xref: /openbmc/linux/drivers/spi/spi-ep93xx.c (revision 92b19ff5)
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spi/spi.h>
32 
33 #include <linux/platform_data/dma-ep93xx.h>
34 #include <linux/platform_data/spi-ep93xx.h>
35 
36 #define SSPCR0			0x0000
37 #define SSPCR0_MODE_SHIFT	6
38 #define SSPCR0_SCR_SHIFT	8
39 
40 #define SSPCR1			0x0004
41 #define SSPCR1_RIE		BIT(0)
42 #define SSPCR1_TIE		BIT(1)
43 #define SSPCR1_RORIE		BIT(2)
44 #define SSPCR1_LBM		BIT(3)
45 #define SSPCR1_SSE		BIT(4)
46 #define SSPCR1_MS		BIT(5)
47 #define SSPCR1_SOD		BIT(6)
48 
49 #define SSPDR			0x0008
50 
51 #define SSPSR			0x000c
52 #define SSPSR_TFE		BIT(0)
53 #define SSPSR_TNF		BIT(1)
54 #define SSPSR_RNE		BIT(2)
55 #define SSPSR_RFF		BIT(3)
56 #define SSPSR_BSY		BIT(4)
57 #define SSPCPSR			0x0010
58 
59 #define SSPIIR			0x0014
60 #define SSPIIR_RIS		BIT(0)
61 #define SSPIIR_TIS		BIT(1)
62 #define SSPIIR_RORIS		BIT(2)
63 #define SSPICR			SSPIIR
64 
65 /* timeout in milliseconds */
66 #define SPI_TIMEOUT		5
67 /* maximum depth of RX/TX FIFO */
68 #define SPI_FIFO_SIZE		8
69 
70 /**
71  * struct ep93xx_spi - EP93xx SPI controller structure
72  * @pdev: pointer to platform device
73  * @clk: clock for the controller
74  * @regs_base: pointer to ioremap()'d registers
75  * @sspdr_phys: physical address of the SSPDR register
76  * @wait: wait here until given transfer is completed
77  * @current_msg: message that is currently processed (or %NULL if none)
78  * @tx: current byte in transfer to transmit
79  * @rx: current byte in transfer to receive
80  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
81  *              frame decreases this level and sending one frame increases it.
82  * @dma_rx: RX DMA channel
83  * @dma_tx: TX DMA channel
84  * @dma_rx_data: RX parameters passed to the DMA engine
85  * @dma_tx_data: TX parameters passed to the DMA engine
86  * @rx_sgt: sg table for RX transfers
87  * @tx_sgt: sg table for TX transfers
88  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
89  *            the client
90  */
91 struct ep93xx_spi {
92 	const struct platform_device	*pdev;
93 	struct clk			*clk;
94 	void __iomem			*regs_base;
95 	unsigned long			sspdr_phys;
96 	struct completion		wait;
97 	struct spi_message		*current_msg;
98 	size_t				tx;
99 	size_t				rx;
100 	size_t				fifo_level;
101 	struct dma_chan			*dma_rx;
102 	struct dma_chan			*dma_tx;
103 	struct ep93xx_dma_data		dma_rx_data;
104 	struct ep93xx_dma_data		dma_tx_data;
105 	struct sg_table			rx_sgt;
106 	struct sg_table			tx_sgt;
107 	void				*zeropage;
108 };
109 
110 /**
111  * struct ep93xx_spi_chip - SPI device hardware settings
112  * @spi: back pointer to the SPI device
113  * @ops: private chip operations
114  */
115 struct ep93xx_spi_chip {
116 	const struct spi_device		*spi;
117 	struct ep93xx_spi_chip_ops	*ops;
118 };
119 
120 /* converts bits per word to CR0.DSS value */
121 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
122 
123 static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
124 				u16 reg, u8 value)
125 {
126 	writeb(value, espi->regs_base + reg);
127 }
128 
129 static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
130 {
131 	return readb(spi->regs_base + reg);
132 }
133 
134 static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
135 				 u16 reg, u16 value)
136 {
137 	writew(value, espi->regs_base + reg);
138 }
139 
140 static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
141 {
142 	return readw(spi->regs_base + reg);
143 }
144 
145 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
146 {
147 	u8 regval;
148 	int err;
149 
150 	err = clk_enable(espi->clk);
151 	if (err)
152 		return err;
153 
154 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
155 	regval |= SSPCR1_SSE;
156 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
157 
