1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Cirrus Logic EP93xx SPI controller. 4 * 5 * Copyright (C) 2010-2011 Mika Westerberg 6 * 7 * Explicit FIFO handling code was inspired by amba-pl022 driver. 8 * 9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. 10 * 11 * For more information about the SPI controller see documentation on Cirrus 12 * Logic web site: 13 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf 14 */ 15 16 #include <linux/io.h> 17 #include <linux/clk.h> 18 #include <linux/err.h> 19 #include <linux/delay.h> 20 #include <linux/device.h> 21 #include <linux/dmaengine.h> 22 #include <linux/bitops.h> 23 #include <linux/interrupt.h> 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/sched.h> 27 #include <linux/scatterlist.h> 28 #include <linux/spi/spi.h> 29 30 #include <linux/platform_data/dma-ep93xx.h> 31 #include <linux/platform_data/spi-ep93xx.h> 32 33 #define SSPCR0 0x0000 34 #define SSPCR0_MODE_SHIFT 6 35 #define SSPCR0_SCR_SHIFT 8 36 37 #define SSPCR1 0x0004 38 #define SSPCR1_RIE BIT(0) 39 #define SSPCR1_TIE BIT(1) 40 #define SSPCR1_RORIE BIT(2) 41 #define SSPCR1_LBM BIT(3) 42 #define SSPCR1_SSE BIT(4) 43 #define SSPCR1_MS BIT(5) 44 #define SSPCR1_SOD BIT(6) 45 46 #define SSPDR 0x0008 47 48 #define SSPSR 0x000c 49 #define SSPSR_TFE BIT(0) 50 #define SSPSR_TNF BIT(1) 51 #define SSPSR_RNE BIT(2) 52 #define SSPSR_RFF BIT(3) 53 #define SSPSR_BSY BIT(4) 54 #define SSPCPSR 0x0010 55 56 #define SSPIIR 0x0014 57 #define SSPIIR_RIS BIT(0) 58 #define SSPIIR_TIS BIT(1) 59 #define SSPIIR_RORIS BIT(2) 60 #define SSPICR SSPIIR 61 62 /* timeout in milliseconds */ 63 #define SPI_TIMEOUT 5 64 /* maximum depth of RX/TX FIFO */ 65 #define SPI_FIFO_SIZE 8 66 67 /** 68 * struct ep93xx_spi - EP93xx SPI controller structure 69 * @clk: clock for the controller 70 * @mmio: pointer to ioremap()'d registers 71 * @sspdr_phys: physical address of the SSPDR register 72 * @tx: current byte in transfer to transmit 73 * @rx: current byte in transfer to receive 74 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one 75 * frame decreases this level and sending one frame increases it. 76 * @dma_rx: RX DMA channel 77 * @dma_tx: TX DMA channel 78 * @dma_rx_data: RX parameters passed to the DMA engine 79 * @dma_tx_data: TX parameters passed to the DMA engine 80 * @rx_sgt: sg table for RX transfers 81 * @tx_sgt: sg table for TX transfers 82 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by 83 * the client 84 */ 85 struct ep93xx_spi { 86 struct clk *clk; 87 void __iomem *mmio; 88 unsigned long sspdr_phys; 89 size_t tx; 90 size_t rx; 91 size_t fifo_level; 92 struct dma_chan *dma_rx; 93 struct dma_chan *dma_tx; 94 struct ep93xx_dma_data dma_rx_data; 95 struct ep93xx_dma_data dma_tx_data; 96 struct sg_table rx_sgt; 97 struct sg_table tx_sgt; 98 void *zeropage; 99 }; 100 101 /* converts bits per word to CR0.DSS value */ 102 #define bits_per_word_to_dss(bpw) ((bpw) - 1) 103 104 /** 105 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors 106 * @master: SPI master 107 * @rate: desired SPI output clock rate 108 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider 109 * @div_scr: pointer to return the scr divider 110 */ 111 static int ep93xx_spi_calc_divisors(struct spi_master *master, 112 u32 rate, u8 *div_cpsr, u8 *div_scr) 113 { 114 struct ep93xx_spi *espi = spi_master_get_devdata(master); 115 unsigned long spi_clk_rate = clk_get_rate(espi->clk); 116 int cpsr, scr; 117 118 /* 119 * Make sure that max value is between values supported by the 120 * controller. 