xref: /openbmc/linux/drivers/spi/spi-ep93xx.c (revision a485df4b)
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/platform_device.h>
28 #include <linux/workqueue.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spi/spi.h>
32 
33 #include <mach/dma.h>
34 #include <mach/ep93xx_spi.h>
35 
36 #define SSPCR0			0x0000
37 #define SSPCR0_MODE_SHIFT	6
38 #define SSPCR0_SCR_SHIFT	8
39 
40 #define SSPCR1			0x0004
41 #define SSPCR1_RIE		BIT(0)
42 #define SSPCR1_TIE		BIT(1)
43 #define SSPCR1_RORIE		BIT(2)
44 #define SSPCR1_LBM		BIT(3)
45 #define SSPCR1_SSE		BIT(4)
46 #define SSPCR1_MS		BIT(5)
47 #define SSPCR1_SOD		BIT(6)
48 
49 #define SSPDR			0x0008
50 
51 #define SSPSR			0x000c
52 #define SSPSR_TFE		BIT(0)
53 #define SSPSR_TNF		BIT(1)
54 #define SSPSR_RNE		BIT(2)
55 #define SSPSR_RFF		BIT(3)
56 #define SSPSR_BSY		BIT(4)
57 #define SSPCPSR			0x0010
58 
59 #define SSPIIR			0x0014
60 #define SSPIIR_RIS		BIT(0)
61 #define SSPIIR_TIS		BIT(1)
62 #define SSPIIR_RORIS		BIT(2)
63 #define SSPICR			SSPIIR
64 
65 /* timeout in milliseconds */
66 #define SPI_TIMEOUT		5
67 /* maximum depth of RX/TX FIFO */
68 #define SPI_FIFO_SIZE		8
69 
70 /**
71  * struct ep93xx_spi - EP93xx SPI controller structure
72  * @lock: spinlock that protects concurrent accesses to fields @running,
73  *        @current_msg and @msg_queue
74  * @pdev: pointer to platform device
75  * @clk: clock for the controller
76  * @regs_base: pointer to ioremap()'d registers
77  * @sspdr_phys: physical address of the SSPDR register
78  * @irq: IRQ number used by the driver
79  * @min_rate: minimum clock rate (in Hz) supported by the controller
80  * @max_rate: maximum clock rate (in Hz) supported by the controller
81  * @running: is the queue running
82  * @wq: workqueue used by the driver
83  * @msg_work: work that is queued for the driver
84  * @wait: wait here until given transfer is completed
85  * @msg_queue: queue for the messages
86  * @current_msg: message that is currently processed (or %NULL if none)
87  * @tx: current byte in transfer to transmit
88  * @rx: current byte in transfer to receive
89  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90  *              frame decreases this level and sending one frame increases it.
91  * @dma_rx: RX DMA channel
92  * @dma_tx: TX DMA channel
93  * @dma_rx_data: RX parameters passed to the DMA engine
94  * @dma_tx_data: TX parameters passed to the DMA engine
95  * @rx_sgt: sg table for RX transfers
96  * @tx_sgt: sg table for TX transfers
97  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98  *            the client
99  *
100  * This structure holds EP93xx SPI controller specific information. When
101  * @running is %true, driver accepts transfer requests from protocol drivers.
102  * @current_msg is used to hold pointer to the message that is currently
103  * processed. If @current_msg is %NULL, it means that no processing is going
104  * on.
105  *
106  * Most of the fields are only written once and they can be accessed without
107  * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108  * @running, and @msg_queue.
109  */
110 struct ep93xx_spi {
111 	spinlock_t			lock;
112 	const struct platform_device	*pdev;
113 	struct clk			*clk;
114 	void __iomem			*regs_base;
115 	unsigned long			sspdr_phys;
116 	int				irq;
117 	unsigned long			min_rate;
118 	unsigned long			max_rate;
119 	bool				running;
120 	struct workqueue_struct		*wq;
121 	struct work_struct		msg_work;
122 	struct completion		wait;
123 	struct list_head		msg_queue;
124 	struct spi_message		*current_msg;
125 	size_t				tx;
126 	size_t				rx;
127 	size_t				fifo_level;
128 	struct dma_chan			*dma_rx;
129 	struct dma_chan			*dma_tx;
130 	struct ep93xx_dma_data		dma_rx_data;
131 	struct ep93xx_dma_data		dma_tx_data;
132 	struct sg_table			rx_sgt;
133 	struct sg_table			tx_sgt;
134 	void				*zeropage;
135 };
136 
137 /**
138  * struct ep93xx_spi_chip - SPI device hardware settings
139  * @spi: back pointer to the SPI device
140  * @rate: max rate in hz this chip supports
141  * @div_cpsr: cpsr (pre-scaler) divider
142  * @div_scr: scr divider
143  * @dss: bits per word (4 - 16 bits)
144  * @ops: private chip operations
145  *
146  * This structure is used to store hardware register specific settings for each
147  * SPI device. Settings are written to hardware by function
148  * ep93xx_spi_chip_setup().
