xref: /openbmc/linux/drivers/spi/spi-ep93xx.c (revision a8c5cb99)
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/spi/spi.h>
33 
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
36 
37 #define SSPCR0			0x0000
38 #define SSPCR0_MODE_SHIFT	6
39 #define SSPCR0_SCR_SHIFT	8
40 
41 #define SSPCR1			0x0004
42 #define SSPCR1_RIE		BIT(0)
43 #define SSPCR1_TIE		BIT(1)
44 #define SSPCR1_RORIE		BIT(2)
45 #define SSPCR1_LBM		BIT(3)
46 #define SSPCR1_SSE		BIT(4)
47 #define SSPCR1_MS		BIT(5)
48 #define SSPCR1_SOD		BIT(6)
49 
50 #define SSPDR			0x0008
51 
52 #define SSPSR			0x000c
53 #define SSPSR_TFE		BIT(0)
54 #define SSPSR_TNF		BIT(1)
55 #define SSPSR_RNE		BIT(2)
56 #define SSPSR_RFF		BIT(3)
57 #define SSPSR_BSY		BIT(4)
58 #define SSPCPSR			0x0010
59 
60 #define SSPIIR			0x0014
61 #define SSPIIR_RIS		BIT(0)
62 #define SSPIIR_TIS		BIT(1)
63 #define SSPIIR_RORIS		BIT(2)
64 #define SSPICR			SSPIIR
65 
66 /* timeout in milliseconds */
67 #define SPI_TIMEOUT		5
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE		8
70 
71 /**
72  * struct ep93xx_spi - EP93xx SPI controller structure
73  * @clk: clock for the controller
74  * @mmio: pointer to ioremap()'d registers
75  * @sspdr_phys: physical address of the SSPDR register
76  * @tx: current byte in transfer to transmit
77  * @rx: current byte in transfer to receive
78  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
79  *              frame decreases this level and sending one frame increases it.
80  * @dma_rx: RX DMA channel
81  * @dma_tx: TX DMA channel
82  * @dma_rx_data: RX parameters passed to the DMA engine
83  * @dma_tx_data: TX parameters passed to the DMA engine
84  * @rx_sgt: sg table for RX transfers
85  * @tx_sgt: sg table for TX transfers
86  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
87  *            the client
88  */
89 struct ep93xx_spi {
90 	struct clk			*clk;
91 	void __iomem			*mmio;
92 	unsigned long			sspdr_phys;
93 	size_t				tx;
94 	size_t				rx;
95 	size_t				fifo_level;
96 	struct dma_chan			*dma_rx;
97 	struct dma_chan			*dma_tx;
98 	struct ep93xx_dma_data		dma_rx_data;
99 	struct ep93xx_dma_data		dma_tx_data;
100 	struct sg_table			rx_sgt;
101 	struct sg_table			tx_sgt;
102 	void				*zeropage;
103 };
104 
105 /* converts bits per word to CR0.DSS value */
106 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
107 
108 /**
109  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
110  * @master: SPI master
111  * @rate: desired SPI output clock rate
112  * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
113  * @div_scr: pointer to return the scr divider
114  */
115 static int ep93xx_spi_calc_divisors(struct spi_master *master,
116 				    u32 rate, u8 *div_cpsr, u8 *div_scr)
117 {
118 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
119 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
120 	int cpsr, scr;
121 
122 	/*
123 	 * Make sure that max value is between values supported by the
124 	 * controller.
125 	 */
126 	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
127 
128 	/*
129 	 * Calculate divisors so that we can get speed according the
130 	 * following formula:
131 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
132 	 *
133 	 * cpsr must be even number and starts from 2, scr can be any number
134 	 * between 0 and 255.
