xref: /openbmc/linux/drivers/spi/spi-ep93xx.c (revision a36954f5)
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/spi/spi.h>
33 
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
36 
37 #define SSPCR0			0x0000
38 #define SSPCR0_MODE_SHIFT	6
39 #define SSPCR0_SCR_SHIFT	8
40 
41 #define SSPCR1			0x0004
42 #define SSPCR1_RIE		BIT(0)
43 #define SSPCR1_TIE		BIT(1)
44 #define SSPCR1_RORIE		BIT(2)
45 #define SSPCR1_LBM		BIT(3)
46 #define SSPCR1_SSE		BIT(4)
47 #define SSPCR1_MS		BIT(5)
48 #define SSPCR1_SOD		BIT(6)
49 
50 #define SSPDR			0x0008
51 
52 #define SSPSR			0x000c
53 #define SSPSR_TFE		BIT(0)
54 #define SSPSR_TNF		BIT(1)
55 #define SSPSR_RNE		BIT(2)
56 #define SSPSR_RFF		BIT(3)
57 #define SSPSR_BSY		BIT(4)
58 #define SSPCPSR			0x0010
59 
60 #define SSPIIR			0x0014
61 #define SSPIIR_RIS		BIT(0)
62 #define SSPIIR_TIS		BIT(1)
63 #define SSPIIR_RORIS		BIT(2)
64 #define SSPICR			SSPIIR
65 
66 /* timeout in milliseconds */
67 #define SPI_TIMEOUT		5
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE		8
70 
71 /**
72  * struct ep93xx_spi - EP93xx SPI controller structure
73  * @pdev: pointer to platform device
74  * @clk: clock for the controller
75  * @regs_base: pointer to ioremap()'d registers
76  * @sspdr_phys: physical address of the SSPDR register
77  * @wait: wait here until given transfer is completed
78  * @current_msg: message that is currently processed (or %NULL if none)
79  * @tx: current byte in transfer to transmit
80  * @rx: current byte in transfer to receive
81  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
82  *              frame decreases this level and sending one frame increases it.
83  * @dma_rx: RX DMA channel
84  * @dma_tx: TX DMA channel
85  * @dma_rx_data: RX parameters passed to the DMA engine
86  * @dma_tx_data: TX parameters passed to the DMA engine
87  * @rx_sgt: sg table for RX transfers
88  * @tx_sgt: sg table for TX transfers
89  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
90  *            the client
91  */
92 struct ep93xx_spi {
93 	const struct platform_device	*pdev;
94 	struct clk			*clk;
95 	void __iomem			*regs_base;
96 	unsigned long			sspdr_phys;
97 	struct completion		wait;
98 	struct spi_message		*current_msg;
99 	size_t				tx;
100 	size_t				rx;
101 	size_t				fifo_level;
102 	struct dma_chan			*dma_rx;
103 	struct dma_chan			*dma_tx;
104 	struct ep93xx_dma_data		dma_rx_data;
105 	struct ep93xx_dma_data		dma_tx_data;
106 	struct sg_table			rx_sgt;
107 	struct sg_table			tx_sgt;
108 	void				*zeropage;
109 };
110 
111 /* converts bits per word to CR0.DSS value */
112 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
113 
114 static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
115 				u16 reg, u8 value)
116 {
117 	writeb(value, espi->regs_base + reg);
118 }
119 
120 static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
121 {
122 	return readb(spi->regs_base + reg);
123 }
124 
125 static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
126 				 u16 reg, u16 value)
127 {
128 	writew(value, espi->regs_base + reg);
129 }
130 
131 static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
132 {
133 	return readw(spi->regs_base + reg);
134 }
135 
136 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
137 {
138 	u8 regval;
139 	int err;
140 
141 	err = clk_enable(espi->clk);
142 	if (err)
143 		return err;
144 
145 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
146 	regval |= SSPCR1_SSE;
147 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
148 
149 	return 0;
150 }
151 
152 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
153 {
154 	u8 regval;
155 
156 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
157 	regval &= ~SSPCR1_SSE;
158 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
159 
160 	clk_disable(espi->clk);
161 }
162 
163 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
164 {
165 	u8 regval;
166 
167 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
168 	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
169 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
170 }
171 
172 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
173 {
174 	u8 regval;
175 
176 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
177 	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
178 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
179 }
180 
181 /**
182  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
183  * @espi: ep93xx SPI controller struct
184  * @rate: desired SPI output clock rate
185  * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
186  * @div_scr: pointer to return the scr divider
187  */
188 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
189 				    u32 rate, u8 *div_cpsr, u8 *div_scr)
190 {
191 	struct spi_master *master = platform_get_drvdata(espi->pdev);
192 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
193 	int cpsr, scr;
194 
195 	/*
196 	 * Make sure that max value is between values supported by the
197 	 * controller. Note that minimum value is already checked in
198 	 * ep93xx_spi_transfer_one_message().
