espi->sspdr_phys = res->start + SSPDR;
1095 	espi->regs_base = ioremap(res->start, resource_size(res));
1096 	if (!espi->regs_base) {
1097 		dev_err(&pdev->dev, "failed to map resources\n");
1098 		error = -ENODEV;
1099 		goto fail_free_mem;
1100 	}
1101 
1102 	error = request_irq(espi->irq, ep93xx_spi_interrupt, 0,
1103 			    "ep93xx-spi", espi);
1104 	if (error) {
1105 		dev_err(&pdev->dev, "failed to request irq\n");
1106 		goto fail_unmap_regs;
1107 	}
1108 
1109 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
1110 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1111 
1112 	espi->wq = create_singlethread_workqueue("ep93xx_spid");
1113 	if (!espi->wq) {
1114 		dev_err(&pdev->dev, "unable to create workqueue\n");
1115 		goto fail_free_dma;
1116 	}
1117 	INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1118 	INIT_LIST_HEAD(&espi->msg_queue);
1119 	espi->running = true;
1120 
1121 	/* make sure that the hardware is disabled */
1122 	ep93xx_spi_write_u8(espi, SSPCR1, 0);
1123 
1124 	error = spi_register_master(master);
1125 	if (error) {
1126 		dev_err(&pdev->dev, "failed to register SPI master\n");
1127 		goto fail_free_queue;
1128 	}
1129 
1130 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1131 		 (unsigned long)res->start, espi->irq);
1132 
1133 	return 0;
1134 
1135 fail_free_queue:
1136 	destroy_workqueue(espi->wq);
1137 fail_free_dma:
1138 	ep93xx_spi_release_dma(espi);
1139 	free_irq(espi->irq, espi);
1140 fail_unmap_regs:
1141 	iounmap(espi->regs_base);
1142 fail_free_mem:
1143 	release_mem_region(res->start, resource_size(res));
1144 fail_put_clock:
1145 	clk_put(espi->clk);
1146 fail_release_master:
1147 	spi_master_put(master);
1148 	platform_set_drvdata(pdev, NULL);
1149 
1150 	return error;
1151 }
1152 
1153 static int __devexit ep93xx_spi_remove(struct platform_device *pdev)
1154 {
1155 	struct spi_master *master = platform_get_drvdata(pdev);
1156 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
1157 	struct resource *res;
1158 
1159 	spin_lock_irq(&espi->lock);
1160 	espi->running = false;
1161 	spin_unlock_irq(&espi->lock);
1162 
1163 	destroy_workqueue(espi->wq);
1164 
1165 	/*
1166 	 * Complete remaining messages with %-ESHUTDOWN status.
1167 	 */
1168 	spin_lock_irq(&espi->lock);
1169 	while (!list_empty(&espi->msg_queue)) {
1170 		struct spi_message *msg;
1171 
1172 		msg = list_first_entry(&espi->msg_queue,
1173 				       struct spi_message, queue);
1174 		list_del_init(&msg->queue);
1175 		msg->status = -ESHUTDOWN;
1176 		spin_unlock_irq(&espi->lock);
1177 		msg->complete(msg->context);
1178 		spin_lock_irq(&espi->lock);
1179 	}
1180 	spin_unlock_irq(&espi->lock);
1181 
1182 	ep93xx_spi_release_dma(espi);
1183 	free_irq(espi->irq, espi);
1184 	iounmap(espi->regs_base);
1185 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1186 	release_mem_region(res->start, resource_size(res));
1187 	clk_put(espi->clk);
1188 	platform_set_drvdata(pdev, NULL);
1189 
1190 	spi_unregister_master(master);
1191 	return 0;
1192 }
1193 
1194 static struct platform_driver ep93xx_spi_driver = {
1195 	.driver		= {
1196 		.name	= "ep93xx-spi",
1197 		.owner	= THIS_MODULE,
1198 	},
1199 	.probe		= ep93xx_spi_probe,
1200 	.remove		= __devexit_p(ep93xx_spi_remove),
1201 };
1202 module_platform_driver(ep93xx_spi_driver);
1203 
1204 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1205 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1206 MODULE_LICENSE("GPL");
1207 MODULE_ALIAS("platform:ep93xx-spi");
1208