158 	return 0;
159 }
160 
161 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
162 {
163 	u8 regval;
164 
165 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
166 	regval &= ~SSPCR1_SSE;
167 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
168 
169 	clk_disable(espi->clk);
170 }
171 
172 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
173 {
174 	u8 regval;
175 
176 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
177 	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
178 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
179 }
180 
181 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
182 {
183 	u8 regval;
184 
185 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
186 	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
187 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
188 }
189 
190 /**
191  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
192  * @espi: ep93xx SPI controller struct
193  * @rate: desired SPI output clock rate
194  * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
195  * @div_scr: pointer to return the scr divider
196  */
197 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
198 				    u32 rate, u8 *div_cpsr, u8 *div_scr)
199 {
200 	struct spi_master *master = platform_get_drvdata(espi->pdev);
201 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
202 	int cpsr, scr;
203 
204 	/*
205 	 * Make sure that max value is between values supported by the
206 	 * controller. Note that minimum value is already checked in
207 	 * ep93xx_spi_transfer_one_message().
208 	 */
209 	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
210 
211 	/*
212 	 * Calculate divisors so that we can get speed according the
213 	 * following formula:
214 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
215 	 *
216 	 * cpsr must be even number and starts from 2, scr can be any number
217 	 * between 0 and 255.
218 	 */
219 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
220 		for (scr = 0; scr <= 255; scr++) {
221 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
222 				*div_scr = (u8)scr;
223 				*div_cpsr = (u8)cpsr;
224 				return 0;
225 			}
226 		}
227 	}
228 
229 	return -EINVAL;
230 }
231 
232 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
233 {
234 	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
235 	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
236 
237 	if (chip->ops && chip->ops->cs_control)
238 		chip->ops->cs_control(spi, value);
239 }
240 
241 /**
242  * ep93xx_spi_setup() - setup an SPI device
243  * @spi: SPI device to setup
244  *
245  * This function sets up SPI device mode, speed etc. Can be called multiple
246  * times for a single device. Returns %0 in case of success, negative error in
247  * case of failure. When this function returns success, the device is
248  * deselected.
249  */
250 static int ep93xx_spi_setup(struct spi_device *spi)
251 {
252 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
253 	struct ep93xx_spi_chip *chip;
254 
255 	chip = spi_get_ctldata(spi);
256 	if (!chip) {
257 		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
258 			spi->modalias);
259 
260 		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
261 		if (!chip)
262 			return -ENOMEM;
263 
264 		chip->spi = spi;
265 		chip->ops = spi->controller_data;
266 
267 		if (chip->ops && chip->ops->setup) {
268 			int ret = chip->ops->setup(spi);
269 
270 			if (ret) {
271 				kfree(chip);
272 				return ret;
273 			}
274 		}
275 
276 		spi_set_ctldata(spi, chip);
277 	}
278 
279 	ep93xx_spi_cs_control(spi, false);
280 	return 0;
281 }
282 
283 /**
284  * ep93xx_spi_cleanup() - cleans up master controller specific state
285  * @spi: SPI device to cleanup
286  *
287  * This function releases master controller specific state for given @spi
288  * device.
