xref: /openbmc/linux/drivers/spi/spi-ep93xx.c (revision bb3982b4)
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spi/spi.h>
32 
33 #include <linux/platform_data/dma-ep93xx.h>
34 #include <linux/platform_data/spi-ep93xx.h>
35 
36 #define SSPCR0			0x0000
37 #define SSPCR0_MODE_SHIFT	6
38 #define SSPCR0_SCR_SHIFT	8
39 
40 #define SSPCR1			0x0004
41 #define SSPCR1_RIE		BIT(0)
42 #define SSPCR1_TIE		BIT(1)
43 #define SSPCR1_RORIE		BIT(2)
44 #define SSPCR1_LBM		BIT(3)
45 #define SSPCR1_SSE		BIT(4)
46 #define SSPCR1_MS		BIT(5)
47 #define SSPCR1_SOD		BIT(6)
48 
49 #define SSPDR			0x0008
50 
51 #define SSPSR			0x000c
52 #define SSPSR_TFE		BIT(0)
53 #define SSPSR_TNF		BIT(1)
54 #define SSPSR_RNE		BIT(2)
55 #define SSPSR_RFF		BIT(3)
56 #define SSPSR_BSY		BIT(4)
57 #define SSPCPSR			0x0010
58 
59 #define SSPIIR			0x0014
60 #define SSPIIR_RIS		BIT(0)
61 #define SSPIIR_TIS		BIT(1)
62 #define SSPIIR_RORIS		BIT(2)
63 #define SSPICR			SSPIIR
64 
65 /* timeout in milliseconds */
66 #define SPI_TIMEOUT		5
67 /* maximum depth of RX/TX FIFO */
68 #define SPI_FIFO_SIZE		8
69 
70 /**
71  * struct ep93xx_spi - EP93xx SPI controller structure
72  * @clk: clock for the controller
73  * @mmio: pointer to ioremap()'d registers
74  * @sspdr_phys: physical address of the SSPDR register
75  * @tx: current byte in transfer to transmit
76  * @rx: current byte in transfer to receive
77  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
78  *              frame decreases this level and sending one frame increases it.
79  * @dma_rx: RX DMA channel
80  * @dma_tx: TX DMA channel
81  * @dma_rx_data: RX parameters passed to the DMA engine
82  * @dma_tx_data: TX parameters passed to the DMA engine
83  * @rx_sgt: sg table for RX transfers
84  * @tx_sgt: sg table for TX transfers
85  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
86  *            the client
87  */
88 struct ep93xx_spi {
89 	struct clk			*clk;
90 	void __iomem			*mmio;
91 	unsigned long			sspdr_phys;
92 	size_t				tx;
93 	size_t				rx;
94 	size_t				fifo_level;
95 	struct dma_chan			*dma_rx;
96 	struct dma_chan			*dma_tx;
97 	struct ep93xx_dma_data		dma_rx_data;
98 	struct ep93xx_dma_data		dma_tx_data;
99 	struct sg_table			rx_sgt;
100 	struct sg_table			tx_sgt;
101 	void				*zeropage;
102 };
103 
104 /* converts bits per word to CR0.DSS value */
105 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
106 
107 /**
108  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
109  * @master: SPI master
110  * @rate: desired SPI output clock rate
111  * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
112  * @div_scr: pointer to return the scr divider
113  */
114 static int ep93xx_spi_calc_divisors(struct spi_master *master,
115 				    u32 rate, u8 *div_cpsr, u8 *div_scr)
116 {
117 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
118 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
119 	int cpsr, scr;
120 
121 	/*
122 	 * Make sure that max value is between values supported by the
123 	 * controller.
124 	 */
125 	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
126 
127 	/*
128 	 * Calculate divisors so that we can get speed according the
129 	 * following formula:
130 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
131 	 *
132 	 * cpsr must be even number and starts from 2, scr can be any number
133 	 * between 0 and 255.