149  */
150 struct ep93xx_spi_chip {
151 	const struct spi_device		*spi;
152 	unsigned long			rate;
153 	u8				div_cpsr;
154 	u8				div_scr;
155 	u8				dss;
156 	struct ep93xx_spi_chip_ops	*ops;
157 };
158 
159 /* converts bits per word to CR0.DSS value */
160 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
161 
162 static inline void
163 ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
164 {
165 	__raw_writeb(value, espi->regs_base + reg);
166 }
167 
168 static inline u8
169 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
170 {
171 	return __raw_readb(spi->regs_base + reg);
172 }
173 
174 static inline void
175 ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
176 {
177 	__raw_writew(value, espi->regs_base + reg);
178 }
179 
180 static inline u16
181 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
182 {
183 	return __raw_readw(spi->regs_base + reg);
184 }
185 
186 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
187 {
188 	u8 regval;
189 	int err;
190 
191 	err = clk_enable(espi->clk);
192 	if (err)
193 		return err;
194 
195 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
196 	regval |= SSPCR1_SSE;
197 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
198 
199 	return 0;
200 }
201 
202 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
203 {
204 	u8 regval;
205 
206 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
207 	regval &= ~SSPCR1_SSE;
208 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
209 
210 	clk_disable(espi->clk);
211 }
212 
213 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
214 {
215 	u8 regval;
216 
217 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
218 	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
219 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
220 }
221 
222 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
223 {
224 	u8 regval;
225 
226 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
227 	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
228 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
229 }
230 
231 /**
232  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
233  * @espi: ep93xx SPI controller struct
234  * @chip: divisors are calculated for this chip
235  * @rate: desired SPI output clock rate
236  *
237  * Function calculates cpsr (clock pre-scaler) and scr divisors based on
238  * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
239  * for some reason, divisors cannot be calculated nothing is stored and
240  * %-EINVAL is returned.
241  */
242 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
243 				    struct ep93xx_spi_chip *chip,
244 				    unsigned long rate)
245 {
246 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
247 	int cpsr, scr;
248 
249 	/*
250 	 * Make sure that max value is between values supported by the
251 	 * controller. Note that minimum value is already checked in
252 	 * ep93xx_spi_transfer().
253 	 */
254 	rate = clamp(rate, espi->min_rate, espi->max_rate);
255 
256 	/*
257 	 * Calculate divisors so that we can get speed according the
258 	 * following formula:
259 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
260 	 *
261 	 * cpsr must be even number and starts from 2, scr can be any number
262 	 * between 0 and 255.
263 	 */
264 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
265 		for (scr = 0; scr <= 255; scr++) {
266 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
267 				chip->div_scr = (u8)scr;
268 				chip->div_cpsr = (u8)cpsr;
269 				return 0;
270 			}
271 		}
272 	}
273 
274 	return -EINVAL;
275 }
276 
277 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
278 {
279 	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
280 	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
281 
282 	if (chip->ops && chip->ops->cs_control)
283 		chip->ops->cs_control(spi, value);
284 }
285 
286 /**
287  * ep93xx_spi_setup() - setup an SPI device
288  * @spi: SPI device to setup
289  *
290  * This function sets up SPI device mode, speed etc. Can be called multiple
291  * times for a single device. Returns %0 in case of success, negative error in
292  * case of failure. When this function returns success, the device is
293  * deselected.
294  */
295 static int ep93xx_spi_setup(struct spi_device *spi)
296 {
297 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
298 	struct ep93xx_spi_chip *chip;
299 
300 	if (spi->bits_per_word < 4 || spi->bits_per_word > 16) {
301 		dev_err(&espi->pdev->dev, "invalid bits per word %d\n",
302 			spi->bits_per_word);
303 		return -EINVAL;
304 	}
305 
306 	chip = spi_get_ctldata(spi);
307 	if (!chip) {
308 		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
309 			spi->modalias);
310 
311 		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
312 		if (!chip)
313 			return -ENOMEM;
314 
315 		chip->spi = spi;
316 		chip->ops = spi->controller_data;
317 
318 		if (chip->ops && chip->ops->setup) {
319 			int ret = chip->ops->setup(spi);
320 			if (ret) {
321 				kfree(chip);
322 				return ret;
323 			}
324 		}
325 
326 		spi_set_ctldata(spi, chip);
327 	}
328 
329 	if (spi->max_speed_hz != chip->rate) {
330 		int err;
331 
332 		err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
333 		if (err != 0) {
334 			spi_set_ctldata(spi, NULL);
335 			kfree(chip);
336 			return err;
337 		}
338 		chip->rate = spi->max_speed_hz;
339 	}
340 
341 	chip->dss = bits_per_word_to_dss(spi->bits_per_word);
342 
343 	ep93xx_spi_cs_control(spi, false);
344 	return 0;
345 }
346 
347 /**
348  * ep93xx_spi_transfer() - queue message to be transferred
349  * @spi: target SPI device
350  * @msg: message to be transferred
351  *
352  * This function is called by SPI device drivers when they are going to transfer
353  * a new message. It simply puts the message in the queue and schedules
354  * workqueue to perform the actual transfer later on.
