xref: /openbmc/linux/drivers/spi/spi-ep93xx.c (revision b34e08d5)
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spi/spi.h>
32 
33 #include <linux/platform_data/dma-ep93xx.h>
34 #include <linux/platform_data/spi-ep93xx.h>
35 
36 #define SSPCR0			0x0000
37 #define SSPCR0_MODE_SHIFT	6
38 #define SSPCR0_SCR_SHIFT	8
39 
40 #define SSPCR1			0x0004
41 #define SSPCR1_RIE		BIT(0)
42 #define SSPCR1_TIE		BIT(1)
43 #define SSPCR1_RORIE		BIT(2)
44 #define SSPCR1_LBM		BIT(3)
45 #define SSPCR1_SSE		BIT(4)
46 #define SSPCR1_MS		BIT(5)
47 #define SSPCR1_SOD		BIT(6)
48 
49 #define SSPDR			0x0008
50 
51 #define SSPSR			0x000c
52 #define SSPSR_TFE		BIT(0)
53 #define SSPSR_TNF		BIT(1)
54 #define SSPSR_RNE		BIT(2)
55 #define SSPSR_RFF		BIT(3)
56 #define SSPSR_BSY		BIT(4)
57 #define SSPCPSR			0x0010
58 
59 #define SSPIIR			0x0014
60 #define SSPIIR_RIS		BIT(0)
61 #define SSPIIR_TIS		BIT(1)
62 #define SSPIIR_RORIS		BIT(2)
63 #define SSPICR			SSPIIR
64 
65 /* timeout in milliseconds */
66 #define SPI_TIMEOUT		5
67 /* maximum depth of RX/TX FIFO */
68 #define SPI_FIFO_SIZE		8
69 
70 /**
71  * struct ep93xx_spi - EP93xx SPI controller structure
72  * @pdev: pointer to platform device
73  * @clk: clock for the controller
74  * @regs_base: pointer to ioremap()'d registers
75  * @sspdr_phys: physical address of the SSPDR register
76  * @wait: wait here until given transfer is completed
77  * @current_msg: message that is currently processed (or %NULL if none)
78  * @tx: current byte in transfer to transmit
79  * @rx: current byte in transfer to receive
80  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
81  *              frame decreases this level and sending one frame increases it.
82  * @dma_rx: RX DMA channel
83  * @dma_tx: TX DMA channel
84  * @dma_rx_data: RX parameters passed to the DMA engine
85  * @dma_tx_data: TX parameters passed to the DMA engine
86  * @rx_sgt: sg table for RX transfers
87  * @tx_sgt: sg table for TX transfers
88  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
89  *            the client
90  */
91 struct ep93xx_spi {
92 	const struct platform_device	*pdev;
93 	struct clk			*clk;
94 	void __iomem			*regs_base;
95 	unsigned long			sspdr_phys;
96 	struct completion		wait;
97 	struct spi_message		*current_msg;
98 	size_t				tx;
99 	size_t				rx;
100 	size_t				fifo_level;
101 	struct dma_chan			*dma_rx;
102 	struct dma_chan			*dma_tx;
103 	struct ep93xx_dma_data		dma_rx_data;
104 	struct ep93xx_dma_data		dma_tx_data;
105 	struct sg_table			rx_sgt;
106 	struct sg_table			tx_sgt;
107 	void				*zeropage;
108 };
109 
110 /**
111  * struct ep93xx_spi_chip - SPI device hardware settings
112  * @spi: back pointer to the SPI device
113  * @ops: private chip operations
114  */
115 struct ep93xx_spi_chip {
116 	const struct spi_device		*spi;
117 	struct ep93xx_spi_chip_ops	*ops;
118 };
119 
120 /* converts bits per word to CR0.DSS value */
121 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
122 
123 static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
124 				u16 reg, u8 value)
125 {
126 	writeb(value, espi->regs_base + reg);
127 }
128 
129 static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
130 {
131 	return readb(spi->regs_base + reg);
132 }
133 
134 static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
135 				 u16 reg, u16 value)
136 {
137 	writew(value, espi->regs_base + reg);
138 }
139 
140 static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
141 {
142 	return readw(spi->regs_base + reg);
143 }
144 
145 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
146 {
147 	u8 regval;
148 	int err;
149 
150 	err = clk_enable(espi->clk);
151 	if (err)
152 		return err;
153 
154 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
155 	regval |= SSPCR1_SSE;
156 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