134 	 */
135 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
136 		for (scr = 0; scr <= 255; scr++) {
137 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
138 				*div_scr = (u8)scr;
139 				*div_cpsr = (u8)cpsr;
140 				return 0;
141 			}
142 		}
143 	}
144 
145 	return -EINVAL;
146 }
147 
148 static int ep93xx_spi_chip_setup(struct spi_master *master,
149 				 struct spi_device *spi,
150 				 struct spi_transfer *xfer)
151 {
152 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
153 	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
154 	u8 div_cpsr = 0;
155 	u8 div_scr = 0;
156 	u16 cr0;
157 	int err;
158 
159 	err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
160 				       &div_cpsr, &div_scr);
161 	if (err)
162 		return err;
163 
164 	cr0 = div_scr << SSPCR0_SCR_SHIFT;
165 	cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
166 	cr0 |= dss;
167 
168 	dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
169 		spi->mode, div_cpsr, div_scr, dss);
170 	dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
171 
172 	writel(div_cpsr, espi->mmio + SSPCPSR);
173 	writel(cr0, espi->mmio + SSPCR0);
174 
175 	return 0;
176 }
177 
178 static void ep93xx_do_write(struct spi_master *master)
179 {
180 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
181 	struct spi_transfer *xfer = master->cur_msg->state;
182 	u32 val = 0;
183 
184 	if (xfer->bits_per_word > 8) {
185 		if (xfer->tx_buf)
186 			val = ((u16 *)xfer->tx_buf)[espi->tx];
187 		espi->tx += 2;
188 	} else {
189 		if (xfer->tx_buf)
190 			val = ((u8 *)xfer->tx_buf)[espi->tx];
191 		espi->tx += 1;
192 	}
193 	writel(val, espi->mmio + SSPDR);
194 }
195 
196 static void ep93xx_do_read(struct spi_master *master)
197 {
198 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
199 	struct spi_transfer *xfer = master->cur_msg->state;
200 	u32 val;
201 
202 	val = readl(espi->mmio + SSPDR);
203 	if (xfer->bits_per_word > 8) {
204 		if (xfer->rx_buf)
205 			((u16 *)xfer->rx_buf)[espi->rx] = val;
206 		espi->rx += 2;
207 	} else {
208 		if (xfer->rx_buf)
209 			((u8 *)xfer->rx_buf)[espi->rx] = val;
210 		espi->rx += 1;
211 	}
212 }
213 
214 /**
215  * ep93xx_spi_read_write() - perform next RX/TX transfer
216  * @espi: ep93xx SPI controller struct
217  *
218  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
219  * called several times, the whole transfer will be completed. Returns
220  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
221  *
222  * When this function is finished, RX FIFO should be empty and TX FIFO should be
223  * full.
224  */
225 static int ep93xx_spi_read_write(struct spi_master *master)
226 {
227 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
228 	struct spi_transfer *xfer = master->cur_msg->state;
229 
230 	/* read as long as RX FIFO has frames in it */
231 	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
232 		ep93xx_do_read(master);
233 		espi->fifo_level--;
234 	}
235 
236 	/* write as long as TX FIFO has room */
237 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
238 		ep93xx_do_write(master);
239 		espi->fifo_level++;
240 	}
241 
242 	if (espi->rx == xfer->len)
243 		return 0;
244 
245 	return -EINPROGRESS;
246 }
247 
248 static enum dma_transfer_direction
249 ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
250 {
251 	switch (dir) {
252 	case DMA_TO_DEVICE:
253 		return DMA_MEM_TO_DEV;
254 	case DMA_FROM_DEVICE:
255 		return DMA_DEV_TO_MEM;
256 	default:
257 		return DMA_TRANS_NONE;
258 	}
259 }
260 
261 /**
262  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
263  * @master: SPI master
264  * @dir: DMA transfer direction
265  *
266  * Function configures the DMA, maps the buffer and prepares the DMA
267  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
268  * in case of failure.
269  */
270 static struct dma_async_tx_descriptor *
271 ep93xx_spi_dma_prepare(struct spi_master *master,
272 		       enum dma_data_direction dir)
273 {
274 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
275 	struct spi_transfer *xfer = master->cur_msg->state;
276 	struct dma_async_tx_descriptor *txd;
277 	enum dma_slave_buswidth buswidth;
278 	struct dma_slave_config conf;
279 	struct scatterlist *sg;
280 	struct sg_table *sgt;
281 	struct dma_chan *chan;
282 	const void *buf, *pbuf;
283 	size_t len = xfer->len;
284 	int i, ret, nents;
285 
286 	if (xfer->bits_per_word > 8)
287 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
288 	else
289 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
290 
291 	memset(&conf, 0, sizeof(conf));
292 	conf.direction = ep93xx_dma_data_to_trans_dir(dir);
293 
294 	if (dir == DMA_FROM_DEVICE) {
295 		chan = espi->dma_rx;
296 		buf = xfer->rx_buf;
297 		sgt = &espi->rx_sgt;
298 
299 		conf.src_addr = espi->sspdr_phys;
300 		conf.src_addr_width = buswidth;
301 	} else {
302 		chan = espi->dma_tx;
303 		buf = xfer->tx_buf;
304 		sgt = &espi->tx_sgt;
305 
306 		conf.dst_addr = espi->sspdr_phys;
307 		conf.dst_addr_width = buswidth;
308 	}
309 
310 	ret = dmaengine_slave_config(chan, &conf);
311 	if (ret)
312 		return ERR_PTR(ret);
313 
314 	/*
315 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
316 	 * because we are using @espi->zeropage to provide a zero RX buffer
317 	 * for the TX transfers and we have only allocated one page for that.