121 */ 122 rate = clamp(rate, master->min_speed_hz, master->max_speed_hz); 123 124 /* 125 * Calculate divisors so that we can get speed according the 126 * following formula: 127 * rate = spi_clock_rate / (cpsr * (1 + scr)) 128 * 129 * cpsr must be even number and starts from 2, scr can be any number 130 * between 0 and 255. 131 */ 132 for (cpsr = 2; cpsr <= 254; cpsr += 2) { 133 for (scr = 0; scr <= 255; scr++) { 134 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { 135 *div_scr = (u8)scr; 136 *div_cpsr = (u8)cpsr; 137 return 0; 138 } 139 } 140 } 141 142 return -EINVAL; 143 } 144 145 static int ep93xx_spi_chip_setup(struct spi_master *master, 146 struct spi_device *spi, 147 struct spi_transfer *xfer) 148 { 149 struct ep93xx_spi *espi = spi_master_get_devdata(master); 150 u8 dss = bits_per_word_to_dss(xfer->bits_per_word); 151 u8 div_cpsr = 0; 152 u8 div_scr = 0; 153 u16 cr0; 154 int err; 155 156 err = ep93xx_spi_calc_divisors(master, xfer->speed_hz, 157 &div_cpsr, &div_scr); 158 if (err) 159 return err; 160 161 cr0 = div_scr << SSPCR0_SCR_SHIFT; 162 cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT; 163 cr0 |= dss; 164 165 dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", 166 spi->mode, div_cpsr, div_scr, dss); 167 dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0); 168 169 writel(div_cpsr, espi->mmio + SSPCPSR); 170 writel(cr0, espi->mmio + SSPCR0); 171 172 return 0; 173 } 174 175 static void ep93xx_do_write(struct spi_master *master) 176 { 177 struct ep93xx_spi *espi = spi_master_get_devdata(master); 178 struct spi_transfer *xfer = master->cur_msg->state; 179 u32 val = 0; 180 181 if (xfer->bits_per_word > 8) { 182 if (xfer->tx_buf) 183 val = ((u16 *)xfer->tx_buf)[espi->tx]; 184 espi->tx += 2; 185 } else { 186 if (xfer->tx_buf) 187 val = ((u8 *)xfer->tx_buf)[espi->tx]; 188 espi->tx += 1; 189 } 190 writel(val, espi->mmio + SSPDR); 191 } 192 193 static void ep93xx_do_read(struct spi_master *master) 194 { 195 struct ep93xx_spi *espi = spi_master_get_devdata(master); 196 struct spi_transfer *xfer = master->cur_msg->state; 197 u32 val; 198 199 val = readl(espi->mmio + SSPDR); 200 if (xfer->bits_per_word > 8) { 201 if (xfer->rx_buf) 202 ((u16 *)xfer->rx_buf)[espi->rx] = val; 203 espi->rx += 2; 204 } else { 205 if (xfer->rx_buf) 206 ((u8 *)xfer->rx_buf)[espi->rx] = val; 207 espi->rx += 1; 208 } 209 } 210 211 /** 212 * ep93xx_spi_read_write() - perform next RX/TX transfer 213 * @espi: ep93xx SPI controller struct 214 * 215 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If 216 * called several times, the whole transfer will be completed. Returns 217 * %-EINPROGRESS when current transfer was not yet completed otherwise %0. 218 * 219 * When this function is finished, RX FIFO should be empty and TX FIFO should be 220 * full. 221 */ 222 static int ep93xx_spi_read_write(struct spi_master *master) 223 { 224 struct ep93xx_spi *espi = spi_master_get_devdata(master); 225 struct spi_transfer *xfer = master->cur_msg->state; 226 227 /* read as long as RX FIFO has frames in it */ 228 while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) { 229 ep93xx_do_read(master); 230 espi->fifo_level--; 231 } 232 233 /* write as long as TX FIFO has room */ 234 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) { 235 ep93xx_do_write(master); 236 espi->fifo_level++; 237 } 238 239 if (espi->rx == xfer->len) 240 return 0; 241 242 return -EINPROGRESS; 243 } 244 245 static enum dma_transfer_direction 246 ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir) 247 { 248 switch (dir) { 249 case DMA_TO_DEVICE: 250 return DMA_MEM_TO_DEV; 251 case DMA_FROM_DEVICE: 252 return DMA_DEV_TO_MEM; 253 default: 254 return DMA_TRANS_NONE; 255 } 256 } 257 258 /** 259 * ep93xx_spi_dma_prepare() - prepares a DMA transfer 260 * @master: SPI master 261 * @dir: DMA transfer direction 262 * 263 * Function configures the DMA, maps the buffer and prepares the DMA 264 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR 265 * in case of failure. 