157 
158 	return 0;
159 }
160 
161 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
162 {
163 	u8 regval;
164 
165 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
166 	regval &= ~SSPCR1_SSE;
167 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
168 
169 	clk_disable(espi->clk);
170 }
171 
172 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
173 {
174 	u8 regval;
175 
176 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
177 	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
178 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
179 }
180 
181 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
182 {
183 	u8 regval;
184 
185 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
186 	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
187 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
188 }
189 
190 /**
191  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
192  * @espi: ep93xx SPI controller struct
193  * @rate: desired SPI output clock rate
194  * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
195  * @div_scr: pointer to return the scr divider
196  */
197 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
198 				    u32 rate, u8 *div_cpsr, u8 *div_scr)
199 {
200 	struct spi_master *master = platform_get_drvdata(espi->pdev);
201 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
202 	int cpsr, scr;
203 
204 	/*
205 	 * Make sure that max value is between values supported by the
206 	 * controller. Note that minimum value is already checked in
207 	 * ep93xx_spi_transfer_one_message().
208 	 */
209 	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
210 
211 	/*
212 	 * Calculate divisors so that we can get speed according the
213 	 * following formula:
214 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
215 	 *
216 	 * cpsr must be even number and starts from 2, scr can be any number
217 	 * between 0 and 255.
218 	 */
219 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
220 		for (scr = 0; scr <= 255; scr++) {
221 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
222 				*div_scr = (u8)scr;
223 				*div_cpsr = (u8)cpsr;
224 				return 0;
225 			}
226 		}
227 	}
228 
229 	return -EINVAL;
230 }
231 
232 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
233 {
234 	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
235 	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
236 
237 	if (chip->ops && chip->ops->cs_control)
238 		chip->ops->cs_control(spi, value);
239 }
240 
241 /**
242  * ep93xx_spi_setup() - setup an SPI device
243  * @spi: SPI device to setup
244  *
245  * This function sets up SPI device mode, speed etc. Can be called multiple
246  * times for a single device. Returns %0 in case of success, negative error in
247  * case of failure. When this function returns success, the device is
248  * deselected.
249  */
250 static int ep93xx_spi_setup(struct spi_device *spi)
251 {
252 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
253 	struct ep93xx_spi_chip *chip;
254 
255 	chip = spi_get_ctldata(spi);
256 	if (!chip) {
257 		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
258 			spi->modalias);
259 
260 		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
261 		if (!chip)
262 			return -ENOMEM;
263 
264 		chip->spi = spi;
265 		chip->ops = spi->controller_data;
266 
267 		if (chip->ops && chip->ops->setup) {
268 			int ret = chip->ops->setup(spi);
269 			if (ret) {
270 				kfree(chip);
271 				return ret;
272 			}
273 		}
274 
275 		spi_set_ctldata(spi, chip);
276 	}
277 
278 	ep93xx_spi_cs_control(spi, false);
279 	return 0;
280 }
281 
282 /**
283  * ep93xx_spi_cleanup() - cleans up master controller specific state
284  * @spi: SPI device to cleanup
285  *
286  * This function releases master controller specific state for given @spi
287  * device.