289  */
290 static void ep93xx_spi_cleanup(struct spi_device *spi)
291 {
292 	struct ep93xx_spi_chip *chip;
293 
294 	chip = spi_get_ctldata(spi);
295 	if (chip) {
296 		if (chip->ops && chip->ops->cleanup)
297 			chip->ops->cleanup(spi);
298 		spi_set_ctldata(spi, NULL);
299 		kfree(chip);
300 	}
301 }
302 
303 /**
304  * ep93xx_spi_chip_setup() - configures hardware according to given @chip
305  * @espi: ep93xx SPI controller struct
306  * @chip: chip specific settings
307  * @speed_hz: transfer speed
308  * @bits_per_word: transfer bits_per_word
309  */
310 static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
311 				 const struct ep93xx_spi_chip *chip,
312 				 u32 speed_hz, u8 bits_per_word)
313 {
314 	u8 dss = bits_per_word_to_dss(bits_per_word);
315 	u8 div_cpsr = 0;
316 	u8 div_scr = 0;
317 	u16 cr0;
318 	int err;
319 
320 	err = ep93xx_spi_calc_divisors(espi, speed_hz, &div_cpsr, &div_scr);
321 	if (err)
322 		return err;
323 
324 	cr0 = div_scr << SSPCR0_SCR_SHIFT;
325 	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
326 	cr0 |= dss;
327 
328 	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
329 		chip->spi->mode, div_cpsr, div_scr, dss);
330 	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x\n", cr0);
331 
332 	ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr);
333 	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
334 
335 	return 0;
336 }
337 
338 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
339 {
340 	if (t->bits_per_word > 8) {
341 		u16 tx_val = 0;
342 
343 		if (t->tx_buf)
344 			tx_val = ((u16 *)t->tx_buf)[espi->tx];
345 		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
346 		espi->tx += sizeof(tx_val);
347 	} else {
348 		u8 tx_val = 0;
349 
350 		if (t->tx_buf)
351 			tx_val = ((u8 *)t->tx_buf)[espi->tx];
352 		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
353 		espi->tx += sizeof(tx_val);
354 	}
355 }
356 
357 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
358 {
359 	if (t->bits_per_word > 8) {
360 		u16 rx_val;
361 
362 		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
363 		if (t->rx_buf)
364 			((u16 *)t->rx_buf)[espi->rx] = rx_val;
365 		espi->rx += sizeof(rx_val);
366 	} else {
367 		u8 rx_val;
368 
369 		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
370 		if (t->rx_buf)
371 			((u8 *)t->rx_buf)[espi->rx] = rx_val;
372 		espi->rx += sizeof(rx_val);
373 	}
374 }
375 
376 /**
377  * ep93xx_spi_read_write() - perform next RX/TX transfer
378  * @espi: ep93xx SPI controller struct
379  *
380  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
381  * called several times, the whole transfer will be completed. Returns
382  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
383  *
384  * When this function is finished, RX FIFO should be empty and TX FIFO should be
385  * full.
386  */
387 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
388 {
389 	struct spi_message *msg = espi->current_msg;
390 	struct spi_transfer *t = msg->state;
391 
392 	/* read as long as RX FIFO has frames in it */
393 	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
394 		ep93xx_do_read(espi, t);
395 		espi->fifo_level--;
396 	}
397 
398 	/* write as long as TX FIFO has room */
399 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
400 		ep93xx_do_write(espi, t);
401 		espi->fifo_level++;
402 	}
403 
404 	if (espi->rx == t->len)
405 		return 0;
406 
407 	return -EINPROGRESS;
408 }
409 
410 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
411 {
412 	/*
413 	 * Now everything is set up for the current transfer. We prime the TX
414 	 * FIFO, enable interrupts, and wait for the transfer to complete.
415 	 */
416 	if (ep93xx_spi_read_write(espi)) {
417 		ep93xx_spi_enable_interrupts(espi);
418 		wait_for_completion(&espi->wait);
419 	}
420 }
421 
422 /**
423  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
424  * @espi: ep93xx SPI controller struct
425  * @dir: DMA transfer direction
426  *
427  * Function configures the DMA, maps the buffer and prepares the DMA
428  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
429  * in case of failure.