135 	 */
136 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
137 		for (scr = 0; scr <= 255; scr++) {
138 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
139 				*div_scr = (u8)scr;
140 				*div_cpsr = (u8)cpsr;
141 				return 0;
142 			}
143 		}
144 	}
145 
146 	return -EINVAL;
147 }
148 
149 static int ep93xx_spi_chip_setup(struct spi_master *master,
150 				 struct spi_device *spi,
151 				 struct spi_transfer *xfer)
152 {
153 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
154 	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
155 	u8 div_cpsr = 0;
156 	u8 div_scr = 0;
157 	u16 cr0;
158 	int err;
159 
160 	err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
161 				       &div_cpsr, &div_scr);
162 	if (err)
163 		return err;
164 
165 	cr0 = div_scr << SSPCR0_SCR_SHIFT;
166 	cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
167 	cr0 |= dss;
168 
169 	dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
170 		spi->mode, div_cpsr, div_scr, dss);
171 	dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
172 
173 	writel(div_cpsr, espi->mmio + SSPCPSR);
174 	writel(cr0, espi->mmio + SSPCR0);
175 
176 	return 0;
177 }
178 
179 static void ep93xx_do_write(struct spi_master *master)
180 {
181 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
182 	struct spi_transfer *xfer = master->cur_msg->state;
183 	u32 val = 0;
184 
185 	if (xfer->bits_per_word > 8) {
186 		if (xfer->tx_buf)
187 			val = ((u16 *)xfer->tx_buf)[espi->tx];
188 		espi->tx += 2;
189 	} else {
190 		if (xfer->tx_buf)
191 			val = ((u8 *)xfer->tx_buf)[espi->tx];
192 		espi->tx += 1;
193 	}
194 	writel(val, espi->mmio + SSPDR);
195 }
196 
197 static void ep93xx_do_read(struct spi_master *master)
198 {
199 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
200 	struct spi_transfer *xfer = master->cur_msg->state;
201 	u32 val;
202 
203 	val = readl(espi->mmio + SSPDR);
204 	if (xfer->bits_per_word > 8) {
205 		if (xfer->rx_buf)
206 			((u16 *)xfer->rx_buf)[espi->rx] = val;
207 		espi->rx += 2;
208 	} else {
209 		if (xfer->rx_buf)
210 			((u8 *)xfer->rx_buf)[espi->rx] = val;
211 		espi->rx += 1;
212 	}
213 }
214 
215 /**
216  * ep93xx_spi_read_write() - perform next RX/TX transfer
217  * @espi: ep93xx SPI controller struct
218  *
219  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
220  * called several times, the whole transfer will be completed. Returns
221  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
222  *
223  * When this function is finished, RX FIFO should be empty and TX FIFO should be
224  * full.
225  */
226 static int ep93xx_spi_read_write(struct spi_master *master)
227 {
228 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
229 	struct spi_transfer *xfer = master->cur_msg->state;
230 
231 	/* read as long as RX FIFO has frames in it */
232 	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
233 		ep93xx_do_read(master);
234 		espi->fifo_level--;
235 	}
236 
237 	/* write as long as TX FIFO has room */
238 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
239 		ep93xx_do_write(master);
240 		espi->fifo_level++;
241 	}
242 
243 	if (espi->rx == xfer->len)
244 		return 0;
245 
246 	return -EINPROGRESS;
247 }
248 
249 /**
250  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
251  * @master: SPI master
252  * @dir: DMA transfer direction
253  *
254  * Function configures the DMA, maps the buffer and prepares the DMA
255  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
256  * in case of failure.
257  */
258 static struct dma_async_tx_descriptor *
259 ep93xx_spi_dma_prepare(struct spi_master *master,
260 		       enum dma_transfer_direction dir)
261 {
262 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
263 	struct spi_transfer *xfer = master->cur_msg->state;
264 	struct dma_async_tx_descriptor *txd;
265 	enum dma_slave_buswidth buswidth;
266 	struct dma_slave_config conf;
267 	struct scatterlist *sg;
268 	struct sg_table *sgt;
269 	struct dma_chan *chan;
270 	const void *buf, *pbuf;
271 	size_t len = xfer->len;
272 	int i, ret, nents;
273 
274 	if (xfer->bits_per_word > 8)
275 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
276 	else
277 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
278 
279 	memset(&conf, 0, sizeof(conf));
280 	conf.direction = dir;
281 
282 	if (dir == DMA_DEV_TO_MEM) {
283 		chan = espi->dma_rx;
284 		buf = xfer->rx_buf;
285 		sgt = &espi->rx_sgt;
286 
287 		conf.src_addr = espi->sspdr_phys;
288 		conf.src_addr_width = buswidth;
289 	} else {
290 		chan = espi->dma_tx;
291 		buf = xfer->tx_buf;
292 		sgt = &espi->tx_sgt;
293 
294 		conf.dst_addr = espi->sspdr_phys;
295 		conf.dst_addr_width = buswidth;
296 	}
297 
298 	ret = dmaengine_slave_config(chan, &conf);
299 	if (ret)
300 		return ERR_PTR(ret);
301 
302 	/*
303 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
304 	 * because we are using @espi->zeropage to provide a zero RX buffer
305 	 * for the TX transfers and we have only allocated one page for that.
306 	 *
307 	 * For performance reasons we allocate a new sg_table only when
308 	 * needed. Otherwise we will re-use the current one. Eventually the
309 	 * last sg_table is released in ep93xx_spi_release_dma().