266 */ 267 static struct dma_async_tx_descriptor * 268 ep93xx_spi_dma_prepare(struct spi_master *master, 269 enum dma_data_direction dir) 270 { 271 struct ep93xx_spi *espi = spi_master_get_devdata(master); 272 struct spi_transfer *xfer = master->cur_msg->state; 273 struct dma_async_tx_descriptor *txd; 274 enum dma_slave_buswidth buswidth; 275 struct dma_slave_config conf; 276 struct scatterlist *sg; 277 struct sg_table *sgt; 278 struct dma_chan *chan; 279 const void *buf, *pbuf; 280 size_t len = xfer->len; 281 int i, ret, nents; 282 283 if (xfer->bits_per_word > 8) 284 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 285 else 286 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 287 288 memset(&conf, 0, sizeof(conf)); 289 conf.direction = ep93xx_dma_data_to_trans_dir(dir); 290 291 if (dir == DMA_FROM_DEVICE) { 292 chan = espi->dma_rx; 293 buf = xfer->rx_buf; 294 sgt = &espi->rx_sgt; 295 296 conf.src_addr = espi->sspdr_phys; 297 conf.src_addr_width = buswidth; 298 } else { 299 chan = espi->dma_tx; 300 buf = xfer->tx_buf; 301 sgt = &espi->tx_sgt; 302 303 conf.dst_addr = espi->sspdr_phys; 304 conf.dst_addr_width = buswidth; 305 } 306 307 ret = dmaengine_slave_config(chan, &conf); 308 if (ret) 309 return ERR_PTR(ret); 310 311 /* 312 * We need to split the transfer into PAGE_SIZE'd chunks. This is 313 * because we are using @espi->zeropage to provide a zero RX buffer 314 * for the TX transfers and we have only allocated one page for that. 315 * 316 * For performance reasons we allocate a new sg_table only when 317 * needed. Otherwise we will re-use the current one. Eventually the 318 * last sg_table is released in ep93xx_spi_release_dma(). 319 */ 320 321 nents = DIV_ROUND_UP(len, PAGE_SIZE); 322 if (nents != sgt->nents) { 323 sg_free_table(sgt); 324 325 ret = sg_alloc_table(sgt, nents, GFP_KERNEL); 326 if (ret) 327 return ERR_PTR(ret); 328 } 329 330 pbuf = buf; 331 for_each_sg(sgt->sgl, sg, sgt->nents, i) { 332 size_t bytes = min_t(size_t, len, PAGE_SIZE); 333 334 if (buf) { 335 sg_set_page(sg, virt_to_page(pbuf), bytes, 336 offset_in_page(pbuf)); 337 } else { 338 sg_set_page(sg, virt_to_page(espi->zeropage), 339 bytes, 0); 340 } 341 342 pbuf += bytes; 343 len -= bytes; 344 } 345 346 if (WARN_ON(len)) { 347 dev_warn(&master->dev, "len = %zu expected 0!\n", len); 348 return ERR_PTR(-EINVAL); 349 } 350 351 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 352 if (!nents) 353 return ERR_PTR(-ENOMEM); 354 355 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction, 356 DMA_CTRL_ACK); 357 if (!txd) { 358 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 359 return ERR_PTR(-ENOMEM); 360 } 361 return txd; 362 } 363 364 /** 365 * ep93xx_spi_dma_finish() - finishes with a DMA transfer 366 * @master: SPI master 367 * @dir: DMA transfer direction 368 * 369 * Function finishes with the DMA transfer. After this, the DMA buffer is 370 * unmapped. 