xref: /openbmc/linux/drivers/spi/spi-ep93xx.c (revision b60a5b8d)
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/spi/spi.h>
33 
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
36 
37 #define SSPCR0			0x0000
38 #define SSPCR0_MODE_SHIFT	6
39 #define SSPCR0_SCR_SHIFT	8
40 
41 #define SSPCR1			0x0004
42 #define SSPCR1_RIE		BIT(0)
43 #define SSPCR1_TIE		BIT(1)
44 #define SSPCR1_RORIE		BIT(2)
45 #define SSPCR1_LBM		BIT(3)
46 #define SSPCR1_SSE		BIT(4)
47 #define SSPCR1_MS		BIT(5)
48 #define SSPCR1_SOD		BIT(6)
49 
50 #define SSPDR			0x0008
51 
52 #define SSPSR			0x000c
53 #define SSPSR_TFE		BIT(0)
54 #define SSPSR_TNF		BIT(1)
55 #define SSPSR_RNE		BIT(2)
56 #define SSPSR_RFF		BIT(3)
57 #define SSPSR_BSY		BIT(4)
58 #define SSPCPSR			0x0010
59 
60 #define SSPIIR			0x0014
61 #define SSPIIR_RIS		BIT(0)
62 #define SSPIIR_TIS		BIT(1)
63 #define SSPIIR_RORIS		BIT(2)
64 #define SSPICR			SSPIIR
65 
66 /* timeout in milliseconds */
67 #define SPI_TIMEOUT		5
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE		8
70 
71 /**
72  * struct ep93xx_spi - EP93xx SPI controller structure
73  * @clk: clock for the controller
74  * @mmio: pointer to ioremap()'d registers
75  * @sspdr_phys: physical address of the SSPDR register
76  * @tx: current byte in transfer to transmit
77  * @rx: current byte in transfer to receive
78  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
79  *              frame decreases this level and sending one frame increases it.
80  * @dma_rx: RX DMA channel
81  * @dma_tx: TX DMA channel
82  * @dma_rx_data: RX parameters passed to the DMA engine
83  * @dma_tx_data: TX parameters passed to the DMA engine
84  * @rx_sgt: sg table for RX transfers
85  * @tx_sgt: sg table for TX transfers
86  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
87  *            the client
88  */
89 struct ep93xx_spi {
90 	struct clk			*clk;
91 	void __iomem			*mmio;
92 	unsigned long			sspdr_phys;
93 	size_t				tx;
94 	size_t				rx;
95 	size_t				fifo_level;
96 	struct dma_chan			*dma_rx;
97 	struct dma_chan			*dma_tx;
98 	struct ep93xx_dma_data		dma_rx_data;
99 	struct ep93xx_dma_data		dma_tx_data;
100 	struct sg_table			rx_sgt;
101 	struct sg_table			tx_sgt;
102 	void				*zeropage;
103 };
104 
105 /* converts bits per word to CR0.DSS value */
106 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
107 
108 /**
109  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
110  * @master: SPI master
111  * @rate: desired SPI output clock rate
112  * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
113  * @div_scr: pointer to return the scr divider
114  */
115 static int ep93xx_spi_calc_divisors(struct spi_master *master,
116 				    u32 rate, u8 *div_cpsr, u8 *div_scr)
117 {
118 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
119 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
120 	int cpsr, scr;
121 
122 	/*
123 	 * Make sure that max value is between values supported by the
124 	 * controller.
125 	 */
126 	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
127 
128 	/*
129 	 * Calculate divisors so that we can get speed according the
130 	 * following formula:
131 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
132 	 *
133 	 * cpsr must be even number and starts from 2, scr can be any number
134 	 * between 0 and 255.