199 	 */
200 	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
201 
202 	/*
203 	 * Calculate divisors so that we can get speed according the
204 	 * following formula:
205 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
206 	 *
207 	 * cpsr must be even number and starts from 2, scr can be any number
208 	 * between 0 and 255.
209 	 */
210 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
211 		for (scr = 0; scr <= 255; scr++) {
212 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
213 				*div_scr = (u8)scr;
214 				*div_cpsr = (u8)cpsr;
215 				return 0;
216 			}
217 		}
218 	}
219 
220 	return -EINVAL;
221 }
222 
223 static void ep93xx_spi_cs_control(struct spi_device *spi, bool enable)
224 {
225 	if (spi->mode & SPI_CS_HIGH)
226 		enable = !enable;
227 
228 	if (gpio_is_valid(spi->cs_gpio))
229 		gpio_set_value(spi->cs_gpio, !enable);
230 }
231 
232 static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
233 				 struct spi_device *spi,
234 				 struct spi_transfer *xfer)
235 {
236 	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
237 	u8 div_cpsr = 0;
238 	u8 div_scr = 0;
239 	u16 cr0;
240 	int err;
241 
242 	err = ep93xx_spi_calc_divisors(espi, xfer->speed_hz,
243 				       &div_cpsr, &div_scr);
244 	if (err)
245 		return err;
246 
247 	cr0 = div_scr << SSPCR0_SCR_SHIFT;
248 	cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
249 	cr0 |= dss;
250 
251 	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
252 		spi->mode, div_cpsr, div_scr, dss);
253 	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x\n", cr0);
254 
255 	ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr);
256 	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
257 
258 	return 0;
259 }
260 
261 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
262 {
263 	if (t->bits_per_word > 8) {
264 		u16 tx_val = 0;
265 
266 		if (t->tx_buf)
267 			tx_val = ((u16 *)t->tx_buf)[espi->tx];
268 		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
269 		espi->tx += sizeof(tx_val);
270 	} else {
271 		u8 tx_val = 0;
272 
273 		if (t->tx_buf)
274 			tx_val = ((u8 *)t->tx_buf)[espi->tx];
275 		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
276 		espi->tx += sizeof(tx_val);
277 	}
278 }
279 
280 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
281 {
282 	if (t->bits_per_word > 8) {
283 		u16 rx_val;
284 
285 		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
286 		if (t->rx_buf)
287 			((u16 *)t->rx_buf)[espi->rx] = rx_val;
288 		espi->rx += sizeof(rx_val);
289 	} else {
290 		u8 rx_val;
291 
292 		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
293 		if (t->rx_buf)
294 			((u8 *)t->rx_buf)[espi->rx] = rx_val;
295 		espi->rx += sizeof(rx_val);
296 	}
297 }
298 
299 /**
300  * ep93xx_spi_read_write() - perform next RX/TX transfer
301  * @espi: ep93xx SPI controller struct
302  *
303  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
304  * called several times, the whole transfer will be completed. Returns
305  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
306  *
307  * When this function is finished, RX FIFO should be empty and TX FIFO should be
308  * full.
309  */
310 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
311 {
312 	struct spi_message *msg = espi->current_msg;
313 	struct spi_transfer *t = msg->state;
314 
315 	/* read as long as RX FIFO has frames in it */
316 	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
317 		ep93xx_do_read(espi, t);
318 		espi->fifo_level--;
319 	}
320 
321 	/* write as long as TX FIFO has room */
322 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
323 		ep93xx_do_write(espi, t);
324 		espi->fifo_level++;
325 	}
326 
327 	if (espi->rx == t->len)
328 		return 0;
329 
330 	return -EINPROGRESS;
331 }
332 
333 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
334 {
335 	/*
336 	 * Now everything is set up for the current transfer. We prime the TX
337 	 * FIFO, enable interrupts, and wait for the transfer to complete.