430  */
431 static struct dma_async_tx_descriptor *
432 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
433 {
434 	struct spi_transfer *t = espi->current_msg->state;
435 	struct dma_async_tx_descriptor *txd;
436 	enum dma_slave_buswidth buswidth;
437 	struct dma_slave_config conf;
438 	struct scatterlist *sg;
439 	struct sg_table *sgt;
440 	struct dma_chan *chan;
441 	const void *buf, *pbuf;
442 	size_t len = t->len;
443 	int i, ret, nents;
444 
445 	if (t->bits_per_word > 8)
446 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
447 	else
448 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
449 
450 	memset(&conf, 0, sizeof(conf));
451 	conf.direction = dir;
452 
453 	if (dir == DMA_DEV_TO_MEM) {
454 		chan = espi->dma_rx;
455 		buf = t->rx_buf;
456 		sgt = &espi->rx_sgt;
457 
458 		conf.src_addr = espi->sspdr_phys;
459 		conf.src_addr_width = buswidth;
460 	} else {
461 		chan = espi->dma_tx;
462 		buf = t->tx_buf;
463 		sgt = &espi->tx_sgt;
464 
465 		conf.dst_addr = espi->sspdr_phys;
466 		conf.dst_addr_width = buswidth;
467 	}
468 
469 	ret = dmaengine_slave_config(chan, &conf);
470 	if (ret)
471 		return ERR_PTR(ret);
472 
473 	/*
474 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
475 	 * because we are using @espi->zeropage to provide a zero RX buffer
476 	 * for the TX transfers and we have only allocated one page for that.
477 	 *
478 	 * For performance reasons we allocate a new sg_table only when
479 	 * needed. Otherwise we will re-use the current one. Eventually the
480 	 * last sg_table is released in ep93xx_spi_release_dma().
481 	 */
482 
483 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
484 	if (nents != sgt->nents) {
485 		sg_free_table(sgt);
486 
487 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
488 		if (ret)
489 			return ERR_PTR(ret);
490 	}
491 
492 	pbuf = buf;
493 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
494 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
495 
496 		if (buf) {
497 			sg_set_page(sg, virt_to_page(pbuf), bytes,
498 				    offset_in_page(pbuf));
499 		} else {
500 			sg_set_page(sg, virt_to_page(espi->zeropage),
501 				    bytes, 0);
502 		}
503 
504 		pbuf += bytes;
505 		len -= bytes;
506 	}
507 
508 	if (WARN_ON(len)) {
509 		dev_warn(&espi->pdev->dev, "len = %zu expected 0!\n", len);
510 		return ERR_PTR(-EINVAL);
511 	}
512 
513 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
514 	if (!nents)
515 		return ERR_PTR(-ENOMEM);
516 
517 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
518 	if (!txd) {
519 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
520 		return ERR_PTR(-ENOMEM);
521 	}
522 	return txd;
523 }
524 
525 /**
526  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
527  * @espi: ep93xx SPI controller struct
528  * @dir: DMA transfer direction
529  *
530  * Function finishes with the DMA transfer. After this, the DMA buffer is
531  * unmapped.
532  */
533 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
534 				  enum dma_transfer_direction dir)
535 {
536 	struct dma_chan *chan;
537 	struct sg_table *sgt;
538 
539 	if (dir == DMA_DEV_TO_MEM) {
540 		chan = espi->dma_rx;
541 		sgt = &espi->rx_sgt;
542 	} else {
543 		chan = espi->dma_tx;
544 		sgt = &espi->tx_sgt;
545 	}
546 
547 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
548 }
549 
550 static void ep93xx_spi_dma_callback(void *callback_param)
551 {
552 	complete(callback_param);
553 }
554 
555 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
556 {
557 	struct spi_message *msg = espi->current_msg;
558 	struct dma_async_tx_descriptor *rxd, *txd;
559 
560 	rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
561 	if (IS_ERR(rxd)) {
562 		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
563 		msg->status = PTR_ERR(rxd);
564 		return;
565 	}
566 
567 	txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
568 	if (IS_ERR(txd)) {
569 		ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
570 		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
571 		msg->status = PTR_ERR(txd);
572 		return;
573 	}
574 
575 	/* We are ready when RX is done */
576 	rxd->callback = ep93xx_spi_dma_callback;
577 	rxd->callback_param = &espi->wait;
578 
579 	/* Now submit both descriptors and wait while they finish */
580 	dmaengine_submit(rxd);
581 	dmaengine_submit(txd);
582 
583 	dma_async_issue_pending(espi->dma_rx);
584 	dma_async_issue_pending(espi->dma_tx);
585 
586 	wait_for_completion(&espi->wait);
587 
588 	ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
589 	ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
590 }
591 
592 /**
593  * ep93xx_spi_process_transfer() - processes one SPI transfer
594  * @espi: ep93xx SPI controller struct
595  * @msg: current message
596  * @t: transfer to process
597  *
598  * This function processes one SPI transfer given in @t. Function waits until
599  * transfer is complete (may sleep) and updates @msg->status based on whether
600  * transfer was successfully processed or not.