135 	 */
136 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
137 		for (scr = 0; scr <= 255; scr++) {
138 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
139 				*div_scr = (u8)scr;
140 				*div_cpsr = (u8)cpsr;
141 				return 0;
142 			}
143 		}
144 	}
145 
146 	return -EINVAL;
147 }
148 
149 static int ep93xx_spi_chip_setup(struct spi_master *master,
150 				 struct spi_device *spi,
151 				 struct spi_transfer *xfer)
152 {
153 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
154 	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
155 	u8 div_cpsr = 0;
156 	u8 div_scr = 0;
157 	u16 cr0;
158 	int err;
159 
160 	err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
161 				       &div_cpsr, &div_scr);
162 	if (err)
163 		return err;
164 
165 	cr0 = div_scr << SSPCR0_SCR_SHIFT;
166 	cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
167 	cr0 |= dss;
168 
169 	dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
170 		spi->mode, div_cpsr, div_scr, dss);
171 	dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
172 
173 	writel(div_cpsr, espi->mmio + SSPCPSR);
174 	writel(cr0, espi->mmio + SSPCR0);
175 
176 	return 0;
177 }
178 
179 static void ep93xx_do_write(struct spi_master *master)
180 {
181 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
182 	struct spi_transfer *xfer = master->cur_msg->state;
183 	u32 val = 0;
184 
185 	if (xfer->bits_per_word > 8) {
186 		if (xfer->tx_buf)
187 			val = ((u16 *)xfer->tx_buf)[espi->tx];
188 		espi->tx += 2;
189 	} else {
190 		if (xfer->tx_buf)
191 			val = ((u8 *)xfer->tx_buf)[espi->tx];
192 		espi->tx += 1;
193 	}
194 	writel(val, espi->mmio + SSPDR);
195 }
196 
197 static void ep93xx_do_read(struct spi_master *master)
198 {
199 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
200 	struct spi_transfer *xfer = master->cur_msg->state;
201 	u32 val;
202 
203 	val = readl(espi->mmio + SSPDR);
204 	if (xfer->bits_per_word > 8) {
205 		if (xfer->rx_buf)
206 			((u16 *)xfer->rx_buf)[espi->rx] = val;
207 		espi->rx += 2;
208 	} else {
209 		if (xfer->rx_buf)
210 			((u8 *)xfer->rx_buf)[espi->rx] = val;
211 		espi->rx += 1;
212 	}
213 }
214 
215 /**
216  * ep93xx_spi_read_write() - perform next RX/TX transfer
217  * @espi: ep93xx SPI controller struct
218  *
219  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
220  * called several times, the whole transfer will be completed. Returns
221  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
222  *
223  * When this function is finished, RX FIFO should be empty and TX FIFO should be
224  * full.
225  */
226 static int ep93xx_spi_read_write(struct spi_master *master)
227 {
228 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
229 	struct spi_transfer *xfer = master->cur_msg->state;
230 
231 	/* read as long as RX FIFO has frames in it */
232 	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
233 		ep93xx_do_read(master);
234 		espi->fifo_level--;
235 	}
236 
237 	/* write as long as TX FIFO has room */
238 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
239 		ep93xx_do_write(master);
240 		espi->fifo_level++;
241 	}
242 
243 	if (espi->rx == xfer->len)
244 		return 0;
245 
246 	return -EINPROGRESS;
247 }
248 
249 static enum dma_transfer_direction
250 ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
251 {
252 	switch (dir) {
253 	case DMA_TO_DEVICE:
254 		return DMA_MEM_TO_DEV;
255 	case DMA_FROM_DEVICE:
256 		return DMA_DEV_TO_MEM;
257 	default:
258 		return DMA_TRANS_NONE;
259 	}
260 }
261 
262 /**
263  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
264  * @master: SPI master
265  * @dir: DMA transfer direction
266  *
267  * Function configures the DMA, maps the buffer and prepares the DMA
268  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
269  * in case of failure.
270  */
271 static struct dma_async_tx_descriptor *
272 ep93xx_spi_dma_prepare(struct spi_master *master,
273 		       enum dma_data_direction dir)
274 {
275 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
276 	struct spi_transfer *xfer = master->cur_msg->state;
277 	struct dma_async_tx_descriptor *txd;
278 	enum dma_slave_buswidth buswidth;
279 	struct dma_slave_config conf;
280 	struct scatterlist *sg;
281 	struct sg_table *sgt;
282 	struct dma_chan *chan;
283 	const void *buf, *pbuf;
284 	size_t len = xfer->len;
285 	int i, ret, nents;
286 
287 	if (xfer->bits_per_word > 8)
288 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
289 	else
290 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
291 
292 	memset(&conf, 0, sizeof(conf));
293 	conf.direction = ep93xx_dma_data_to_trans_dir(dir);
294 
295 	if (dir == DMA_FROM_DEVICE) {
296 		chan = espi->dma_rx;
297 		buf = xfer->rx_buf;
298 		sgt = &espi->rx_sgt;
299 
300 		conf.src_addr = espi->sspdr_phys;
301 		conf.src_addr_width = buswidth;
302 	} else {
303 		chan = espi->dma_tx;
304 		buf = xfer->tx_buf;
305 		sgt = &espi->tx_sgt;
306 
307 		conf.dst_addr = espi->sspdr_phys;
308 		conf.dst_addr_width = buswidth;
309 	}
310 
311 	ret = dmaengine_slave_config(chan, &conf);
312 	if (ret)
313 		return ERR_PTR(ret);
314 
315 	/*
316 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
317 	 * because we are using @espi->zeropage to provide a zero RX buffer
318 	 * for the TX transfers and we have only allocated one page for that.