318 	 *
319 	 * For performance reasons we allocate a new sg_table only when
320 	 * needed. Otherwise we will re-use the current one. Eventually the
321 	 * last sg_table is released in ep93xx_spi_release_dma().
322 	 */
323 
324 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
325 	if (nents != sgt->nents) {
326 		sg_free_table(sgt);
327 
328 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
329 		if (ret)
330 			return ERR_PTR(ret);
331 	}
332 
333 	pbuf = buf;
334 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
335 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
336 
337 		if (buf) {
338 			sg_set_page(sg, virt_to_page(pbuf), bytes,
339 				    offset_in_page(pbuf));
340 		} else {
341 			sg_set_page(sg, virt_to_page(espi->zeropage),
342 				    bytes, 0);
343 		}
344 
345 		pbuf += bytes;
346 		len -= bytes;
347 	}
348 
349 	if (WARN_ON(len)) {
350 		dev_warn(&master->dev, "len = %zu expected 0!\n", len);
351 		return ERR_PTR(-EINVAL);
352 	}
353 
354 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
355 	if (!nents)
356 		return ERR_PTR(-ENOMEM);
357 
358 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
359 				      DMA_CTRL_ACK);
360 	if (!txd) {
361 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
362 		return ERR_PTR(-ENOMEM);
363 	}
364 	return txd;
365 }
366 
367 /**
368  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
369  * @master: SPI master
370  * @dir: DMA transfer direction
371  *
372  * Function finishes with the DMA transfer. After this, the DMA buffer is
373  * unmapped.
374  */
375 static void ep93xx_spi_dma_finish(struct spi_master *master,
376 				  enum dma_data_direction dir)
377 {
378 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
379 	struct dma_chan *chan;
380 	struct sg_table *sgt;
381 
382 	if (dir == DMA_FROM_DEVICE) {
383 		chan = espi->dma_rx;
384 		sgt = &espi->rx_sgt;
385 	} else {
386 		chan = espi->dma_tx;
387 		sgt = &espi->tx_sgt;
388 	}
389 
390 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
391 }
392 
393 static void ep93xx_spi_dma_callback(void *callback_param)
394 {
395 	struct spi_master *master = callback_param;
396 
397 	ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
398 	ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
399 
400 	spi_finalize_current_transfer(master);
401 }
402 
403 static int ep93xx_spi_dma_transfer(struct spi_master *master)
404 {
405 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
406 	struct dma_async_tx_descriptor *rxd, *txd;
407 
408 	rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
409 	if (IS_ERR(rxd)) {
410 		dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
411 		return PTR_ERR(rxd);
412 	}
413 
414 	txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
415 	if (IS_ERR(txd)) {
416 		ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
417 		dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
418 		return PTR_ERR(txd);
419 	}
420 
421 	/* We are ready when RX is done */
422 	rxd->callback = ep93xx_spi_dma_callback;
423 	rxd->callback_param = master;
424 
425 	/* Now submit both descriptors and start DMA */
426 	dmaengine_submit(rxd);
427 	dmaengine_submit(txd);
428 
429 	dma_async_issue_pending(espi->dma_rx);
430 	dma_async_issue_pending(espi->dma_tx);
431 
432 	/* signal that we need to wait for completion */
433 	return 1;
434 }
435 
436 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
437 {
438 	struct spi_master *master = dev_id;
439 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
440 	u32 val;
441 
442 	/*
443 	 * If we got ROR (receive overrun) interrupt we know that something is
444 	 * wrong. Just abort the message.
445 	 */
446 	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
447 		/* clear the overrun interrupt */
448 		writel(0, espi->mmio + SSPICR);
449 		dev_warn(&master->dev,
450 			 "receive overrun, aborting the message\n");
451 		master->cur_msg->status = -EIO;
452 	} else {
453 		/*
454 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
455 		 * simply execute next data transfer.