601  */
602 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
603 					struct spi_message *msg,
604 					struct spi_transfer *t)
605 {
606 	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
607 	int err;
608 
609 	msg->state = t;
610 
611 	err = ep93xx_spi_chip_setup(espi, chip, t->speed_hz, t->bits_per_word);
612 	if (err) {
613 		dev_err(&espi->pdev->dev,
614 			"failed to setup chip for transfer\n");
615 		msg->status = err;
616 		return;
617 	}
618 
619 	espi->rx = 0;
620 	espi->tx = 0;
621 
622 	/*
623 	 * There is no point of setting up DMA for the transfers which will
624 	 * fit into the FIFO and can be transferred with a single interrupt.
625 	 * So in these cases we will be using PIO and don't bother for DMA.
626 	 */
627 	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
628 		ep93xx_spi_dma_transfer(espi);
629 	else
630 		ep93xx_spi_pio_transfer(espi);
631 
632 	/*
633 	 * In case of error during transmit, we bail out from processing
634 	 * the message.
635 	 */
636 	if (msg->status)
637 		return;
638 
639 	msg->actual_length += t->len;
640 
641 	/*
642 	 * After this transfer is finished, perform any possible
643 	 * post-transfer actions requested by the protocol driver.
644 	 */
645 	if (t->delay_usecs) {
646 		set_current_state(TASK_UNINTERRUPTIBLE);
647 		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
648 	}
649 	if (t->cs_change) {
650 		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
651 			/*
652 			 * In case protocol driver is asking us to drop the
653 			 * chipselect briefly, we let the scheduler to handle
654 			 * any "delay" here.
655 			 */
656 			ep93xx_spi_cs_control(msg->spi, false);
657 			cond_resched();
658 			ep93xx_spi_cs_control(msg->spi, true);
659 		}
660 	}
661 }
662 
663 /*
664  * ep93xx_spi_process_message() - process one SPI message
665  * @espi: ep93xx SPI controller struct
666  * @msg: message to process
667  *
668  * This function processes a single SPI message. We go through all transfers in
669  * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
670  * asserted during the whole message (unless per transfer cs_change is set).
671  *
672  * @msg->status contains %0 in case of success or negative error code in case of
673  * failure.
674  */
675 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
676 				       struct spi_message *msg)
677 {
678 	unsigned long timeout;
679 	struct spi_transfer *t;
680 	int err;
681 
682 	/*
683 	 * Enable the SPI controller and its clock.
684 	 */
685 	err = ep93xx_spi_enable(espi);
686 	if (err) {
687 		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
688 		msg->status = err;
689 		return;
690 	}
691 
692 	/*
693 	 * Just to be sure: flush any data from RX FIFO.
694 	 */
695 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
696 	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
697 		if (time_after(jiffies, timeout)) {
698 			dev_warn(&espi->pdev->dev,
699 				 "timeout while flushing RX FIFO\n");
700 			msg->status = -ETIMEDOUT;
701 			return;
702 		}
703 		ep93xx_spi_read_u16(espi, SSPDR);
704 	}
705 
706 	/*
707 	 * We explicitly handle FIFO level. This way we don't have to check TX
708 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
709 	 */
710 	espi->fifo_level = 0;
711 
712 	/*
713 	 * Assert the chipselect.