319 	 *
320 	 * For performance reasons we allocate a new sg_table only when
321 	 * needed. Otherwise we will re-use the current one. Eventually the
322 	 * last sg_table is released in ep93xx_spi_release_dma().
323 	 */
324 
325 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
326 	if (nents != sgt->nents) {
327 		sg_free_table(sgt);
328 
329 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
330 		if (ret)
331 			return ERR_PTR(ret);
332 	}
333 
334 	pbuf = buf;
335 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
336 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
337 
338 		if (buf) {
339 			sg_set_page(sg, virt_to_page(pbuf), bytes,
340 				    offset_in_page(pbuf));
341 		} else {
342 			sg_set_page(sg, virt_to_page(espi->zeropage),
343 				    bytes, 0);
344 		}
345 
346 		pbuf += bytes;
347 		len -= bytes;
348 	}
349 
350 	if (WARN_ON(len)) {
351 		dev_warn(&master->dev, "len = %zu expected 0!\n", len);
352 		return ERR_PTR(-EINVAL);
353 	}
354 
355 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
356 	if (!nents)
357 		return ERR_PTR(-ENOMEM);
358 
359 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
360 				      DMA_CTRL_ACK);
361 	if (!txd) {
362 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
363 		return ERR_PTR(-ENOMEM);
364 	}
365 	return txd;
366 }
367 
368 /**
369  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
370  * @master: SPI master
371  * @dir: DMA transfer direction
372  *
373  * Function finishes with the DMA transfer. After this, the DMA buffer is
374  * unmapped.
375  */
376 static void ep93xx_spi_dma_finish(struct spi_master *master,
377 				  enum dma_data_direction dir)
378 {
379 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
380 	struct dma_chan *chan;
381 	struct sg_table *sgt;
382 
383 	if (dir == DMA_FROM_DEVICE) {
384 		chan = espi->dma_rx;
385 		sgt = &espi->rx_sgt;
386 	} else {
387 		chan = espi->dma_tx;
388 		sgt = &espi->tx_sgt;
389 	}
390 
391 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
392 }
393 
394 static void ep93xx_spi_dma_callback(void *callback_param)
395 {
396 	struct spi_master *master = callback_param;
397 
398 	ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
399 	ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
400 
401 	spi_finalize_current_transfer(master);
402 }
403 
404 static int ep93xx_spi_dma_transfer(struct spi_master *master)
405 {
406 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
407 	struct dma_async_tx_descriptor *rxd, *txd;
408 
409 	rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
410 	if (IS_ERR(rxd)) {
411 		dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
412 		return PTR_ERR(rxd);
413 	}
414 
415 	txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
416 	if (IS_ERR(txd)) {
417 		ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
418 		dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
419 		return PTR_ERR(txd);
420 	}
421 
422 	/* We are ready when RX is done */
423 	rxd->callback = ep93xx_spi_dma_callback;
424 	rxd->callback_param = master;
425 
426 	/* Now submit both descriptors and start DMA */
427 	dmaengine_submit(rxd);
428 	dmaengine_submit(txd);
429 
430 	dma_async_issue_pending(espi->dma_rx);
431 	dma_async_issue_pending(espi->dma_tx);
432 
433 	/* signal that we need to wait for completion */
434 	return 1;
435 }
436 
437 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
438 {
439 	struct spi_master *master = dev_id;
440 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
441 	u32 val;
442 
443 	/*
444 	 * If we got ROR (receive overrun) interrupt we know that something is
445 	 * wrong. Just abort the message.
446 	 */
447 	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
448 		/* clear the overrun interrupt */
449 		writel(0, espi->mmio + SSPICR);
450 		dev_warn(&master->dev,
451 			 "receive overrun, aborting the message\n");
452 		master->cur_msg->status = -EIO;
453 	} else {
454 		/*
455 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
456 		 * simply execute next data transfer.
457 		 */
458 		if (ep93xx_spi_read_write(master)) {
459 			/*
460 			 * In normal case, there still is some processing left
461 			 * for current transfer. Let's wait for the next
462 			 * interrupt then.
463 			 */
464 			return IRQ_HANDLED;
465 		}
466 	}
467 
468 	/*
469 	 * Current transfer is finished, either with error or with success. In
470 	 * any case we disable interrupts and notify the worker to handle
471 	 * any post-processing of the message.