355  *
356  * Returns %0 on success and negative error in case of failure.
357  */
358 static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
359 {
360 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
361 	struct spi_transfer *t;
362 	unsigned long flags;
363 
364 	if (!msg || !msg->complete)
365 		return -EINVAL;
366 
367 	/* first validate each transfer */
368 	list_for_each_entry(t, &msg->transfers, transfer_list) {
369 		if (t->bits_per_word) {
370 			if (t->bits_per_word < 4 || t->bits_per_word > 16)
371 				return -EINVAL;
372 		}
373 		if (t->speed_hz && t->speed_hz < espi->min_rate)
374 				return -EINVAL;
375 	}
376 
377 	/*
378 	 * Now that we own the message, let's initialize it so that it is
379 	 * suitable for us. We use @msg->status to signal whether there was
380 	 * error in transfer and @msg->state is used to hold pointer to the
381 	 * current transfer (or %NULL if no active current transfer).
382 	 */
383 	msg->state = NULL;
384 	msg->status = 0;
385 	msg->actual_length = 0;
386 
387 	spin_lock_irqsave(&espi->lock, flags);
388 	if (!espi->running) {
389 		spin_unlock_irqrestore(&espi->lock, flags);
390 		return -ESHUTDOWN;
391 	}
392 	list_add_tail(&msg->queue, &espi->msg_queue);
393 	queue_work(espi->wq, &espi->msg_work);
394 	spin_unlock_irqrestore(&espi->lock, flags);
395 
396 	return 0;
397 }
398 
399 /**
400  * ep93xx_spi_cleanup() - cleans up master controller specific state
401  * @spi: SPI device to cleanup
402  *
403  * This function releases master controller specific state for given @spi
404  * device.
405  */
406 static void ep93xx_spi_cleanup(struct spi_device *spi)
407 {
408 	struct ep93xx_spi_chip *chip;
409 
410 	chip = spi_get_ctldata(spi);
411 	if (chip) {
412 		if (chip->ops && chip->ops->cleanup)
413 			chip->ops->cleanup(spi);
414 		spi_set_ctldata(spi, NULL);
415 		kfree(chip);
416 	}
417 }
418 
419 /**
420  * ep93xx_spi_chip_setup() - configures hardware according to given @chip
421  * @espi: ep93xx SPI controller struct
422  * @chip: chip specific settings
423  *
424  * This function sets up the actual hardware registers with settings given in
425  * @chip. Note that no validation is done so make sure that callers validate
426  * settings before calling this.
427  */
428 static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
429 				  const struct ep93xx_spi_chip *chip)
430 {
431 	u16 cr0;
432 
433 	cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
434 	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
435 	cr0 |= chip->dss;
436 
437 	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
438 		chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
439 	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
440 
441 	ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
442 	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
443 }
444 
445 static inline int bits_per_word(const struct ep93xx_spi *espi)
446 {
447 	struct spi_message *msg = espi->current_msg;
448 	struct spi_transfer *t = msg->state;
449 
450 	return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word;
451 }
452 
453 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
454 {
455 	if (bits_per_word(espi) > 8) {
456 		u16 tx_val = 0;
457 
458 		if (t->tx_buf)
459 			tx_val = ((u16 *)t->tx_buf)[espi->tx];
460 		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
461 		espi->tx += sizeof(tx_val);
462 	} else {
463 		u8 tx_val = 0;
464 
465 		if (t->tx_buf)
466 			tx_val = ((u8 *)t->tx_buf)[espi->tx];
467 		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
468 		espi->tx += sizeof(tx_val);
469 	}
470 }
471 
472 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
473 {
474 	if (bits_per_word(espi) > 8) {
475 		u16 rx_val;
476 
477 		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
478 		if (t->rx_buf)
479 			((u16 *)t->rx_buf)[espi->rx] = rx_val;
480 		espi->rx += sizeof(rx_val);
481 	} else {
482 		u8 rx_val;
483 
484 		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
485 		if (t->rx_buf)
486 			((u8 *)t->rx_buf)[espi->rx] = rx_val;
487 		espi->rx += sizeof(rx_val);
488 	}
489 }
490 
491 /**
492  * ep93xx_spi_read_write() - perform next RX/TX transfer
493  * @espi: ep93xx SPI controller struct
494  *
495  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
496  * called several times, the whole transfer will be completed. Returns
497  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
498  *
499  * When this function is finished, RX FIFO should be empty and TX FIFO should be
500  * full.