288  */
289 static void ep93xx_spi_cleanup(struct spi_device *spi)
290 {
291 	struct ep93xx_spi_chip *chip;
292 
293 	chip = spi_get_ctldata(spi);
294 	if (chip) {
295 		if (chip->ops && chip->ops->cleanup)
296 			chip->ops->cleanup(spi);
297 		spi_set_ctldata(spi, NULL);
298 		kfree(chip);
299 	}
300 }
301 
302 /**
303  * ep93xx_spi_chip_setup() - configures hardware according to given @chip
304  * @espi: ep93xx SPI controller struct
305  * @chip: chip specific settings
306  * @speed_hz: transfer speed
307  * @bits_per_word: transfer bits_per_word
308  */
309 static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
310 				 const struct ep93xx_spi_chip *chip,
311 				 u32 speed_hz, u8 bits_per_word)
312 {
313 	u8 dss = bits_per_word_to_dss(bits_per_word);
314 	u8 div_cpsr = 0;
315 	u8 div_scr = 0;
316 	u16 cr0;
317 	int err;
318 
319 	err = ep93xx_spi_calc_divisors(espi, speed_hz, &div_cpsr, &div_scr);
320 	if (err)
321 		return err;
322 
323 	cr0 = div_scr << SSPCR0_SCR_SHIFT;
324 	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
325 	cr0 |= dss;
326 
327 	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
328 		chip->spi->mode, div_cpsr, div_scr, dss);
329 	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x\n", cr0);
330 
331 	ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr);
332 	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
333 
334 	return 0;
335 }
336 
337 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
338 {
339 	if (t->bits_per_word > 8) {
340 		u16 tx_val = 0;
341 
342 		if (t->tx_buf)
343 			tx_val = ((u16 *)t->tx_buf)[espi->tx];
344 		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
345 		espi->tx += sizeof(tx_val);
346 	} else {
347 		u8 tx_val = 0;
348 
349 		if (t->tx_buf)
350 			tx_val = ((u8 *)t->tx_buf)[espi->tx];
351 		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
352 		espi->tx += sizeof(tx_val);
353 	}
354 }
355 
356 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
357 {
358 	if (t->bits_per_word > 8) {
359 		u16 rx_val;
360 
361 		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
362 		if (t->rx_buf)
363 			((u16 *)t->rx_buf)[espi->rx] = rx_val;
364 		espi->rx += sizeof(rx_val);
365 	} else {
366 		u8 rx_val;
367 
368 		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
369 		if (t->rx_buf)
370 			((u8 *)t->rx_buf)[espi->rx] = rx_val;
371 		espi->rx += sizeof(rx_val);
372 	}
373 }
374 
375 /**
376  * ep93xx_spi_read_write() - perform next RX/TX transfer
377  * @espi: ep93xx SPI controller struct
378  *
379  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
380  * called several times, the whole transfer will be completed. Returns
381  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
382  *
383  * When this function is finished, RX FIFO should be empty and TX FIFO should be
384  * full.
385  */
386 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
387 {
388 	struct spi_message *msg = espi->current_msg;
389 	struct spi_transfer *t = msg->state;
390 
391 	/* read as long as RX FIFO has frames in it */
392 	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
393 		ep93xx_do_read(espi, t);
394 		espi->fifo_level--;
395 	}
396 
397 	/* write as long as TX FIFO has room */
398 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
399 		ep93xx_do_write(espi, t);
400 		espi->fifo_level++;
401 	}
402 
403 	if (espi->rx == t->len)
404 		return 0;
405 
406 	return -EINPROGRESS;
407 }
408 
409 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
410 {
411 	/*
412 	 * Now everything is set up for the current transfer. We prime the TX
413 	 * FIFO, enable interrupts, and wait for the transfer to complete.
414 	 */
415 	if (ep93xx_spi_read_write(espi)) {
416 		ep93xx_spi_enable_interrupts(espi);
417 		wait_for_completion(&espi->wait);
418 	}
419 }
420 
421 /**
422  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
423  * @espi: ep93xx SPI controller struct
424  * @dir: DMA transfer direction
425  *
426  * Function configures the DMA, maps the buffer and prepares the DMA
427  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
428  * in case of failure.