472 	 */
473 	val = readl(espi->mmio + SSPCR1);
474 	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
475 	writel(val, espi->mmio + SSPCR1);
476 
477 	spi_finalize_current_transfer(master);
478 
479 	return IRQ_HANDLED;
480 }
481 
482 static int ep93xx_spi_transfer_one(struct spi_master *master,
483 				   struct spi_device *spi,
484 				   struct spi_transfer *xfer)
485 {
486 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
487 	u32 val;
488 	int ret;
489 
490 	ret = ep93xx_spi_chip_setup(master, spi, xfer);
491 	if (ret) {
492 		dev_err(&master->dev, "failed to setup chip for transfer\n");
493 		return ret;
494 	}
495 
496 	master->cur_msg->state = xfer;
497 	espi->rx = 0;
498 	espi->tx = 0;
499 
500 	/*
501 	 * There is no point of setting up DMA for the transfers which will
502 	 * fit into the FIFO and can be transferred with a single interrupt.
503 	 * So in these cases we will be using PIO and don't bother for DMA.
504 	 */
505 	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
506 		return ep93xx_spi_dma_transfer(master);
507 
508 	/* Using PIO so prime the TX FIFO and enable interrupts */
509 	ep93xx_spi_read_write(master);
510 
511 	val = readl(espi->mmio + SSPCR1);
512 	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
513 	writel(val, espi->mmio + SSPCR1);
514 
515 	/* signal that we need to wait for completion */
516 	return 1;
517 }
518 
519 static int ep93xx_spi_prepare_message(struct spi_master *master,
520 				      struct spi_message *msg)
521 {
522 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
523 	unsigned long timeout;
524 
525 	/*
526 	 * Just to be sure: flush any data from RX FIFO.
527 	 */
528 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
529 	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
530 		if (time_after(jiffies, timeout)) {
531 			dev_warn(&master->dev,
532 				 "timeout while flushing RX FIFO\n");
533 			return -ETIMEDOUT;
534 		}
535 		readl(espi->mmio + SSPDR);
536 	}
537 
538 	/*
539 	 * We explicitly handle FIFO level. This way we don't have to check TX
540 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
541 	 */
542 	espi->fifo_level = 0;
543 
544 	return 0;
545 }
546 
547 static int ep93xx_spi_prepare_hardware(struct spi_master *master)
548 {
549 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
550 	u32 val;
551 	int ret;
552 
553 	ret = clk_enable(espi->clk);
554 	if (ret)
555 		return ret;
556 
557 	val = readl(espi->mmio + SSPCR1);
558 	val |= SSPCR1_SSE;
559 	writel(val, espi->mmio + SSPCR1);
560 
561 	return 0;
562 }
563 
564 static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
565 {
566 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
567 	u32 val;
568 
569 	val = readl(espi->mmio + SSPCR1);
570 	val &= ~SSPCR1_SSE;
571 	writel(val, espi->mmio + SSPCR1);
572 
573 	clk_disable(espi->clk);
574 
575 	return 0;
576 }
577 
578 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
579 {
580 	if (ep93xx_dma_chan_is_m2p(chan))
581 		return false;
582 
583 	chan->private = filter_param;
584 	return true;
585 }
586 
587 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
588 {
589 	dma_cap_mask_t mask;
590 	int ret;
591 
592 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
593 	if (!espi->zeropage)
594 		return -ENOMEM;
595 
596 	dma_cap_zero(mask);
597 	dma_cap_set(DMA_SLAVE, mask);
598 
599 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
600 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
601 	espi->dma_rx_data.name = "ep93xx-spi-rx";
602 
603 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
604 					   &espi->dma_rx_data);
605 	if (!espi->dma_rx) {
606 		ret = -ENODEV;
607 		goto fail_free_page;
608 	}
609 
610 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
611 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
612 	espi->dma_tx_data.name = "ep93xx-spi-tx";
613 
614 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
615 					   &espi->dma_tx_data);
616 	if (!espi->dma_tx) {
617 		ret = -ENODEV;
618 		goto fail_release_rx;
619 	}
620 
621 	return 0;
622 
623 fail_release_rx:
624 	dma_release_channel(espi->dma_rx);
625 	espi->dma_rx = NULL;
626 fail_free_page:
627 	free_page((unsigned long)espi->zeropage);
628 
629 	return ret;
630 }
631 
632 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
633 {
634 	if (espi->dma_rx) {
635 		dma_release_channel(espi->dma_rx);
636 		sg_free_table(&espi->rx_sgt);
637 	}