338 	 */
339 	if (ep93xx_spi_read_write(espi)) {
340 		ep93xx_spi_enable_interrupts(espi);
341 		wait_for_completion(&espi->wait);
342 	}
343 }
344 
345 /**
346  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
347  * @espi: ep93xx SPI controller struct
348  * @dir: DMA transfer direction
349  *
350  * Function configures the DMA, maps the buffer and prepares the DMA
351  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
352  * in case of failure.
353  */
354 static struct dma_async_tx_descriptor *
355 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
356 {
357 	struct spi_transfer *t = espi->current_msg->state;
358 	struct dma_async_tx_descriptor *txd;
359 	enum dma_slave_buswidth buswidth;
360 	struct dma_slave_config conf;
361 	struct scatterlist *sg;
362 	struct sg_table *sgt;
363 	struct dma_chan *chan;
364 	const void *buf, *pbuf;
365 	size_t len = t->len;
366 	int i, ret, nents;
367 
368 	if (t->bits_per_word > 8)
369 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
370 	else
371 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
372 
373 	memset(&conf, 0, sizeof(conf));
374 	conf.direction = dir;
375 
376 	if (dir == DMA_DEV_TO_MEM) {
377 		chan = espi->dma_rx;
378 		buf = t->rx_buf;
379 		sgt = &espi->rx_sgt;
380 
381 		conf.src_addr = espi->sspdr_phys;
382 		conf.src_addr_width = buswidth;
383 	} else {
384 		chan = espi->dma_tx;
385 		buf = t->tx_buf;
386 		sgt = &espi->tx_sgt;
387 
388 		conf.dst_addr = espi->sspdr_phys;
389 		conf.dst_addr_width = buswidth;
390 	}
391 
392 	ret = dmaengine_slave_config(chan, &conf);
393 	if (ret)
394 		return ERR_PTR(ret);
395 
396 	/*
397 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
398 	 * because we are using @espi->zeropage to provide a zero RX buffer
399 	 * for the TX transfers and we have only allocated one page for that.
400 	 *
401 	 * For performance reasons we allocate a new sg_table only when
402 	 * needed. Otherwise we will re-use the current one. Eventually the
403 	 * last sg_table is released in ep93xx_spi_release_dma().
404 	 */
405 
406 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
407 	if (nents != sgt->nents) {
408 		sg_free_table(sgt);
409 
410 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
411 		if (ret)
412 			return ERR_PTR(ret);
413 	}
414 
415 	pbuf = buf;
416 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
417 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
418 
419 		if (buf) {
420 			sg_set_page(sg, virt_to_page(pbuf), bytes,
421 				    offset_in_page(pbuf));
422 		} else {
423 			sg_set_page(sg, virt_to_page(espi->zeropage),
424 				    bytes, 0);
425 		}
426 
427 		pbuf += bytes;
428 		len -= bytes;
429 	}
430 
431 	if (WARN_ON(len)) {
432 		dev_warn(&espi->pdev->dev, "len = %zu expected 0!\n", len);
433 		return ERR_PTR(-EINVAL);
434 	}
435 
436 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
437 	if (!nents)
438 		return ERR_PTR(-ENOMEM);
439 
440 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
441 	if (!txd) {
442 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
443 		return ERR_PTR(-ENOMEM);
444 	}
445 	return txd;
446 }
447 
448 /**
449  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
450  * @espi: ep93xx SPI controller struct
451  * @dir: DMA transfer direction
452  *
453  * Function finishes with the DMA transfer. After this, the DMA buffer is
454  * unmapped.