501  */
502 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
503 {
504 	struct spi_message *msg = espi->current_msg;
505 	struct spi_transfer *t = msg->state;
506 
507 	/* read as long as RX FIFO has frames in it */
508 	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
509 		ep93xx_do_read(espi, t);
510 		espi->fifo_level--;
511 	}
512 
513 	/* write as long as TX FIFO has room */
514 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
515 		ep93xx_do_write(espi, t);
516 		espi->fifo_level++;
517 	}
518 
519 	if (espi->rx == t->len)
520 		return 0;
521 
522 	return -EINPROGRESS;
523 }
524 
525 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
526 {
527 	/*
528 	 * Now everything is set up for the current transfer. We prime the TX
529 	 * FIFO, enable interrupts, and wait for the transfer to complete.
530 	 */
531 	if (ep93xx_spi_read_write(espi)) {
532 		ep93xx_spi_enable_interrupts(espi);
533 		wait_for_completion(&espi->wait);
534 	}
535 }
536 
537 /**
538  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
539  * @espi: ep93xx SPI controller struct
540  * @dir: DMA transfer direction
541  *
542  * Function configures the DMA, maps the buffer and prepares the DMA
543  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
544  * in case of failure.
545  */
546 static struct dma_async_tx_descriptor *
547 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_data_direction dir)
548 {
549 	struct spi_transfer *t = espi->current_msg->state;
550 	struct dma_async_tx_descriptor *txd;
551 	enum dma_slave_buswidth buswidth;
552 	struct dma_slave_config conf;
553 	enum dma_transfer_direction slave_dirn;
554 	struct scatterlist *sg;
555 	struct sg_table *sgt;
556 	struct dma_chan *chan;
557 	const void *buf, *pbuf;
558 	size_t len = t->len;
559 	int i, ret, nents;
560 
561 	if (bits_per_word(espi) > 8)
562 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
563 	else
564 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
565 
566 	memset(&conf, 0, sizeof(conf));
567 	conf.direction = dir;
568 
569 	if (dir == DMA_FROM_DEVICE) {
570 		chan = espi->dma_rx;
571 		buf = t->rx_buf;
572 		sgt = &espi->rx_sgt;
573 
574 		conf.src_addr = espi->sspdr_phys;
575 		conf.src_addr_width = buswidth;
576 		slave_dirn = DMA_DEV_TO_MEM;
577 	} else {
578 		chan = espi->dma_tx;
579 		buf = t->tx_buf;
580 		sgt = &espi->tx_sgt;
581 
582 		conf.dst_addr = espi->sspdr_phys;
583 		conf.dst_addr_width = buswidth;
584 		slave_dirn = DMA_MEM_TO_DEV;
585 	}
586 
587 	ret = dmaengine_slave_config(chan, &conf);
588 	if (ret)
589 		return ERR_PTR(ret);
590 
591 	/*
592 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
593 	 * because we are using @espi->zeropage to provide a zero RX buffer
594 	 * for the TX transfers and we have only allocated one page for that.
595 	 *
596 	 * For performance reasons we allocate a new sg_table only when
597 	 * needed. Otherwise we will re-use the current one. Eventually the
598 	 * last sg_table is released in ep93xx_spi_release_dma().
599 	 */
600 
601 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
602 	if (nents != sgt->nents) {
603 		sg_free_table(sgt);
604 
605 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
606 		if (ret)
607 			return ERR_PTR(ret);
608 	}
609 
610 	pbuf = buf;
611 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
612 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
613 
614 		if (buf) {
615 			sg_set_page(sg, virt_to_page(pbuf), bytes,
616 				    offset_in_page(pbuf));
617 		} else {
618 			sg_set_page(sg, virt_to_page(espi->zeropage),
619 				    bytes, 0);
620 		}
621 
622 		pbuf += bytes;
623 		len -= bytes;
624 	}
625 
626 	if (WARN_ON(len)) {
627 		dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
628 		return ERR_PTR(-EINVAL);
629 	}
630 
631 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
632 	if (!nents)
633 		return ERR_PTR(-ENOMEM);
634 
635 	txd = chan->device->device_prep_slave_sg(chan, sgt->sgl, nents,
636 						 slave_dirn, DMA_CTRL_ACK);
637 	if (!txd) {
638 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
639 		return ERR_PTR(-ENOMEM);
640 	}
641 	return txd;
642 }
643 
644 /**
645  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
646  * @espi: ep93xx SPI controller struct
647  * @dir: DMA transfer direction
648  *
649  * Function finishes with the DMA transfer. After this, the DMA buffer is
650  * unmapped.