429  */
430 static struct dma_async_tx_descriptor *
431 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
432 {
433 	struct spi_transfer *t = espi->current_msg->state;
434 	struct dma_async_tx_descriptor *txd;
435 	enum dma_slave_buswidth buswidth;
436 	struct dma_slave_config conf;
437 	struct scatterlist *sg;
438 	struct sg_table *sgt;
439 	struct dma_chan *chan;
440 	const void *buf, *pbuf;
441 	size_t len = t->len;
442 	int i, ret, nents;
443 
444 	if (t->bits_per_word > 8)
445 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
446 	else
447 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
448 
449 	memset(&conf, 0, sizeof(conf));
450 	conf.direction = dir;
451 
452 	if (dir == DMA_DEV_TO_MEM) {
453 		chan = espi->dma_rx;
454 		buf = t->rx_buf;
455 		sgt = &espi->rx_sgt;
456 
457 		conf.src_addr = espi->sspdr_phys;
458 		conf.src_addr_width = buswidth;
459 	} else {
460 		chan = espi->dma_tx;
461 		buf = t->tx_buf;
462 		sgt = &espi->tx_sgt;
463 
464 		conf.dst_addr = espi->sspdr_phys;
465 		conf.dst_addr_width = buswidth;
466 	}
467 
468 	ret = dmaengine_slave_config(chan, &conf);
469 	if (ret)
470 		return ERR_PTR(ret);
471 
472 	/*
473 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
474 	 * because we are using @espi->zeropage to provide a zero RX buffer
475 	 * for the TX transfers and we have only allocated one page for that.
476 	 *
477 	 * For performance reasons we allocate a new sg_table only when
478 	 * needed. Otherwise we will re-use the current one. Eventually the
479 	 * last sg_table is released in ep93xx_spi_release_dma().
480 	 */
481 
482 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
483 	if (nents != sgt->nents) {
484 		sg_free_table(sgt);
485 
486 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
487 		if (ret)
488 			return ERR_PTR(ret);
489 	}
490 
491 	pbuf = buf;
492 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
493 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
494 
495 		if (buf) {
496 			sg_set_page(sg, virt_to_page(pbuf), bytes,
497 				    offset_in_page(pbuf));
498 		} else {
499 			sg_set_page(sg, virt_to_page(espi->zeropage),
500 				    bytes, 0);
501 		}
502 
503 		pbuf += bytes;
504 		len -= bytes;
505 	}
506 
507 	if (WARN_ON(len)) {
508 		dev_warn(&espi->pdev->dev, "len = %zu expected 0!\n", len);
509 		return ERR_PTR(-EINVAL);
510 	}
511 
512 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
513 	if (!nents)
514 		return ERR_PTR(-ENOMEM);
515 
516 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
517 	if (!txd) {
518 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
519 		return ERR_PTR(-ENOMEM);
520 	}
521 	return txd;
522 }
523 
524 /**
525  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
526  * @espi: ep93xx SPI controller struct
527  * @dir: DMA transfer direction
528  *
529  * Function finishes with the DMA transfer. After this, the DMA buffer is
530  * unmapped.
531  */
532 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
533 				  enum dma_transfer_direction dir)
534 {
535 	struct dma_chan *chan;
536 	struct sg_table *sgt;
537 
538 	if (dir == DMA_DEV_TO_MEM) {
539 		chan = espi->dma_rx;
540 		sgt = &espi->rx_sgt;
541 	} else {
542 		chan = espi->dma_tx;
543 		sgt = &espi->tx_sgt;
544 	}
545 
546 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
547 }
548 
549 static void ep93xx_spi_dma_callback(void *callback_param)
550 {
551 	complete(callback_param);
552 }
553 
554 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
555 {
556 	struct spi_message *msg = espi->current_msg;
557 	struct dma_async_tx_descriptor *rxd, *txd;
558 
559 	rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
560 	if (IS_ERR(rxd)) {
561 		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
562 		msg->status = PTR_ERR(rxd);
563 		return;
564 	}
565 
566 	txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
567 	if (IS_ERR(txd)) {
568 		ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
569 		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
570 		msg->status = PTR_ERR(txd);
571 		return;
572 	}
573 
574 	/* We are ready when RX is done */
575 	rxd->callback = ep93xx_spi_dma_callback;
576 	rxd->callback_param = &espi->wait;
577 
578 	/* Now submit both descriptors and wait while they finish */
579 	dmaengine_submit(rxd);
580 	dmaengine_submit(txd);
581 
582 	dma_async_issue_pending(espi->dma_rx);
583 	dma_async_issue_pending(espi->dma_tx);
584 
585 	wait_for_completion(&espi->wait);
586 
587 	ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
588 	ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
589 }
590 
591 /**
592  * ep93xx_spi_process_transfer() - processes one SPI transfer
593  * @espi: ep93xx SPI controller struct
594  * @msg: current message
595  * @t: transfer to process
596  *
597  * This function processes one SPI transfer given in @t. Function waits until
598  * transfer is complete (may sleep) and updates @msg->status based on whether
599  * transfer was successfully processed or not.