455  */
456 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
457 				  enum dma_transfer_direction dir)
458 {
459 	struct dma_chan *chan;
460 	struct sg_table *sgt;
461 
462 	if (dir == DMA_DEV_TO_MEM) {
463 		chan = espi->dma_rx;
464 		sgt = &espi->rx_sgt;
465 	} else {
466 		chan = espi->dma_tx;
467 		sgt = &espi->tx_sgt;
468 	}
469 
470 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
471 }
472 
473 static void ep93xx_spi_dma_callback(void *callback_param)
474 {
475 	complete(callback_param);
476 }
477 
478 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
479 {
480 	struct spi_message *msg = espi->current_msg;
481 	struct dma_async_tx_descriptor *rxd, *txd;
482 
483 	rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
484 	if (IS_ERR(rxd)) {
485 		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
486 		msg->status = PTR_ERR(rxd);
487 		return;
488 	}
489 
490 	txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
491 	if (IS_ERR(txd)) {
492 		ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
493 		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
494 		msg->status = PTR_ERR(txd);
495 		return;
496 	}
497 
498 	/* We are ready when RX is done */
499 	rxd->callback = ep93xx_spi_dma_callback;
500 	rxd->callback_param = &espi->wait;
501 
502 	/* Now submit both descriptors and wait while they finish */
503 	dmaengine_submit(rxd);
504 	dmaengine_submit(txd);
505 
506 	dma_async_issue_pending(espi->dma_rx);
507 	dma_async_issue_pending(espi->dma_tx);
508 
509 	wait_for_completion(&espi->wait);
510 
511 	ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
512 	ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
513 }
514 
515 /**
516  * ep93xx_spi_process_transfer() - processes one SPI transfer
517  * @espi: ep93xx SPI controller struct
518  * @msg: current message
519  * @t: transfer to process
520  *
521  * This function processes one SPI transfer given in @t. Function waits until
522  * transfer is complete (may sleep) and updates @msg->status based on whether
523  * transfer was successfully processed or not.
524  */
525 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
526 					struct spi_message *msg,
527 					struct spi_transfer *t)
528 {
529 	int err;
530 
531 	msg->state = t;
532 
533 	err = ep93xx_spi_chip_setup(espi, msg->spi, t);
534 	if (err) {
535 		dev_err(&espi->pdev->dev,
536 			"failed to setup chip for transfer\n");
537 		msg->status = err;
538 		return;
539 	}
540 
541 	espi->rx = 0;
542 	espi->tx = 0;
543 
544 	/*
545 	 * There is no point of setting up DMA for the transfers which will
546 	 * fit into the FIFO and can be transferred with a single interrupt.
547 	 * So in these cases we will be using PIO and don't bother for DMA.
548 	 */
549 	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
550 		ep93xx_spi_dma_transfer(espi);
551 	else
552 		ep93xx_spi_pio_transfer(espi);
553 
554 	/*
555 	 * In case of error during transmit, we bail out from processing
556 	 * the message.
557 	 */
558 	if (msg->status)
559 		return;
560 
561 	msg->actual_length += t->len;
562 
563 	/*
564 	 * After this transfer is finished, perform any possible
565 	 * post-transfer actions requested by the protocol driver.
566 	 */
567 	if (t->delay_usecs) {
568 		set_current_state(TASK_UNINTERRUPTIBLE);
569 		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
570 	}
571 	if (t->cs_change) {
572 		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
573 			/*
574 			 * In case protocol driver is asking us to drop the
575 			 * chipselect briefly, we let the scheduler to handle
576 			 * any "delay" here.
577 			 */
578 			ep93xx_spi_cs_control(msg->spi, false);
579 			cond_resched();
580 			ep93xx_spi_cs_control(msg->spi, true);
581 		}
582 	}
583 }
584 
585 /*
586  * ep93xx_spi_process_message() - process one SPI message
587  * @espi: ep93xx SPI controller struct
588  * @msg: message to process
589  *
590  * This function processes a single SPI message. We go through all transfers in
591  * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
592  * asserted during the whole message (unless per transfer cs_change is set).
593  *
594  * @msg->status contains %0 in case of success or negative error code in case of
595  * failure.
596  */
597 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
598 				       struct spi_message *msg)
599 {
600 	unsigned long timeout;
601 	struct spi_transfer *t;
602 	int err;
603 
604 	/*
605 	 * Enable the SPI controller and its clock.
606 	 */
607 	err = ep93xx_spi_enable(espi);
608 	if (err) {
609 		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
610 		msg->status = err;
611 		return;
612 	}
613 
614 	/*
615 	 * Just to be sure: flush any data from RX FIFO.
616 	 */
617 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
618 	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
619 		if (time_after(jiffies, timeout)) {
620 			dev_warn(&espi->pdev->dev,
621 				 "timeout while flushing RX FIFO\n");
622 			msg->status = -ETIMEDOUT;
623 			return;
624 		}
625 		ep93xx_spi_read_u16(espi, SSPDR);
626 	}
627 
628 	/*
629 	 * We explicitly handle FIFO level. This way we don't have to check TX
630 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
631 	 */
632 	espi->fifo_level = 0;
633 
634 	/*
635 	 * Assert the chipselect.