714 	 */
715 	ep93xx_spi_cs_control(msg->spi, true);
716 
717 	list_for_each_entry(t, &msg->transfers, transfer_list) {
718 		ep93xx_spi_process_transfer(espi, msg, t);
719 		if (msg->status)
720 			break;
721 	}
722 
723 	/*
724 	 * Now the whole message is transferred (or failed for some reason). We
725 	 * deselect the device and disable the SPI controller.
726 	 */
727 	ep93xx_spi_cs_control(msg->spi, false);
728 	ep93xx_spi_disable(espi);
729 }
730 
731 static int ep93xx_spi_transfer_one_message(struct spi_master *master,
732 					   struct spi_message *msg)
733 {
734 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
735 
736 	msg->state = NULL;
737 	msg->status = 0;
738 	msg->actual_length = 0;
739 
740 	espi->current_msg = msg;
741 	ep93xx_spi_process_message(espi, msg);
742 	espi->current_msg = NULL;
743 
744 	spi_finalize_current_message(master);
745 
746 	return 0;
747 }
748 
749 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
750 {
751 	struct ep93xx_spi *espi = dev_id;
752 	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
753 
754 	/*
755 	 * If we got ROR (receive overrun) interrupt we know that something is
756 	 * wrong. Just abort the message.
757 	 */
758 	if (unlikely(irq_status & SSPIIR_RORIS)) {
759 		/* clear the overrun interrupt */
760 		ep93xx_spi_write_u8(espi, SSPICR, 0);
761 		dev_warn(&espi->pdev->dev,
762 			 "receive overrun, aborting the message\n");
763 		espi->current_msg->status = -EIO;
764 	} else {
765 		/*
766 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
767 		 * simply execute next data transfer.
768 		 */
769 		if (ep93xx_spi_read_write(espi)) {
770 			/*
771 			 * In normal case, there still is some processing left
772 			 * for current transfer. Let's wait for the next
773 			 * interrupt then.
774 			 */
775 			return IRQ_HANDLED;
776 		}
777 	}
778 
779 	/*
780 	 * Current transfer is finished, either with error or with success. In
781 	 * any case we disable interrupts and notify the worker to handle
782 	 * any post-processing of the message.
783 	 */
784 	ep93xx_spi_disable_interrupts(espi);
785 	complete(&espi->wait);
786 	return IRQ_HANDLED;
787 }
788 
789 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
790 {
791 	if (ep93xx_dma_chan_is_m2p(chan))
792 		return false;
793 
794 	chan->private = filter_param;
795 	return true;
796 }
797 
798 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
799 {
800 	dma_cap_mask_t mask;
801 	int ret;
802 
803 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
804 	if (!espi->zeropage)
805 		return -ENOMEM;
806 
807 	dma_cap_zero(mask);
808 	dma_cap_set(DMA_SLAVE, mask);
809 
810 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
811 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
812 	espi->dma_rx_data.name = "ep93xx-spi-rx";
813 
814 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
815 					   &espi->dma_rx_data);
816 	if (!espi->dma_rx) {
817 		ret = -ENODEV;
818 		goto fail_free_page;
819 	}
820 
821 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
822 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
823 	espi->dma_tx_data.name = "ep93xx-spi-tx";
824 
825 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
826 					   &espi->dma_tx_data);
827 	if (!espi->dma_tx) {
828 		ret = -ENODEV;
829 		goto fail_release_rx;
830 	}
831 
832 	return 0;
833 
834 fail_release_rx:
835 	dma_release_channel(espi->dma_rx);
836 	espi->dma_rx = NULL;
837 fail_free_page:
838 	free_page((unsigned long)espi->zeropage);
839 
840 	return ret;
841 }
842 
843 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
844 {
845 	if (espi->dma_rx) {
846 		dma_release_channel(espi->dma_rx);