651  */
652 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
653 				  enum dma_data_direction dir)
654 {
655 	struct dma_chan *chan;
656 	struct sg_table *sgt;
657 
658 	if (dir == DMA_FROM_DEVICE) {
659 		chan = espi->dma_rx;
660 		sgt = &espi->rx_sgt;
661 	} else {
662 		chan = espi->dma_tx;
663 		sgt = &espi->tx_sgt;
664 	}
665 
666 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
667 }
668 
669 static void ep93xx_spi_dma_callback(void *callback_param)
670 {
671 	complete(callback_param);
672 }
673 
674 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
675 {
676 	struct spi_message *msg = espi->current_msg;
677 	struct dma_async_tx_descriptor *rxd, *txd;
678 
679 	rxd = ep93xx_spi_dma_prepare(espi, DMA_FROM_DEVICE);
680 	if (IS_ERR(rxd)) {
681 		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
682 		msg->status = PTR_ERR(rxd);
683 		return;
684 	}
685 
686 	txd = ep93xx_spi_dma_prepare(espi, DMA_TO_DEVICE);
687 	if (IS_ERR(txd)) {
688 		ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
689 		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
690 		msg->status = PTR_ERR(txd);
691 		return;
692 	}
693 
694 	/* We are ready when RX is done */
695 	rxd->callback = ep93xx_spi_dma_callback;
696 	rxd->callback_param = &espi->wait;
697 
698 	/* Now submit both descriptors and wait while they finish */
699 	dmaengine_submit(rxd);
700 	dmaengine_submit(txd);
701 
702 	dma_async_issue_pending(espi->dma_rx);
703 	dma_async_issue_pending(espi->dma_tx);
704 
705 	wait_for_completion(&espi->wait);
706 
707 	ep93xx_spi_dma_finish(espi, DMA_TO_DEVICE);
708 	ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
709 }
710 
711 /**
712  * ep93xx_spi_process_transfer() - processes one SPI transfer
713  * @espi: ep93xx SPI controller struct
714  * @msg: current message
715  * @t: transfer to process
716  *
717  * This function processes one SPI transfer given in @t. Function waits until
718  * transfer is complete (may sleep) and updates @msg->status based on whether
719  * transfer was successfully processed or not.
720  */
721 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
722 					struct spi_message *msg,
723 					struct spi_transfer *t)
724 {
725 	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
726 
727 	msg->state = t;
728 
729 	/*
730 	 * Handle any transfer specific settings if needed. We use
731 	 * temporary chip settings here and restore original later when
732 	 * the transfer is finished.
733 	 */
734 	if (t->speed_hz || t->bits_per_word) {
735 		struct ep93xx_spi_chip tmp_chip = *chip;
736 
737 		if (t->speed_hz) {
738 			int err;
739 
740 			err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
741 						       t->speed_hz);
742 			if (err) {
743 				dev_err(&espi->pdev->dev,
744 					"failed to adjust speed\n");
745 				msg->status = err;
746 				return;
747 			}
748 		}
749 
750 		if (t->bits_per_word)
751 			tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
752 
753 		/*
754 		 * Set up temporary new hw settings for this transfer.
755 		 */
756 		ep93xx_spi_chip_setup(espi, &tmp_chip);
757 	}
758 
759 	espi->rx = 0;
760 	espi->tx = 0;
761 
762 	/*
763 	 * There is no point of setting up DMA for the transfers which will
764 	 * fit into the FIFO and can be transferred with a single interrupt.
765 	 * So in these cases we will be using PIO and don't bother for DMA.
766 	 */
767 	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
768 		ep93xx_spi_dma_transfer(espi);
769 	else
770 		ep93xx_spi_pio_transfer(espi);
771 
772 	/*
773 	 * In case of error during transmit, we bail out from processing
774 	 * the message.
775 	 */
776 	if (msg->status)
777 		return;
778 
779 	msg->actual_length += t->len;
780 
781 	/*
782 	 * After this transfer is finished, perform any possible
783 	 * post-transfer actions requested by the protocol driver.
784 	 */
785 	if (t->delay_usecs) {
786 		set_current_state(TASK_UNINTERRUPTIBLE);
787 		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
788 	}
789 	if (t->cs_change) {
790 		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
791 			/*
792 			 * In case protocol driver is asking us to drop the
793 			 * chipselect briefly, we let the scheduler to handle
794 			 * any "delay" here.