371 */ 372 static void ep93xx_spi_dma_finish(struct spi_master *master, 373 enum dma_data_direction dir) 374 { 375 struct ep93xx_spi *espi = spi_master_get_devdata(master); 376 struct dma_chan *chan; 377 struct sg_table *sgt; 378 379 if (dir == DMA_FROM_DEVICE) { 380 chan = espi->dma_rx; 381 sgt = &espi->rx_sgt; 382 } else { 383 chan = espi->dma_tx; 384 sgt = &espi->tx_sgt; 385 } 386 387 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 388 } 389 390 static void ep93xx_spi_dma_callback(void *callback_param) 391 { 392 struct spi_master *master = callback_param; 393 394 ep93xx_spi_dma_finish(master, DMA_TO_DEVICE); 395 ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE); 396 397 spi_finalize_current_transfer(master); 398 } 399 400 static int ep93xx_spi_dma_transfer(struct spi_master *master) 401 { 402 struct ep93xx_spi *espi = spi_master_get_devdata(master); 403 struct dma_async_tx_descriptor *rxd, *txd; 404 405 rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE); 406 if (IS_ERR(rxd)) { 407 dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); 408 return PTR_ERR(rxd); 409 } 410 411 txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE); 412 if (IS_ERR(txd)) { 413 ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE); 414 dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd)); 415 return PTR_ERR(txd); 416 } 417 418 /* We are ready when RX is done */ 419 rxd->callback = ep93xx_spi_dma_callback; 420 rxd->callback_param = master; 421 422 /* Now submit both descriptors and start DMA */ 423 dmaengine_submit(rxd); 424 dmaengine_submit(txd); 425 426 dma_async_issue_pending(espi->dma_rx); 427 dma_async_issue_pending(espi->dma_tx); 428 429 /* signal that we need to wait for completion */ 430 return 1; 431 } 432 433 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) 434 { 435 struct spi_master *master = dev_id; 436 struct ep93xx_spi *espi = spi_master_get_devdata(master); 437 u32 val; 438 439 /* 440 * If we got ROR (receive overrun) interrupt we know that something is 441 * wrong. Just abort the message. 442 */ 443 if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) { 444 /* clear the overrun interrupt */ 445 writel(0, espi->mmio + SSPICR); 446 dev_warn(&master->dev, 447 "receive overrun, aborting the message\n"); 448 master->cur_msg->status = -EIO; 449 } else { 450 /* 451 * Interrupt is either RX (RIS) or TX (TIS). For both cases we 452 * simply execute next data transfer. 453 */ 454 if (ep93xx_spi_read_write(master)) { 455 /* 456 * In normal case, there still is some processing left 457 * for current transfer. Let's wait for the next 458 * interrupt then. 459 */ 460 return IRQ_HANDLED; 461 } 462 } 463 464 /* 465 * Current transfer is finished, either with error or with success. In 466 * any case we disable interrupts and notify the worker to handle 467 * any post-processing of the message. 468 */ 469 val = readl(espi->mmio + SSPCR1); 470 val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); 471 writel(val, espi->mmio + SSPCR1); 472 473 spi_finalize_current_transfer(master); 474 475 return IRQ_HANDLED; 476 } 477 478 static int ep93xx_spi_transfer_one(struct spi_master *master, 479 struct spi_device *spi, 480 struct spi_transfer *xfer) 481 { 482 struct ep93xx_spi *espi = spi_master_get_devdata(master); 483 u32 val; 484 int ret; 485 486 ret = ep93xx_spi_chip_setup(master, spi, xfer); 487 if (ret) { 488 dev_err(&master->dev, "failed to setup chip for transfer\n"); 489 return ret; 490 } 491 492 master->cur_msg->state = xfer; 493 espi->rx = 0; 494 espi->tx = 0; 495 496 /* 497 * There is no point of setting up DMA for the transfers which will 498 * fit into the FIFO and can be transferred with a single interrupt. 