600  */
601 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
602 					struct spi_message *msg,
603 					struct spi_transfer *t)
604 {
605 	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
606 	int err;
607 
608 	msg->state = t;
609 
610 	err = ep93xx_spi_chip_setup(espi, chip, t->speed_hz, t->bits_per_word);
611 	if (err) {
612 		dev_err(&espi->pdev->dev,
613 			"failed to setup chip for transfer\n");
614 		msg->status = err;
615 		return;
616 	}
617 
618 	espi->rx = 0;
619 	espi->tx = 0;
620 
621 	/*
622 	 * There is no point of setting up DMA for the transfers which will
623 	 * fit into the FIFO and can be transferred with a single interrupt.
624 	 * So in these cases we will be using PIO and don't bother for DMA.
625 	 */
626 	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
627 		ep93xx_spi_dma_transfer(espi);
628 	else
629 		ep93xx_spi_pio_transfer(espi);
630 
631 	/*
632 	 * In case of error during transmit, we bail out from processing
633 	 * the message.
634 	 */
635 	if (msg->status)
636 		return;
637 
638 	msg->actual_length += t->len;
639 
640 	/*
641 	 * After this transfer is finished, perform any possible
642 	 * post-transfer actions requested by the protocol driver.
643 	 */
644 	if (t->delay_usecs) {
645 		set_current_state(TASK_UNINTERRUPTIBLE);
646 		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
647 	}
648 	if (t->cs_change) {
649 		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
650 			/*
651 			 * In case protocol driver is asking us to drop the
652 			 * chipselect briefly, we let the scheduler to handle
653 			 * any "delay" here.
654 			 */
655 			ep93xx_spi_cs_control(msg->spi, false);
656 			cond_resched();
657 			ep93xx_spi_cs_control(msg->spi, true);
658 		}
659 	}
660 }
661 
662 /*
663  * ep93xx_spi_process_message() - process one SPI message
664  * @espi: ep93xx SPI controller struct
665  * @msg: message to process
666  *
667  * This function processes a single SPI message. We go through all transfers in
668  * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
669  * asserted during the whole message (unless per transfer cs_change is set).
670  *
671  * @msg->status contains %0 in case of success or negative error code in case of
672  * failure.
673  */
674 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
675 				       struct spi_message *msg)
676 {
677 	unsigned long timeout;
678 	struct spi_transfer *t;
679 	int err;
680 
681 	/*
682 	 * Enable the SPI controller and its clock.
683 	 */
684 	err = ep93xx_spi_enable(espi);
685 	if (err) {
686 		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
687 		msg->status = err;
688 		return;
689 	}
690 
691 	/*
692 	 * Just to be sure: flush any data from RX FIFO.
693 	 */
694 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
695 	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
696 		if (time_after(jiffies, timeout)) {
697 			dev_warn(&espi->pdev->dev,
698 				 "timeout while flushing RX FIFO\n");
699 			msg->status = -ETIMEDOUT;
700 			return;
701 		}
702 		ep93xx_spi_read_u16(espi, SSPDR);
703 	}
704 
705 	/*
706 	 * We explicitly handle FIFO level. This way we don't have to check TX
707 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
708 	 */
709 	espi->fifo_level = 0;
710 
711 	/*
712 	 * Assert the chipselect.