795 			 */
796 			ep93xx_spi_cs_control(msg->spi, false);
797 			cond_resched();
798 			ep93xx_spi_cs_control(msg->spi, true);
799 		}
800 	}
801 
802 	if (t->speed_hz || t->bits_per_word)
803 		ep93xx_spi_chip_setup(espi, chip);
804 }
805 
806 /*
807  * ep93xx_spi_process_message() - process one SPI message
808  * @espi: ep93xx SPI controller struct
809  * @msg: message to process
810  *
811  * This function processes a single SPI message. We go through all transfers in
812  * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
813  * asserted during the whole message (unless per transfer cs_change is set).
814  *
815  * @msg->status contains %0 in case of success or negative error code in case of
816  * failure.
817  */
818 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
819 				       struct spi_message *msg)
820 {
821 	unsigned long timeout;
822 	struct spi_transfer *t;
823 	int err;
824 
825 	/*
826 	 * Enable the SPI controller and its clock.
827 	 */
828 	err = ep93xx_spi_enable(espi);
829 	if (err) {
830 		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
831 		msg->status = err;
832 		return;
833 	}
834 
835 	/*
836 	 * Just to be sure: flush any data from RX FIFO.
837 	 */
838 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
839 	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
840 		if (time_after(jiffies, timeout)) {
841 			dev_warn(&espi->pdev->dev,
842 				 "timeout while flushing RX FIFO\n");
843 			msg->status = -ETIMEDOUT;
844 			return;
845 		}
846 		ep93xx_spi_read_u16(espi, SSPDR);
847 	}
848 
849 	/*
850 	 * We explicitly handle FIFO level. This way we don't have to check TX
851 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
852 	 */
853 	espi->fifo_level = 0;
854 
855 	/*
856 	 * Update SPI controller registers according to spi device and assert
857 	 * the chipselect.
858 	 */
859 	ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
860 	ep93xx_spi_cs_control(msg->spi, true);
861 
862 	list_for_each_entry(t, &msg->transfers, transfer_list) {
863 		ep93xx_spi_process_transfer(espi, msg, t);
864 		if (msg->status)
865 			break;
866 	}
867 
868 	/*
869 	 * Now the whole message is transferred (or failed for some reason). We
870 	 * deselect the device and disable the SPI controller.
871 	 */
872 	ep93xx_spi_cs_control(msg->spi, false);
873 	ep93xx_spi_disable(espi);
874 }
875 
876 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
877 
878 /**
879  * ep93xx_spi_work() - EP93xx SPI workqueue worker function
880  * @work: work struct
881  *
882  * Workqueue worker function. This function is called when there are new
883  * SPI messages to be processed. Message is taken out from the queue and then
884  * passed to ep93xx_spi_process_message().
885  *
886  * After message is transferred, protocol driver is notified by calling
887  * @msg->complete(). In case of error, @msg->status is set to negative error
888  * number, otherwise it contains zero (and @msg->actual_length is updated).
889  */
890 static void ep93xx_spi_work(struct work_struct *work)
891 {
892 	struct ep93xx_spi *espi = work_to_espi(work);
893 	struct spi_message *msg;
894 
895 	spin_lock_irq(&espi->lock);
896 	if (!espi->running || espi->current_msg ||
897 		list_empty(&espi->msg_queue)) {
898 		spin_unlock_irq(&espi->lock);
899 		return;
900 	}
901 	msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
902 	list_del_init(&msg->queue);
903 	espi->current_msg = msg;
904 	spin_unlock_irq(&espi->lock);
905 
906 	ep93xx_spi_process_message(espi, msg);
907 
908 	/*
909 	 * Update the current message and re-schedule ourselves if there are
910 	 * more messages in the queue.
911 	 */
912 	spin_lock_irq(&espi->lock);
913 	espi->current_msg = NULL;
914 	if (espi->running && !list_empty(&espi->msg_queue))
915 		queue_work(espi->wq, &espi->msg_work);
916 	spin_unlock_irq(&espi->lock);
917 
918 	/* notify the protocol driver that we are done with this message */
919 	msg->complete(msg->context);
920 }
921 
922 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
923 {
924 	struct ep93xx_spi *espi = dev_id;
925 	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
926 
927 	/*
928 	 * If we got ROR (receive overrun) interrupt we know that something is
929 	 * wrong. Just abort the message.
930 	 */
931 	if (unlikely(irq_status & SSPIIR_RORIS)) {
932 		/* clear the overrun interrupt */
933 		ep93xx_spi_write_u8(espi, SSPICR, 0);
934 		dev_warn(&espi->pdev->dev,
935 			 "receive overrun, aborting the message\n");
936 		espi->current_msg->status = -EIO;
937 	} else {
938 		/*
939 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
940 		 * simply execute next data transfer.