638 	if (espi->dma_tx) {
639 		dma_release_channel(espi->dma_tx);
640 		sg_free_table(&espi->tx_sgt);
641 	}
642 
643 	if (espi->zeropage)
644 		free_page((unsigned long)espi->zeropage);
645 }
646 
647 static int ep93xx_spi_probe(struct platform_device *pdev)
648 {
649 	struct spi_master *master;
650 	struct ep93xx_spi_info *info;
651 	struct ep93xx_spi *espi;
652 	struct resource *res;
653 	int irq;
654 	int error;
655 	int i;
656 
657 	info = dev_get_platdata(&pdev->dev);
658 	if (!info) {
659 		dev_err(&pdev->dev, "missing platform data\n");
660 		return -EINVAL;
661 	}
662 
663 	irq = platform_get_irq(pdev, 0);
664 	if (irq < 0) {
665 		dev_err(&pdev->dev, "failed to get irq resources\n");
666 		return -EBUSY;
667 	}
668 
669 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
670 	if (!res) {
671 		dev_err(&pdev->dev, "unable to get iomem resource\n");
672 		return -ENODEV;
673 	}
674 
675 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
676 	if (!master)
677 		return -ENOMEM;
678 
679 	master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
680 	master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
681 	master->prepare_message = ep93xx_spi_prepare_message;
682 	master->transfer_one = ep93xx_spi_transfer_one;
683 	master->bus_num = pdev->id;
684 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
685 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
686 
687 	master->num_chipselect = info->num_chipselect;
688 	master->cs_gpios = devm_kcalloc(&master->dev,
689 					master->num_chipselect, sizeof(int),
690 					GFP_KERNEL);
691 	if (!master->cs_gpios) {
692 		error = -ENOMEM;
693 		goto fail_release_master;
694 	}
695 
696 	for (i = 0; i < master->num_chipselect; i++) {
697 		master->cs_gpios[i] = info->chipselect[i];
698 
699 		if (!gpio_is_valid(master->cs_gpios[i]))
700 			continue;
701 
702 		error = devm_gpio_request_one(&pdev->dev, master->cs_gpios[i],
703 					      GPIOF_OUT_INIT_HIGH,
704 					      "ep93xx-spi");
705 		if (error) {
706 			dev_err(&pdev->dev, "could not request cs gpio %d\n",
707 				master->cs_gpios[i]);
708 			goto fail_release_master;
709 		}
710 	}
711 
712 	platform_set_drvdata(pdev, master);
713 
714 	espi = spi_master_get_devdata(master);
715 
716 	espi->clk = devm_clk_get(&pdev->dev, NULL);
717 	if (IS_ERR(espi->clk)) {
718 		dev_err(&pdev->dev, "unable to get spi clock\n");
719 		error = PTR_ERR(espi->clk);
720 		goto fail_release_master;
721 	}
722 
723 	/*
724 	 * Calculate maximum and minimum supported clock rates
725 	 * for the controller.
726 	 */
727 	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
728 	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
729 
730 	espi->sspdr_phys = res->start + SSPDR;
731 
732 	espi->mmio = devm_ioremap_resource(&pdev->dev, res);
733 	if (IS_ERR(espi->mmio)) {
734 		error = PTR_ERR(espi->mmio);
735 		goto fail_release_master;
736 	}
737 
738 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
739 				0, "ep93xx-spi", master);
740 	if (error) {
741 		dev_err(&pdev->dev, "failed to request irq\n");
742 		goto fail_release_master;
743 	}
744 
745 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
746 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
747 
748 	/* make sure that the hardware is disabled */
749 	writel(0, espi->mmio + SSPCR1);
750 
751 	error = devm_spi_register_master(&pdev->dev, master);
752 	if (error) {
753 		dev_err(&pdev->dev, "failed to register SPI master\n");
754 		goto fail_free_dma;
755 	}
756 
757 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
758 		 (unsigned long)res->start, irq);
759 
760 	return 0;
761 
762 fail_free_dma:
763 	ep93xx_spi_release_dma(espi);
764 fail_release_master:
765 	spi_master_put(master);
766 
767 	return error;
768 }
769 
770 static int ep93xx_spi_remove(struct platform_device *pdev)
771 {
772 	struct spi_master *master = platform_get_drvdata(pdev);
773 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
774 
775 	ep93xx_spi_release_dma(espi);
776 
777 	return 0;
778 }
779 
780 static struct platform_driver ep93xx_spi_driver = {
781 	.driver		= {
782 		.name	= "ep93xx-spi",
783 	},
784 	.probe		= ep93xx_spi_probe,
785 	.remove		= ep93xx_spi_remove,
786 };
787 module_platform_driver(ep93xx_spi_driver);
788 
789 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
790 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
791 MODULE_LICENSE("GPL");
792 MODULE_ALIAS("platform:ep93xx-spi");
793