713 	 */
714 	ep93xx_spi_cs_control(msg->spi, true);
715 
716 	list_for_each_entry(t, &msg->transfers, transfer_list) {
717 		ep93xx_spi_process_transfer(espi, msg, t);
718 		if (msg->status)
719 			break;
720 	}
721 
722 	/*
723 	 * Now the whole message is transferred (or failed for some reason). We
724 	 * deselect the device and disable the SPI controller.
725 	 */
726 	ep93xx_spi_cs_control(msg->spi, false);
727 	ep93xx_spi_disable(espi);
728 }
729 
730 static int ep93xx_spi_transfer_one_message(struct spi_master *master,
731 					   struct spi_message *msg)
732 {
733 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
734 
735 	msg->state = NULL;
736 	msg->status = 0;
737 	msg->actual_length = 0;
738 
739 	espi->current_msg = msg;
740 	ep93xx_spi_process_message(espi, msg);
741 	espi->current_msg = NULL;
742 
743 	spi_finalize_current_message(master);
744 
745 	return 0;
746 }
747 
748 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
749 {
750 	struct ep93xx_spi *espi = dev_id;
751 	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
752 
753 	/*
754 	 * If we got ROR (receive overrun) interrupt we know that something is
755 	 * wrong. Just abort the message.
756 	 */
757 	if (unlikely(irq_status & SSPIIR_RORIS)) {
758 		/* clear the overrun interrupt */
759 		ep93xx_spi_write_u8(espi, SSPICR, 0);
760 		dev_warn(&espi->pdev->dev,
761 			 "receive overrun, aborting the message\n");
762 		espi->current_msg->status = -EIO;
763 	} else {
764 		/*
765 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
766 		 * simply execute next data transfer.
767 		 */
768 		if (ep93xx_spi_read_write(espi)) {
769 			/*
770 			 * In normal case, there still is some processing left
771 			 * for current transfer. Let's wait for the next
772 			 * interrupt then.
773 			 */
774 			return IRQ_HANDLED;
775 		}
776 	}
777 
778 	/*
779 	 * Current transfer is finished, either with error or with success. In
780 	 * any case we disable interrupts and notify the worker to handle
781 	 * any post-processing of the message.
782 	 */
783 	ep93xx_spi_disable_interrupts(espi);
784 	complete(&espi->wait);
785 	return IRQ_HANDLED;
786 }
787 
788 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
789 {
790 	if (ep93xx_dma_chan_is_m2p(chan))
791 		return false;
792 
793 	chan->private = filter_param;
794 	return true;
795 }
796 
797 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
798 {
799 	dma_cap_mask_t mask;
800 	int ret;
801 
802 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
803 	if (!espi->zeropage)
804 		return -ENOMEM;
805 
806 	dma_cap_zero(mask);
807 	dma_cap_set(DMA_SLAVE, mask);
808 
809 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
810 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
811 	espi->dma_rx_data.name = "ep93xx-spi-rx";
812 
813 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
814 					   &espi->dma_rx_data);
815 	if (!espi->dma_rx) {
816 		ret = -ENODEV;
817 		goto fail_free_page;
818 	}
819 
820 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
821 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
822 	espi->dma_tx_data.name = "ep93xx-spi-tx";
823 
824 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
825 					   &espi->dma_tx_data);
826 	if (!espi->dma_tx) {
827 		ret = -ENODEV;
828 		goto fail_release_rx;
829 	}
830 
831 	return 0;
832 
833 fail_release_rx:
834 	dma_release_channel(espi->dma_rx);
835 	espi->dma_rx = NULL;
836 fail_free_page:
837 	free_page((unsigned long)espi->zeropage);
838 
839 	return ret;
840 }
841 
842 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
843 {
844 	if (espi->dma_rx) {
845 		dma_release_channel(espi->dma_rx);
846 		sg_free_table(&espi->rx_sgt);