941 		 */
942 		if (ep93xx_spi_read_write(espi)) {
943 			/*
944 			 * In normal case, there still is some processing left
945 			 * for current transfer. Let's wait for the next
946 			 * interrupt then.
947 			 */
948 			return IRQ_HANDLED;
949 		}
950 	}
951 
952 	/*
953 	 * Current transfer is finished, either with error or with success. In
954 	 * any case we disable interrupts and notify the worker to handle
955 	 * any post-processing of the message.
956 	 */
957 	ep93xx_spi_disable_interrupts(espi);
958 	complete(&espi->wait);
959 	return IRQ_HANDLED;
960 }
961 
962 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
963 {
964 	if (ep93xx_dma_chan_is_m2p(chan))
965 		return false;
966 
967 	chan->private = filter_param;
968 	return true;
969 }
970 
971 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
972 {
973 	dma_cap_mask_t mask;
974 	int ret;
975 
976 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
977 	if (!espi->zeropage)
978 		return -ENOMEM;
979 
980 	dma_cap_zero(mask);
981 	dma_cap_set(DMA_SLAVE, mask);
982 
983 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
984 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
985 	espi->dma_rx_data.name = "ep93xx-spi-rx";
986 
987 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
988 					   &espi->dma_rx_data);
989 	if (!espi->dma_rx) {
990 		ret = -ENODEV;
991 		goto fail_free_page;
992 	}
993 
994 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
995 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
996 	espi->dma_tx_data.name = "ep93xx-spi-tx";
997 
998 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
999 					   &espi->dma_tx_data);
1000 	if (!espi->dma_tx) {
1001 		ret = -ENODEV;
1002 		goto fail_release_rx;
1003 	}
1004 
1005 	return 0;
1006 
1007 fail_release_rx:
1008 	dma_release_channel(espi->dma_rx);
1009 	espi->dma_rx = NULL;
1010 fail_free_page:
1011 	free_page((unsigned long)espi->zeropage);
1012 
1013 	return ret;
1014 }
1015 
1016 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1017 {
1018 	if (espi->dma_rx) {
1019 		dma_release_channel(espi->dma_rx);
1020 		sg_free_table(&espi->rx_sgt);
1021 	}
1022 	if (espi->dma_tx) {
1023 		dma_release_channel(espi->dma_tx);
1024 		sg_free_table(&espi->tx_sgt);
1025 	}
1026 
1027 	if (espi->zeropage)
1028 		free_page((unsigned long)espi->zeropage);
1029 }
1030 
1031 static int __init ep93xx_spi_probe(struct platform_device *pdev)
1032 {
1033 	struct spi_master *master;
1034 	struct ep93xx_spi_info *info;
1035 	struct ep93xx_spi *espi;
1036 	struct resource *res;
1037 	int error;
1038 
1039 	info = pdev->dev.platform_data;
1040 
1041 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1042 	if (!master) {
1043 		dev_err(&pdev->dev, "failed to allocate spi master\n");
1044 		return -ENOMEM;
1045 	}
1046 
1047 	master->setup = ep93xx_spi_setup;
1048 	master->transfer = ep93xx_spi_transfer;
1049 	master->cleanup = ep93xx_spi_cleanup;
1050 	master->bus_num = pdev->id;
1051 	master->num_chipselect = info->num_chipselect;
1052 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1053 
1054 	platform_set_drvdata(pdev, master);
1055 
1056 	espi = spi_master_get_devdata(master);
1057 
1058 	espi->clk = clk_get(&pdev->dev, NULL);
1059 	if (IS_ERR(espi->clk)) {
1060 		dev_err(&pdev->dev, "unable to get spi clock\n");
1061 		error = PTR_ERR(espi->clk);
1062 		goto fail_release_master;
1063 	}
1064 
1065 	spin_lock_init(&espi->lock);
1066 	init_completion(&espi->wait);
1067 
1068 	/*
1069 	 * Calculate maximum and minimum supported clock rates
1070 	 * for the controller.