310 	 */
311 
312 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
313 	if (nents != sgt->nents) {
314 		sg_free_table(sgt);
315 
316 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
317 		if (ret)
318 			return ERR_PTR(ret);
319 	}
320 
321 	pbuf = buf;
322 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
323 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
324 
325 		if (buf) {
326 			sg_set_page(sg, virt_to_page(pbuf), bytes,
327 				    offset_in_page(pbuf));
328 		} else {
329 			sg_set_page(sg, virt_to_page(espi->zeropage),
330 				    bytes, 0);
331 		}
332 
333 		pbuf += bytes;
334 		len -= bytes;
335 	}
336 
337 	if (WARN_ON(len)) {
338 		dev_warn(&master->dev, "len = %zu expected 0!\n", len);
339 		return ERR_PTR(-EINVAL);
340 	}
341 
342 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
343 	if (!nents)
344 		return ERR_PTR(-ENOMEM);
345 
346 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
347 	if (!txd) {
348 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
349 		return ERR_PTR(-ENOMEM);
350 	}
351 	return txd;
352 }
353 
354 /**
355  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
356  * @master: SPI master
357  * @dir: DMA transfer direction
358  *
359  * Function finishes with the DMA transfer. After this, the DMA buffer is
360  * unmapped.
361  */
362 static void ep93xx_spi_dma_finish(struct spi_master *master,
363 				  enum dma_transfer_direction dir)
364 {
365 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
366 	struct dma_chan *chan;
367 	struct sg_table *sgt;
368 
369 	if (dir == DMA_DEV_TO_MEM) {
370 		chan = espi->dma_rx;
371 		sgt = &espi->rx_sgt;
372 	} else {
373 		chan = espi->dma_tx;
374 		sgt = &espi->tx_sgt;
375 	}
376 
377 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
378 }
379 
380 static void ep93xx_spi_dma_callback(void *callback_param)
381 {
382 	struct spi_master *master = callback_param;
383 
384 	ep93xx_spi_dma_finish(master, DMA_MEM_TO_DEV);
385 	ep93xx_spi_dma_finish(master, DMA_DEV_TO_MEM);
386 
387 	spi_finalize_current_transfer(master);
388 }
389 
390 static int ep93xx_spi_dma_transfer(struct spi_master *master)
391 {
392 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
393 	struct dma_async_tx_descriptor *rxd, *txd;
394 
395 	rxd = ep93xx_spi_dma_prepare(master, DMA_DEV_TO_MEM);
396 	if (IS_ERR(rxd)) {
397 		dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
398 		return PTR_ERR(rxd);
399 	}
400 
401 	txd = ep93xx_spi_dma_prepare(master, DMA_MEM_TO_DEV);
402 	if (IS_ERR(txd)) {
403 		ep93xx_spi_dma_finish(master, DMA_DEV_TO_MEM);
404 		dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
405 		return PTR_ERR(txd);
406 	}
407 
408 	/* We are ready when RX is done */
409 	rxd->callback = ep93xx_spi_dma_callback;
410 	rxd->callback_param = master;
411 
412 	/* Now submit both descriptors and start DMA */
413 	dmaengine_submit(rxd);
414 	dmaengine_submit(txd);
415 
416 	dma_async_issue_pending(espi->dma_rx);
417 	dma_async_issue_pending(espi->dma_tx);
418 
419 	/* signal that we need to wait for completion */
420 	return 1;
421 }
422 
423 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
424 {
425 	struct spi_master *master = dev_id;
426 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
427 	u32 val;
428 
429 	/*
430 	 * If we got ROR (receive overrun) interrupt we know that something is
431 	 * wrong. Just abort the message.
432 	 */
433 	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
434 		/* clear the overrun interrupt */
435 		writel(0, espi->mmio + SSPICR);
436 		dev_warn(&master->dev,
437 			 "receive overrun, aborting the message\n");
438 		master->cur_msg->status = -EIO;
439 	} else {
440 		/*
441 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
442 		 * simply execute next data transfer.
443 		 */
444 		if (ep93xx_spi_read_write(master)) {
445 			/*
446 			 * In normal case, there still is some processing left
447 			 * for current transfer. Let's wait for the next
448 			 * interrupt then.
449 			 */
450 			return IRQ_HANDLED;
451 		}
452 	}
453 
454 	/*
455 	 * Current transfer is finished, either with error or with success. In
456 	 * any case we disable interrupts and notify the worker to handle
457 	 * any post-processing of the message.