636 	 */
637 	ep93xx_spi_cs_control(msg->spi, true);
638 
639 	list_for_each_entry(t, &msg->transfers, transfer_list) {
640 		ep93xx_spi_process_transfer(espi, msg, t);
641 		if (msg->status)
642 			break;
643 	}
644 
645 	/*
646 	 * Now the whole message is transferred (or failed for some reason). We
647 	 * deselect the device and disable the SPI controller.
648 	 */
649 	ep93xx_spi_cs_control(msg->spi, false);
650 	ep93xx_spi_disable(espi);
651 }
652 
653 static int ep93xx_spi_transfer_one_message(struct spi_master *master,
654 					   struct spi_message *msg)
655 {
656 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
657 
658 	msg->state = NULL;
659 	msg->status = 0;
660 	msg->actual_length = 0;
661 
662 	espi->current_msg = msg;
663 	ep93xx_spi_process_message(espi, msg);
664 	espi->current_msg = NULL;
665 
666 	spi_finalize_current_message(master);
667 
668 	return 0;
669 }
670 
671 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
672 {
673 	struct ep93xx_spi *espi = dev_id;
674 	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
675 
676 	/*
677 	 * If we got ROR (receive overrun) interrupt we know that something is
678 	 * wrong. Just abort the message.
679 	 */
680 	if (unlikely(irq_status & SSPIIR_RORIS)) {
681 		/* clear the overrun interrupt */
682 		ep93xx_spi_write_u8(espi, SSPICR, 0);
683 		dev_warn(&espi->pdev->dev,
684 			 "receive overrun, aborting the message\n");
685 		espi->current_msg->status = -EIO;
686 	} else {
687 		/*
688 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
689 		 * simply execute next data transfer.
690 		 */
691 		if (ep93xx_spi_read_write(espi)) {
692 			/*
693 			 * In normal case, there still is some processing left
694 			 * for current transfer. Let's wait for the next
695 			 * interrupt then.
696 			 */
697 			return IRQ_HANDLED;
698 		}
699 	}
700 
701 	/*
702 	 * Current transfer is finished, either with error or with success. In
703 	 * any case we disable interrupts and notify the worker to handle
704 	 * any post-processing of the message.
705 	 */
706 	ep93xx_spi_disable_interrupts(espi);
707 	complete(&espi->wait);
708 	return IRQ_HANDLED;
709 }
710 
711 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
712 {
713 	if (ep93xx_dma_chan_is_m2p(chan))
714 		return false;
715 
716 	chan->private = filter_param;
717 	return true;
718 }
719 
720 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
721 {
722 	dma_cap_mask_t mask;
723 	int ret;
724 
725 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
726 	if (!espi->zeropage)
727 		return -ENOMEM;
728 
729 	dma_cap_zero(mask);
730 	dma_cap_set(DMA_SLAVE, mask);
731 
732 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
733 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
734 	espi->dma_rx_data.name = "ep93xx-spi-rx";
735 
736 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
737 					   &espi->dma_rx_data);
738 	if (!espi->dma_rx) {
739 		ret = -ENODEV;
740 		goto fail_free_page;
741 	}
742 
743 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
744 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
745 	espi->dma_tx_data.name = "ep93xx-spi-tx";
746 
747 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
748 					   &espi->dma_tx_data);
749 	if (!espi->dma_tx) {
750 		ret = -ENODEV;
751 		goto fail_release_rx;
752 	}
753 
754 	return 0;
755 
756 fail_release_rx:
757 	dma_release_channel(espi->dma_rx);
758 	espi->dma_rx = NULL;
759 fail_free_page:
760 	free_page((unsigned long)espi->zeropage);
761 
762 	return ret;
763 }
764 
765 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
766 {
767 	if (espi->dma_rx) {
768 		dma_release_channel(espi->dma_rx);
769 		sg_free_table(&espi->rx_sgt);
770 	}
771 	if (espi->dma_tx) {
772 		dma_release_channel(espi->dma_tx);
773 		sg_free_table(&espi->tx_sgt);
774 	}
775 
776 	if (espi->zeropage)
777 		free_page((unsigned long)espi->zeropage);
778 }
779 
780 static int ep93xx_spi_probe(struct platform_device *pdev)
781 {
782 	struct spi_master *master;
783 	struct ep93xx_spi_info *info;