847 		sg_free_table(&espi->rx_sgt);
848 	}
849 	if (espi->dma_tx) {
850 		dma_release_channel(espi->dma_tx);
851 		sg_free_table(&espi->tx_sgt);
852 	}
853 
854 	if (espi->zeropage)
855 		free_page((unsigned long)espi->zeropage);
856 }
857 
858 static int ep93xx_spi_probe(struct platform_device *pdev)
859 {
860 	struct spi_master *master;
861 	struct ep93xx_spi_info *info;
862 	struct ep93xx_spi *espi;
863 	struct resource *res;
864 	int irq;
865 	int error;
866 
867 	info = dev_get_platdata(&pdev->dev);
868 
869 	irq = platform_get_irq(pdev, 0);
870 	if (irq < 0) {
871 		dev_err(&pdev->dev, "failed to get irq resources\n");
872 		return -EBUSY;
873 	}
874 
875 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
876 	if (!res) {
877 		dev_err(&pdev->dev, "unable to get iomem resource\n");
878 		return -ENODEV;
879 	}
880 
881 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
882 	if (!master)
883 		return -ENOMEM;
884 
885 	master->setup = ep93xx_spi_setup;
886 	master->transfer_one_message = ep93xx_spi_transfer_one_message;
887 	master->cleanup = ep93xx_spi_cleanup;
888 	master->bus_num = pdev->id;
889 	master->num_chipselect = info->num_chipselect;
890 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
891 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
892 
893 	platform_set_drvdata(pdev, master);
894 
895 	espi = spi_master_get_devdata(master);
896 
897 	espi->clk = devm_clk_get(&pdev->dev, NULL);
898 	if (IS_ERR(espi->clk)) {
899 		dev_err(&pdev->dev, "unable to get spi clock\n");
900 		error = PTR_ERR(espi->clk);
901 		goto fail_release_master;
902 	}
903 
904 	init_completion(&espi->wait);
905 
906 	/*
907 	 * Calculate maximum and minimum supported clock rates
908 	 * for the controller.
909 	 */
910 	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
911 	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
912 	espi->pdev = pdev;
913 
914 	espi->sspdr_phys = res->start + SSPDR;
915 
916 	espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
917 	if (IS_ERR(espi->regs_base)) {
918 		error = PTR_ERR(espi->regs_base);
919 		goto fail_release_master;
920 	}
921 
922 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
923 				0, "ep93xx-spi", espi);
924 	if (error) {
925 		dev_err(&pdev->dev, "failed to request irq\n");
926 		goto fail_release_master;
927 	}
928 
929 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
930 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
931 
932 	/* make sure that the hardware is disabled */
933 	ep93xx_spi_write_u8(espi, SSPCR1, 0);
934 
935 	error = devm_spi_register_master(&pdev->dev, master);
936 	if (error) {
937 		dev_err(&pdev->dev, "failed to register SPI master\n");
938 		goto fail_free_dma;
939 	}
940 
941 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
942 		 (unsigned long)res->start, irq);
943 
944 	return 0;
945 
946 fail_free_dma:
947 	ep93xx_spi_release_dma(espi);
948 fail_release_master:
949 	spi_master_put(master);
950 
951 	return error;
952 }
953 
954 static int ep93xx_spi_remove(struct platform_device *pdev)
955 {
956 	struct spi_master *master = platform_get_drvdata(pdev);
957 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
958 
959 	ep93xx_spi_release_dma(espi);
960 
961 	return 0;
962 }
963 
964 static struct platform_driver ep93xx_spi_driver = {
965 	.driver		= {
966 		.name	= "ep93xx-spi",
967 	},
968 	.probe		= ep93xx_spi_probe,
969 	.remove		= ep93xx_spi_remove,
970 };
971 module_platform_driver(ep93xx_spi_driver);
972 
973 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
974 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
975 MODULE_LICENSE("GPL");
976 MODULE_ALIAS("platform:ep93xx-spi");
977