456 		 */
457 		if (ep93xx_spi_read_write(master)) {
458 			/*
459 			 * In normal case, there still is some processing left
460 			 * for current transfer. Let's wait for the next
461 			 * interrupt then.
462 			 */
463 			return IRQ_HANDLED;
464 		}
465 	}
466 
467 	/*
468 	 * Current transfer is finished, either with error or with success. In
469 	 * any case we disable interrupts and notify the worker to handle
470 	 * any post-processing of the message.
471 	 */
472 	val = readl(espi->mmio + SSPCR1);
473 	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
474 	writel(val, espi->mmio + SSPCR1);
475 
476 	spi_finalize_current_transfer(master);
477 
478 	return IRQ_HANDLED;
479 }
480 
481 static int ep93xx_spi_transfer_one(struct spi_master *master,
482 				   struct spi_device *spi,
483 				   struct spi_transfer *xfer)
484 {
485 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
486 	u32 val;
487 	int ret;
488 
489 	ret = ep93xx_spi_chip_setup(master, spi, xfer);
490 	if (ret) {
491 		dev_err(&master->dev, "failed to setup chip for transfer\n");
492 		return ret;
493 	}
494 
495 	master->cur_msg->state = xfer;
496 	espi->rx = 0;
497 	espi->tx = 0;
498 
499 	/*
500 	 * There is no point of setting up DMA for the transfers which will
501 	 * fit into the FIFO and can be transferred with a single interrupt.
502 	 * So in these cases we will be using PIO and don't bother for DMA.
503 	 */
504 	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
505 		return ep93xx_spi_dma_transfer(master);
506 
507 	/* Using PIO so prime the TX FIFO and enable interrupts */
508 	ep93xx_spi_read_write(master);
509 
510 	val = readl(espi->mmio + SSPCR1);
511 	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
512 	writel(val, espi->mmio + SSPCR1);
513 
514 	/* signal that we need to wait for completion */
515 	return 1;
516 }
517 
518 static int ep93xx_spi_prepare_message(struct spi_master *master,
519 				      struct spi_message *msg)
520 {
521 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
522 	unsigned long timeout;
523 
524 	/*
525 	 * Just to be sure: flush any data from RX FIFO.
526 	 */
527 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
528 	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
529 		if (time_after(jiffies, timeout)) {
530 			dev_warn(&master->dev,
531 				 "timeout while flushing RX FIFO\n");
532 			return -ETIMEDOUT;
533 		}
534 		readl(espi->mmio + SSPDR);
535 	}
536 
537 	/*
538 	 * We explicitly handle FIFO level. This way we don't have to check TX
539 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
540 	 */
541 	espi->fifo_level = 0;
542 
543 	return 0;
544 }
545 
546 static int ep93xx_spi_prepare_hardware(struct spi_master *master)
547 {
548 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
549 	u32 val;
550 	int ret;
551 
552 	ret = clk_enable(espi->clk);
553 	if (ret)
554 		return ret;
555 
556 	val = readl(espi->mmio + SSPCR1);
557 	val |= SSPCR1_SSE;
558 	writel(val, espi->mmio + SSPCR1);
559 
560 	return 0;
561 }
562 
563 static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
564 {
565 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
566 	u32 val;
567 
568 	val = readl(espi->mmio + SSPCR1);
569 	val &= ~SSPCR1_SSE;
570 	writel(val, espi->mmio + SSPCR1);
571 
572 	clk_disable(espi->clk);
573 
574 	return 0;
575 }
576 
577 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
578 {
579 	if (ep93xx_dma_chan_is_m2p(chan))
580 		return false;
581 
582 	chan->private = filter_param;
583 	return true;
584 }
585 
586 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
587 {
588 	dma_cap_mask_t mask;
589 	int ret;
590 
591 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
592 	if (!espi->zeropage)
593 		return -ENOMEM;
594 
595 	dma_cap_zero(mask);
596 	dma_cap_set(DMA_SLAVE, mask);
597 
598 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
599 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
600 	espi->dma_rx_data.name = "ep93xx-spi-rx";
601 
602 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
603 					   &espi->dma_rx_data);
604 	if (!espi->dma_rx) {
605 		ret = -ENODEV;
606 		goto fail_free_page;
607 	}
608 
609 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
610 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
611 	espi->dma_tx_data.name = "ep93xx-spi-tx";
612 
613 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
614 					   &espi->dma_tx_data);