499 * So in these cases we will be using PIO and don't bother for DMA. 500 */ 501 if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE) 502 return ep93xx_spi_dma_transfer(master); 503 504 /* Using PIO so prime the TX FIFO and enable interrupts */ 505 ep93xx_spi_read_write(master); 506 507 val = readl(espi->mmio + SSPCR1); 508 val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); 509 writel(val, espi->mmio + SSPCR1); 510 511 /* signal that we need to wait for completion */ 512 return 1; 513 } 514 515 static int ep93xx_spi_prepare_message(struct spi_master *master, 516 struct spi_message *msg) 517 { 518 struct ep93xx_spi *espi = spi_master_get_devdata(master); 519 unsigned long timeout; 520 521 /* 522 * Just to be sure: flush any data from RX FIFO. 523 */ 524 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); 525 while (readl(espi->mmio + SSPSR) & SSPSR_RNE) { 526 if (time_after(jiffies, timeout)) { 527 dev_warn(&master->dev, 528 "timeout while flushing RX FIFO\n"); 529 return -ETIMEDOUT; 530 } 531 readl(espi->mmio + SSPDR); 532 } 533 534 /* 535 * We explicitly handle FIFO level. This way we don't have to check TX 536 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. 537 */ 538 espi->fifo_level = 0; 539 540 return 0; 541 } 542 543 static int ep93xx_spi_prepare_hardware(struct spi_master *master) 544 { 545 struct ep93xx_spi *espi = spi_master_get_devdata(master); 546 u32 val; 547 int ret; 548 549 ret = clk_enable(espi->clk); 550 if (ret) 551 return ret; 552 553 val = readl(espi->mmio + SSPCR1); 554 val |= SSPCR1_SSE; 555 writel(val, espi->mmio + SSPCR1); 556 557 return 0; 558 } 559 560 static int ep93xx_spi_unprepare_hardware(struct spi_master *master) 561 { 562 struct ep93xx_spi *espi = spi_master_get_devdata(master); 563 u32 val; 564 565 val = readl(espi->mmio + SSPCR1); 566 val &= ~SSPCR1_SSE; 567 writel(val, espi->mmio + SSPCR1); 568 569 clk_disable(espi->clk); 570 571 return 0; 572 } 573 574 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param) 575 { 576 if (ep93xx_dma_chan_is_m2p(chan)) 577 return false; 578 579 chan->private = filter_param; 580 return true; 581 } 582 583 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi) 584 { 585 dma_cap_mask_t mask; 586 int ret; 587 588 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); 589 if (!espi->zeropage) 590 return -ENOMEM; 591 592 dma_cap_zero(mask); 593 dma_cap_set(DMA_SLAVE, mask); 594 595 espi->dma_rx_data.port = EP93XX_DMA_SSP; 596 espi->dma_rx_data.direction = DMA_DEV_TO_MEM; 597 espi->dma_rx_data.name = "ep93xx-spi-rx"; 598 599 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter, 600 &espi->dma_rx_data); 601 if (!espi->dma_rx) { 602 ret = -ENODEV; 603 goto fail_free_page; 604 } 605 606 espi->dma_tx_data.port = EP93XX_DMA_SSP; 607 espi->dma_tx_data.direction = DMA_MEM_TO_DEV; 608 espi->dma_tx_data.name = "ep93xx-spi-tx"; 609 610 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter, 611 &espi->dma_tx_data); 612 if (!espi->dma_tx) { 613 ret = -ENODEV; 614 goto fail_release_rx; 615 } 616 617 return 0; 618 619 fail_release_rx: 620 dma_release_channel(espi->dma_rx); 621 espi->dma_rx = NULL; 622 fail_free_page: 623 free_page((unsigned long)espi->zeropage); 624 625 return ret; 626 } 627 628 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi) 629 { 630 if (espi->dma_rx) { 631 dma_release_channel(espi->dma_rx); 632 sg_free_table(&espi->rx_sgt); 633 } 634 if (espi->dma_tx) { 635 dma_release_channel(espi->dma_tx); 636 sg_free_table(&espi->tx_sgt); 637 } 638 639 if (espi->zeropage) 640 free_page((unsigned long)espi->zeropage); 641 } 642 643 static int ep93xx_spi_probe(struct platform_device *pdev) 