458 	 */
459 	val = readl(espi->mmio + SSPCR1);
460 	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
461 	writel(val, espi->mmio + SSPCR1);
462 
463 	spi_finalize_current_transfer(master);
464 
465 	return IRQ_HANDLED;
466 }
467 
468 static int ep93xx_spi_transfer_one(struct spi_master *master,
469 				   struct spi_device *spi,
470 				   struct spi_transfer *xfer)
471 {
472 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
473 	u32 val;
474 	int ret;
475 
476 	ret = ep93xx_spi_chip_setup(master, spi, xfer);
477 	if (ret) {
478 		dev_err(&master->dev, "failed to setup chip for transfer\n");
479 		return ret;
480 	}
481 
482 	master->cur_msg->state = xfer;
483 	espi->rx = 0;
484 	espi->tx = 0;
485 
486 	/*
487 	 * There is no point of setting up DMA for the transfers which will
488 	 * fit into the FIFO and can be transferred with a single interrupt.
489 	 * So in these cases we will be using PIO and don't bother for DMA.
490 	 */
491 	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
492 		return ep93xx_spi_dma_transfer(master);
493 
494 	/* Using PIO so prime the TX FIFO and enable interrupts */
495 	ep93xx_spi_read_write(master);
496 
497 	val = readl(espi->mmio + SSPCR1);
498 	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
499 	writel(val, espi->mmio + SSPCR1);
500 
501 	/* signal that we need to wait for completion */
502 	return 1;
503 }
504 
505 static int ep93xx_spi_prepare_message(struct spi_master *master,
506 				      struct spi_message *msg)
507 {
508 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
509 	unsigned long timeout;
510 
511 	/*
512 	 * Just to be sure: flush any data from RX FIFO.
513 	 */
514 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
515 	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
516 		if (time_after(jiffies, timeout)) {
517 			dev_warn(&master->dev,
518 				 "timeout while flushing RX FIFO\n");
519 			return -ETIMEDOUT;
520 		}
521 		readl(espi->mmio + SSPDR);
522 	}
523 
524 	/*
525 	 * We explicitly handle FIFO level. This way we don't have to check TX
526 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
527 	 */
528 	espi->fifo_level = 0;
529 
530 	return 0;
531 }
532 
533 static int ep93xx_spi_prepare_hardware(struct spi_master *master)
534 {
535 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
536 	u32 val;
537 	int ret;
538 
539 	ret = clk_enable(espi->clk);
540 	if (ret)
541 		return ret;
542 
543 	val = readl(espi->mmio + SSPCR1);
544 	val |= SSPCR1_SSE;
545 	writel(val, espi->mmio + SSPCR1);
546 
547 	return 0;
548 }
549 
550 static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
551 {
552 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
553 	u32 val;
554 
555 	val = readl(espi->mmio + SSPCR1);
556 	val &= ~SSPCR1_SSE;
557 	writel(val, espi->mmio + SSPCR1);
558 
559 	clk_disable(espi->clk);
560 
561 	return 0;
562 }
563 
564 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
565 {
566 	if (ep93xx_dma_chan_is_m2p(chan))
567 		return false;
568 
569 	chan->private = filter_param;
570 	return true;
571 }
572 
573 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
574 {
575 	dma_cap_mask_t mask;
576 	int ret;
577 
578 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
579 	if (!espi->zeropage)
580 		return -ENOMEM;
581 
582 	dma_cap_zero(mask);
583 	dma_cap_set(DMA_SLAVE, mask);
584 
585 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
586 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
587 	espi->dma_rx_data.name = "ep93xx-spi-rx";
588 
589 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
590 					   &espi->dma_rx_data);
591 	if (!espi->dma_rx) {
592 		ret = -ENODEV;
593 		goto fail_free_page;
594 	}
595 
596 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
597 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
598 	espi->dma_tx_data.name = "ep93xx-spi-tx";
599 
600 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
601 					   &espi->dma_tx_data);
602 	if (!espi->dma_tx) {
603 		ret = -ENODEV;
604 		goto fail_release_rx;
605 	}
606 
607 	return 0;
608 
609 fail_release_rx:
610 	dma_release_channel(espi->dma_rx);
611 	espi->dma_rx = NULL;
612 fail_free_page:
613 	free_page((unsigned long)espi->zeropage);
614 
615 	return ret;
616 }
617 
618 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
619 {
620 	if (espi->dma_rx) {
621 		dma_release_channel(espi->dma_rx);
622 		sg_free_table(&espi->rx_sgt);
623 	}