615 	if (!espi->dma_tx) {
616 		ret = -ENODEV;
617 		goto fail_release_rx;
618 	}
619 
620 	return 0;
621 
622 fail_release_rx:
623 	dma_release_channel(espi->dma_rx);
624 	espi->dma_rx = NULL;
625 fail_free_page:
626 	free_page((unsigned long)espi->zeropage);
627 
628 	return ret;
629 }
630 
631 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
632 {
633 	if (espi->dma_rx) {
634 		dma_release_channel(espi->dma_rx);
635 		sg_free_table(&espi->rx_sgt);
636 	}
637 	if (espi->dma_tx) {
638 		dma_release_channel(espi->dma_tx);
639 		sg_free_table(&espi->tx_sgt);
640 	}
641 
642 	if (espi->zeropage)
643 		free_page((unsigned long)espi->zeropage);
644 }
645 
646 static int ep93xx_spi_probe(struct platform_device *pdev)
647 {
648 	struct spi_master *master;
649 	struct ep93xx_spi_info *info;
650 	struct ep93xx_spi *espi;
651 	struct resource *res;
652 	int irq;
653 	int error;
654 
655 	info = dev_get_platdata(&pdev->dev);
656 	if (!info) {
657 		dev_err(&pdev->dev, "missing platform data\n");
658 		return -EINVAL;
659 	}
660 
661 	irq = platform_get_irq(pdev, 0);
662 	if (irq < 0) {
663 		dev_err(&pdev->dev, "failed to get irq resources\n");
664 		return -EBUSY;
665 	}
666 
667 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
668 	if (!res) {
669 		dev_err(&pdev->dev, "unable to get iomem resource\n");
670 		return -ENODEV;
671 	}
672 
673 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
674 	if (!master)
675 		return -ENOMEM;
676 
677 	master->use_gpio_descriptors = true;
678 	master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
679 	master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
680 	master->prepare_message = ep93xx_spi_prepare_message;
681 	master->transfer_one = ep93xx_spi_transfer_one;
682 	master->bus_num = pdev->id;
683 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
684 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
685 	/*
686 	 * The SPI core will count the number of GPIO descriptors to figure
687 	 * out the number of chip selects available on the platform.
688 	 */
689 	master->num_chipselect = 0;
690 
691 	platform_set_drvdata(pdev, master);
692 
693 	espi = spi_master_get_devdata(master);
694 
695 	espi->clk = devm_clk_get(&pdev->dev, NULL);
696 	if (IS_ERR(espi->clk)) {
697 		dev_err(&pdev->dev, "unable to get spi clock\n");
698 		error = PTR_ERR(espi->clk);
699 		goto fail_release_master;
700 	}
701 
702 	/*
703 	 * Calculate maximum and minimum supported clock rates
704 	 * for the controller.
705 	 */
706 	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
707 	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
708 
709 	espi->sspdr_phys = res->start + SSPDR;
710 
711 	espi->mmio = devm_ioremap_resource(&pdev->dev, res);
712 	if (IS_ERR(espi->mmio)) {
713 		error = PTR_ERR(espi->mmio);
714 		goto fail_release_master;
715 	}
716 
717 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
718 				0, "ep93xx-spi", master);
719 	if (error) {
720 		dev_err(&pdev->dev, "failed to request irq\n");
721 		goto fail_release_master;
722 	}
723 
724 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
725 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
726 
727 	/* make sure that the hardware is disabled */
728 	writel(0, espi->mmio + SSPCR1);
729 
730 	error = devm_spi_register_master(&pdev->dev, master);
731 	if (error) {
732 		dev_err(&pdev->dev, "failed to register SPI master\n");
733 		goto fail_free_dma;
734 	}
735 
736 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
737 		 (unsigned long)res->start, irq);
738 
739 	return 0;
740 
741 fail_free_dma:
742 	ep93xx_spi_release_dma(espi);
743 fail_release_master:
744 	spi_master_put(master);
745 
746 	return error;
747 }
748 
749 static int ep93xx_spi_remove(struct platform_device *pdev)
750 {
751 	struct spi_master *master = platform_get_drvdata(pdev);
752 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
753 
754 	ep93xx_spi_release_dma(espi);
755 
756 	return 0;
757 }
758 
759 static struct platform_driver ep93xx_spi_driver = {
760 	.driver		= {
761 		.name	= "ep93xx-spi",
762 	},
763 	.probe		= ep93xx_spi_probe,
764 	.remove		= ep93xx_spi_remove,
765 };
766 module_platform_driver(ep93xx_spi_driver);
767 
768 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
769 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
770 MODULE_LICENSE("GPL");
771 MODULE_ALIAS("platform:ep93xx-spi");
772