847 	}
848 	if (espi->dma_tx) {
849 		dma_release_channel(espi->dma_tx);
850 		sg_free_table(&espi->tx_sgt);
851 	}
852 
853 	if (espi->zeropage)
854 		free_page((unsigned long)espi->zeropage);
855 }
856 
857 static int ep93xx_spi_probe(struct platform_device *pdev)
858 {
859 	struct spi_master *master;
860 	struct ep93xx_spi_info *info;
861 	struct ep93xx_spi *espi;
862 	struct resource *res;
863 	int irq;
864 	int error;
865 
866 	info = dev_get_platdata(&pdev->dev);
867 
868 	irq = platform_get_irq(pdev, 0);
869 	if (irq < 0) {
870 		dev_err(&pdev->dev, "failed to get irq resources\n");
871 		return -EBUSY;
872 	}
873 
874 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
875 	if (!res) {
876 		dev_err(&pdev->dev, "unable to get iomem resource\n");
877 		return -ENODEV;
878 	}
879 
880 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
881 	if (!master)
882 		return -ENOMEM;
883 
884 	master->setup = ep93xx_spi_setup;
885 	master->transfer_one_message = ep93xx_spi_transfer_one_message;
886 	master->cleanup = ep93xx_spi_cleanup;
887 	master->bus_num = pdev->id;
888 	master->num_chipselect = info->num_chipselect;
889 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
890 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
891 
892 	platform_set_drvdata(pdev, master);
893 
894 	espi = spi_master_get_devdata(master);
895 
896 	espi->clk = devm_clk_get(&pdev->dev, NULL);
897 	if (IS_ERR(espi->clk)) {
898 		dev_err(&pdev->dev, "unable to get spi clock\n");
899 		error = PTR_ERR(espi->clk);
900 		goto fail_release_master;
901 	}
902 
903 	init_completion(&espi->wait);
904 
905 	/*
906 	 * Calculate maximum and minimum supported clock rates
907 	 * for the controller.
908 	 */
909 	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
910 	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
911 	espi->pdev = pdev;
912 
913 	espi->sspdr_phys = res->start + SSPDR;
914 
915 	espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
916 	if (IS_ERR(espi->regs_base)) {
917 		error = PTR_ERR(espi->regs_base);
918 		goto fail_release_master;
919 	}
920 
921 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
922 				0, "ep93xx-spi", espi);
923 	if (error) {
924 		dev_err(&pdev->dev, "failed to request irq\n");
925 		goto fail_release_master;
926 	}
927 
928 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
929 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
930 
931 	/* make sure that the hardware is disabled */
932 	ep93xx_spi_write_u8(espi, SSPCR1, 0);
933 
934 	error = devm_spi_register_master(&pdev->dev, master);
935 	if (error) {
936 		dev_err(&pdev->dev, "failed to register SPI master\n");
937 		goto fail_free_dma;
938 	}
939 
940 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
941 		 (unsigned long)res->start, irq);
942 
943 	return 0;
944 
945 fail_free_dma:
946 	ep93xx_spi_release_dma(espi);
947 fail_release_master:
948 	spi_master_put(master);
949 
950 	return error;
951 }
952 
953 static int ep93xx_spi_remove(struct platform_device *pdev)
954 {
955 	struct spi_master *master = platform_get_drvdata(pdev);
956 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
957 
958 	ep93xx_spi_release_dma(espi);
959 
960 	return 0;
961 }
962 
963 static struct platform_driver ep93xx_spi_driver = {
964 	.driver		= {
965 		.name	= "ep93xx-spi",
966 		.owner	= THIS_MODULE,
967 	},
968 	.probe		= ep93xx_spi_probe,
969 	.remove		= ep93xx_spi_remove,
970 };
971 module_platform_driver(ep93xx_spi_driver);
972 
973 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
974 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
975 MODULE_LICENSE("GPL");
976 MODULE_ALIAS("platform:ep93xx-spi");
977