644 { 645 struct spi_master *master; 646 struct ep93xx_spi_info *info; 647 struct ep93xx_spi *espi; 648 struct resource *res; 649 int irq; 650 int error; 651 652 info = dev_get_platdata(&pdev->dev); 653 if (!info) { 654 dev_err(&pdev->dev, "missing platform data\n"); 655 return -EINVAL; 656 } 657 658 irq = platform_get_irq(pdev, 0); 659 if (irq < 0) { 660 dev_err(&pdev->dev, "failed to get irq resources\n"); 661 return -EBUSY; 662 } 663 664 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 665 if (!res) { 666 dev_err(&pdev->dev, "unable to get iomem resource\n"); 667 return -ENODEV; 668 } 669 670 master = spi_alloc_master(&pdev->dev, sizeof(*espi)); 671 if (!master) 672 return -ENOMEM; 673 674 master->use_gpio_descriptors = true; 675 master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware; 676 master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware; 677 master->prepare_message = ep93xx_spi_prepare_message; 678 master->transfer_one = ep93xx_spi_transfer_one; 679 master->bus_num = pdev->id; 680 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 681 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 682 /* 683 * The SPI core will count the number of GPIO descriptors to figure 684 * out the number of chip selects available on the platform. 685 */ 686 master->num_chipselect = 0; 687 688 platform_set_drvdata(pdev, master); 689 690 espi = spi_master_get_devdata(master); 691 692 espi->clk = devm_clk_get(&pdev->dev, NULL); 693 if (IS_ERR(espi->clk)) { 694 dev_err(&pdev->dev, "unable to get spi clock\n"); 695 error = PTR_ERR(espi->clk); 696 goto fail_release_master; 697 } 698 699 /* 700 * Calculate maximum and minimum supported clock rates 701 * for the controller. 702 */ 703 master->max_speed_hz = clk_get_rate(espi->clk) / 2; 704 master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256); 705 706 espi->sspdr_phys = res->start + SSPDR; 707 708 espi->mmio = devm_ioremap_resource(&pdev->dev, res); 709 if (IS_ERR(espi->mmio)) { 710 error = PTR_ERR(espi->mmio); 711 goto fail_release_master; 712 } 713 714 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt, 715 0, "ep93xx-spi", master); 716 if (error) { 717 dev_err(&pdev->dev, "failed to request irq\n"); 718 goto fail_release_master; 719 } 720 721 if (info->use_dma && ep93xx_spi_setup_dma(espi)) 722 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); 723 724 /* make sure that the hardware is disabled */ 725 writel(0, espi->mmio + SSPCR1); 726 727 error = devm_spi_register_master(&pdev->dev, master); 728 if (error) { 729 dev_err(&pdev->dev, "failed to register SPI master\n"); 730 goto fail_free_dma; 731 } 732 733 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", 734 (unsigned long)res->start, irq); 735 736 return 0; 737 738 fail_free_dma: 739 ep93xx_spi_release_dma(espi); 740 fail_release_master: 741 spi_master_put(master); 742 743 return error; 744 } 745 746 static int ep93xx_spi_remove(struct platform_device *pdev) 747 { 748 struct spi_master *master = platform_get_drvdata(pdev); 749 struct ep93xx_spi *espi = spi_master_get_devdata(master); 750 751 ep93xx_spi_release_dma(espi); 752 753 return 0; 754 } 755 756 static struct platform_driver ep93xx_spi_driver = { 757 .driver = { 758 .name = "ep93xx-spi", 759 }, 760 .probe = ep93xx_spi_probe, 761 .remove = ep93xx_spi_remove, 762 }; 763 module_platform_driver(ep93xx_spi_driver); 764 765 MODULE_DESCRIPTION("EP93xx SPI Controller driver"); 766 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); 767 MODULE_LICENSE("GPL"); 768 MODULE_ALIAS("platform:ep93xx-spi"); 769