624 	if (espi->dma_tx) {
625 		dma_release_channel(espi->dma_tx);
626 		sg_free_table(&espi->tx_sgt);
627 	}
628 
629 	if (espi->zeropage)
630 		free_page((unsigned long)espi->zeropage);
631 }
632 
633 static int ep93xx_spi_probe(struct platform_device *pdev)
634 {
635 	struct spi_master *master;
636 	struct ep93xx_spi_info *info;
637 	struct ep93xx_spi *espi;
638 	struct resource *res;
639 	int irq;
640 	int error;
641 	int i;
642 
643 	info = dev_get_platdata(&pdev->dev);
644 	if (!info) {
645 		dev_err(&pdev->dev, "missing platform data\n");
646 		return -EINVAL;
647 	}
648 
649 	irq = platform_get_irq(pdev, 0);
650 	if (irq < 0) {
651 		dev_err(&pdev->dev, "failed to get irq resources\n");
652 		return -EBUSY;
653 	}
654 
655 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
656 	if (!res) {
657 		dev_err(&pdev->dev, "unable to get iomem resource\n");
658 		return -ENODEV;
659 	}
660 
661 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
662 	if (!master)
663 		return -ENOMEM;
664 
665 	master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
666 	master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
667 	master->prepare_message = ep93xx_spi_prepare_message;
668 	master->transfer_one = ep93xx_spi_transfer_one;
669 	master->bus_num = pdev->id;
670 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
671 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
672 
673 	master->num_chipselect = info->num_chipselect;
674 	master->cs_gpios = devm_kcalloc(&master->dev,
675 					master->num_chipselect, sizeof(int),
676 					GFP_KERNEL);
677 	if (!master->cs_gpios) {
678 		error = -ENOMEM;
679 		goto fail_release_master;
680 	}
681 
682 	for (i = 0; i < master->num_chipselect; i++) {
683 		master->cs_gpios[i] = info->chipselect[i];
684 
685 		if (!gpio_is_valid(master->cs_gpios[i]))
686 			continue;
687 
688 		error = devm_gpio_request_one(&pdev->dev, master->cs_gpios[i],
689 					      GPIOF_OUT_INIT_HIGH,
690 					      "ep93xx-spi");
691 		if (error) {
692 			dev_err(&pdev->dev, "could not request cs gpio %d\n",
693 				master->cs_gpios[i]);
694 			goto fail_release_master;
695 		}
696 	}
697 
698 	platform_set_drvdata(pdev, master);
699 
700 	espi = spi_master_get_devdata(master);
701 
702 	espi->clk = devm_clk_get(&pdev->dev, NULL);
703 	if (IS_ERR(espi->clk)) {
704 		dev_err(&pdev->dev, "unable to get spi clock\n");
705 		error = PTR_ERR(espi->clk);
706 		goto fail_release_master;
707 	}
708 
709 	/*
710 	 * Calculate maximum and minimum supported clock rates
711 	 * for the controller.
712 	 */
713 	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
714 	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
715 
716 	espi->sspdr_phys = res->start + SSPDR;
717 
718 	espi->mmio = devm_ioremap_resource(&pdev->dev, res);
719 	if (IS_ERR(espi->mmio)) {
720 		error = PTR_ERR(espi->mmio);
721 		goto fail_release_master;
722 	}
723 
724 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
725 				0, "ep93xx-spi", master);
726 	if (error) {
727 		dev_err(&pdev->dev, "failed to request irq\n");
728 		goto fail_release_master;
729 	}
730 
731 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
732 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
733 
734 	/* make sure that the hardware is disabled */
735 	writel(0, espi->mmio + SSPCR1);
736 
737 	error = devm_spi_register_master(&pdev->dev, master);
738 	if (error) {
739 		dev_err(&pdev->dev, "failed to register SPI master\n");
740 		goto fail_free_dma;
741 	}
742 
743 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
744 		 (unsigned long)res->start, irq);
745 
746 	return 0;
747 
748 fail_free_dma:
749 	ep93xx_spi_release_dma(espi);
750 fail_release_master:
751 	spi_master_put(master);
752 
753 	return error;
754 }
755 
756 static int ep93xx_spi_remove(struct platform_device *pdev)
757 {
758 	struct spi_master *master = platform_get_drvdata(pdev);
759 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
760 
761 	ep93xx_spi_release_dma(espi);
762 
763 	return 0;
764 }
765 
766 static struct platform_driver ep93xx_spi_driver = {
767 	.driver		= {
768 		.name	= "ep93xx-spi",
769 	},
770 	.probe		= ep93xx_spi_probe,
771 	.remove		= ep93xx_spi_remove,
772 };
773 module_platform_driver(ep93xx_spi_driver);
774 
775 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
776 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
777 MODULE_LICENSE("GPL");
778 MODULE_ALIAS("platform:ep93xx-spi");
779