1071 	 */
1072 	espi->max_rate = clk_get_rate(espi->clk) / 2;
1073 	espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1074 	espi->pdev = pdev;
1075 
1076 	espi->irq = platform_get_irq(pdev, 0);
1077 	if (espi->irq < 0) {
1078 		error = -EBUSY;
1079 		dev_err(&pdev->dev, "failed to get irq resources\n");
1080 		goto fail_put_clock;
1081 	}
1082 
1083 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1084 	if (!res) {
1085 		dev_err(&pdev->dev, "unable to get iomem resource\n");
1086 		error = -ENODEV;
1087 		goto fail_put_clock;
1088 	}
1089 
1090 	res = request_mem_region(res->start, resource_size(res), pdev->name);
1091 	if (!res) {
1092 		dev_err(&pdev->dev, "unable to request iomem resources\n");
1093 		error = -EBUSY;
1094 		goto fail_put_clock;
1095 	}
1096 
1097 	espi->sspdr_phys = res->start + SSPDR;
1098 	espi->regs_base = ioremap(res->start, resource_size(res));
1099 	if (!espi->regs_base) {
1100 		dev_err(&pdev->dev, "failed to map resources\n");
1101 		error = -ENODEV;
1102 		goto fail_free_mem;
1103 	}
1104 
1105 	error = request_irq(espi->irq, ep93xx_spi_interrupt, 0,
1106 			    "ep93xx-spi", espi);
1107 	if (error) {
1108 		dev_err(&pdev->dev, "failed to request irq\n");
1109 		goto fail_unmap_regs;
1110 	}
1111 
1112 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
1113 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1114 
1115 	espi->wq = create_singlethread_workqueue("ep93xx_spid");
1116 	if (!espi->wq) {
1117 		dev_err(&pdev->dev, "unable to create workqueue\n");
1118 		goto fail_free_dma;
1119 	}
1120 	INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1121 	INIT_LIST_HEAD(&espi->msg_queue);
1122 	espi->running = true;
1123 
1124 	/* make sure that the hardware is disabled */
1125 	ep93xx_spi_write_u8(espi, SSPCR1, 0);
1126 
1127 	error = spi_register_master(master);
1128 	if (error) {
1129 		dev_err(&pdev->dev, "failed to register SPI master\n");
1130 		goto fail_free_queue;
1131 	}
1132 
1133 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1134 		 (unsigned long)res->start, espi->irq);
1135 
1136 	return 0;
1137 
1138 fail_free_queue:
1139 	destroy_workqueue(espi->wq);
1140 fail_free_dma:
1141 	ep93xx_spi_release_dma(espi);
1142 	free_irq(espi->irq, espi);
1143 fail_unmap_regs:
1144 	iounmap(espi->regs_base);
1145 fail_free_mem:
1146 	release_mem_region(res->start, resource_size(res));
1147 fail_put_clock:
1148 	clk_put(espi->clk);
1149 fail_release_master:
1150 	spi_master_put(master);
1151 	platform_set_drvdata(pdev, NULL);
1152 
1153 	return error;
1154 }
1155 
1156 static int __exit ep93xx_spi_remove(struct platform_device *pdev)
1157 {
1158 	struct spi_master *master = platform_get_drvdata(pdev);
1159 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
1160 	struct resource *res;
1161 
1162 	spin_lock_irq(&espi->lock);
1163 	espi->running = false;
1164 	spin_unlock_irq(&espi->lock);
1165 
1166 	destroy_workqueue(espi->wq);
1167 
1168 	/*
1169 	 * Complete remaining messages with %-ESHUTDOWN status.
1170 	 */
1171 	spin_lock_irq(&espi->lock);
1172 	while (!list_empty(&espi->msg_queue)) {
1173 		struct spi_message *msg;
1174 
1175 		msg = list_first_entry(&espi->msg_queue,
1176 				       struct spi_message, queue);
1177 		list_del_init(&msg->queue);
1178 		msg->status = -ESHUTDOWN;
1179 		spin_unlock_irq(&espi->lock);
1180 		msg->complete(msg->context);
1181 		spin_lock_irq(&espi->lock);
1182 	}
1183 	spin_unlock_irq(&espi->lock);
1184 
1185 	ep93xx_spi_release_dma(espi);
1186 	free_irq(espi->irq, espi);
1187 	iounmap(espi->regs_base);
1188 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1189 	release_mem_region(res->start, resource_size(res));
1190 	clk_put(espi->clk);
1191 	platform_set_drvdata(pdev, NULL);
1192 
1193 	spi_unregister_master(master);
1194 	return 0;
1195 }
1196 
1197 static struct platform_driver ep93xx_spi_driver = {
1198 	.driver		= {
1199 		.name	= "ep93xx-spi",
1200 		.owner	= THIS_MODULE,
1201 	},
1202 	.remove		= __exit_p(ep93xx_spi_remove),
1203 };
1204 
1205 static int __init ep93xx_spi_init(void)
1206 {
1207 	return platform_driver_probe(&ep93xx_spi_driver, ep93xx_spi_probe);
1208 }
1209 module_init(ep93xx_spi_init);
1210 
1211 static void __exit ep93xx_spi_exit(void)
1212 {
1213 	platform_driver_unregister(&ep93xx_spi_driver);
1214 }
1215 module_exit(ep93xx_spi_exit);
1216 
1217 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1218 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1219 MODULE_LICENSE("GPL");
1220 MODULE_ALIAS("platform:ep93xx-spi");
1221