784 	struct ep93xx_spi *espi;
785 	struct resource *res;
786 	int irq;
787 	int error;
788 	int i;
789 
790 	info = dev_get_platdata(&pdev->dev);
791 	if (!info) {
792 		dev_err(&pdev->dev, "missing platform data\n");
793 		return -EINVAL;
794 	}
795 
796 	irq = platform_get_irq(pdev, 0);
797 	if (irq < 0) {
798 		dev_err(&pdev->dev, "failed to get irq resources\n");
799 		return -EBUSY;
800 	}
801 
802 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
803 	if (!res) {
804 		dev_err(&pdev->dev, "unable to get iomem resource\n");
805 		return -ENODEV;
806 	}
807 
808 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
809 	if (!master)
810 		return -ENOMEM;
811 
812 	master->transfer_one_message = ep93xx_spi_transfer_one_message;
813 	master->bus_num = pdev->id;
814 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
815 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
816 
817 	master->num_chipselect = info->num_chipselect;
818 	master->cs_gpios = devm_kzalloc(&master->dev,
819 					sizeof(int) * master->num_chipselect,
820 					GFP_KERNEL);
821 	if (!master->cs_gpios) {
822 		error = -ENOMEM;
823 		goto fail_release_master;
824 	}
825 
826 	for (i = 0; i < master->num_chipselect; i++) {
827 		master->cs_gpios[i] = info->chipselect[i];
828 
829 		if (!gpio_is_valid(master->cs_gpios[i]))
830 			continue;
831 
832 		error = devm_gpio_request_one(&pdev->dev, master->cs_gpios[i],
833 					      GPIOF_OUT_INIT_HIGH,
834 					      "ep93xx-spi");
835 		if (error) {
836 			dev_err(&pdev->dev, "could not request cs gpio %d\n",
837 				master->cs_gpios[i]);
838 			goto fail_release_master;
839 		}
840 	}
841 
842 	platform_set_drvdata(pdev, master);
843 
844 	espi = spi_master_get_devdata(master);
845 
846 	espi->clk = devm_clk_get(&pdev->dev, NULL);
847 	if (IS_ERR(espi->clk)) {
848 		dev_err(&pdev->dev, "unable to get spi clock\n");
849 		error = PTR_ERR(espi->clk);
850 		goto fail_release_master;
851 	}
852 
853 	init_completion(&espi->wait);
854 
855 	/*
856 	 * Calculate maximum and minimum supported clock rates
857 	 * for the controller.
858 	 */
859 	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
860 	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
861 	espi->pdev = pdev;
862 
863 	espi->sspdr_phys = res->start + SSPDR;
864 
865 	espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
866 	if (IS_ERR(espi->regs_base)) {
867 		error = PTR_ERR(espi->regs_base);
868 		goto fail_release_master;
869 	}
870 
871 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
872 				0, "ep93xx-spi", espi);
873 	if (error) {
874 		dev_err(&pdev->dev, "failed to request irq\n");
875 		goto fail_release_master;
876 	}
877 
878 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
879 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
880 
881 	/* make sure that the hardware is disabled */
882 	ep93xx_spi_write_u8(espi, SSPCR1, 0);
883 
884 	error = devm_spi_register_master(&pdev->dev, master);
885 	if (error) {
886 		dev_err(&pdev->dev, "failed to register SPI master\n");
887 		goto fail_free_dma;
888 	}
889 
890 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
891 		 (unsigned long)res->start, irq);
892 
893 	return 0;
894 
895 fail_free_dma:
896 	ep93xx_spi_release_dma(espi);
897 fail_release_master:
898 	spi_master_put(master);
899 
900 	return error;
901 }
902 
903 static int ep93xx_spi_remove(struct platform_device *pdev)
904 {
905 	struct spi_master *master = platform_get_drvdata(pdev);
906 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
907 
908 	ep93xx_spi_release_dma(espi);
909 
910 	return 0;
911 }
912 
913 static struct platform_driver ep93xx_spi_driver = {
914 	.driver		= {
915 		.name	= "ep93xx-spi",
916 	},
917 	.probe		= ep93xx_spi_probe,
918 	.remove		= ep93xx_spi_remove,
919 };
920 module_platform_driver(ep93xx_spi_driver);
921 
922 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
923 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
924 MODULE_LICENSE("GPL");
925 MODULE_ALIAS("platform:ep93xx-spi");
926