xref: /openbmc/linux/drivers/spi/spi-ep93xx.c (revision 48a7776e)
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/sched.h>
31 #include <linux/scatterlist.h>
32 #include <linux/spi/spi.h>
33 
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
36 
37 #define SSPCR0			0x0000
38 #define SSPCR0_MODE_SHIFT	6
39 #define SSPCR0_SCR_SHIFT	8
40 
41 #define SSPCR1			0x0004
42 #define SSPCR1_RIE		BIT(0)
43 #define SSPCR1_TIE		BIT(1)
44 #define SSPCR1_RORIE		BIT(2)
45 #define SSPCR1_LBM		BIT(3)
46 #define SSPCR1_SSE		BIT(4)
47 #define SSPCR1_MS		BIT(5)
48 #define SSPCR1_SOD		BIT(6)
49 
50 #define SSPDR			0x0008
51 
52 #define SSPSR			0x000c
53 #define SSPSR_TFE		BIT(0)
54 #define SSPSR_TNF		BIT(1)
55 #define SSPSR_RNE		BIT(2)
56 #define SSPSR_RFF		BIT(3)
57 #define SSPSR_BSY		BIT(4)
58 #define SSPCPSR			0x0010
59 
60 #define SSPIIR			0x0014
61 #define SSPIIR_RIS		BIT(0)
62 #define SSPIIR_TIS		BIT(1)
63 #define SSPIIR_RORIS		BIT(2)
64 #define SSPICR			SSPIIR
65 
66 /* timeout in milliseconds */
67 #define SPI_TIMEOUT		5
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE		8
70 
71 /**
72  * struct ep93xx_spi - EP93xx SPI controller structure
73  * @lock: spinlock that protects concurrent accesses to fields @running,
74  *        @current_msg and @msg_queue
75  * @pdev: pointer to platform device
76  * @clk: clock for the controller
77  * @regs_base: pointer to ioremap()'d registers
78  * @sspdr_phys: physical address of the SSPDR register
79  * @min_rate: minimum clock rate (in Hz) supported by the controller
80  * @max_rate: maximum clock rate (in Hz) supported by the controller
81  * @running: is the queue running
82  * @wq: workqueue used by the driver
83  * @msg_work: work that is queued for the driver
84  * @wait: wait here until given transfer is completed
85  * @msg_queue: queue for the messages
86  * @current_msg: message that is currently processed (or %NULL if none)
87  * @tx: current byte in transfer to transmit
88  * @rx: current byte in transfer to receive
89  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90  *              frame decreases this level and sending one frame increases it.
91  * @dma_rx: RX DMA channel
92  * @dma_tx: TX DMA channel
93  * @dma_rx_data: RX parameters passed to the DMA engine
94  * @dma_tx_data: TX parameters passed to the DMA engine
95  * @rx_sgt: sg table for RX transfers
96  * @tx_sgt: sg table for TX transfers
97  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98  *            the client
99  *
100  * This structure holds EP93xx SPI controller specific information. When
101  * @running is %true, driver accepts transfer requests from protocol drivers.
102  * @current_msg is used to hold pointer to the message that is currently
103  * processed. If @current_msg is %NULL, it means that no processing is going
104  * on.
105  *
106  * Most of the fields are only written once and they can be accessed without
107  * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108  * @running, and @msg_queue.
109  */
110 struct ep93xx_spi {
111 	spinlock_t			lock;
112 	const struct platform_device	*pdev;
113 	struct clk			*clk;
114 	void __iomem			*regs_base;
115 	unsigned long			sspdr_phys;
116 	unsigned long			min_rate;
117 	unsigned long			max_rate;
118 	bool				running;
119 	struct workqueue_struct		*wq;
120 	struct work_struct		msg_work;
121 	struct completion		wait;
122 	struct list_head		msg_queue;
123 	struct spi_message		*current_msg;
124 	size_t				tx;
125 	size_t				rx;
126 	size_t				fifo_level;
127 	struct dma_chan			*dma_rx;
128 	struct dma_chan			*dma_tx;
129 	struct ep93xx_dma_data		dma_rx_data;
130 	struct ep93xx_dma_data		dma_tx_data;
131 	struct sg_table			rx_sgt;
132 	struct sg_table			tx_sgt;
133 	void				*zeropage;
134 };
135 
136 /**
137  * struct ep93xx_spi_chip - SPI device hardware settings
138  * @spi: back pointer to the SPI device
139  * @rate: max rate in hz this chip supports
140  * @div_cpsr: cpsr (pre-scaler) divider
141  * @div_scr: scr divider
142  * @dss: bits per word (4 - 16 bits)
143  * @ops: private chip operations
144  *
145  * This structure is used to store hardware register specific settings for each
146  * SPI device. Settings are written to hardware by function
147  * ep93xx_spi_chip_setup().
148  */
149 struct ep93xx_spi_chip {
150 	const struct spi_device		*spi;
151 	unsigned long			rate;
152 	u8				div_cpsr;
153 	u8				div_scr;
154 	u8				dss;
155 	struct ep93xx_spi_chip_ops	*ops;
156 };
157 
158 /* converts bits per word to CR0.DSS value */
159 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
160 
161 static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
162 				u16 reg, u8 value)
163 {
164 	writeb(value, espi->regs_base + reg);
165 }
166 
167 static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
168 {
169 	return readb(spi->regs_base + reg);
170 }
171 
172 static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
173 				 u16 reg, u16 value)
174 {
175 	writew(value, espi->regs_base + reg);
176 }
177 
178 static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
179 {
180 	return readw(spi->regs_base + reg);
181 }
182 
183 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
184 {
185 	u8 regval;
186 	int err;
187 
188 	err = clk_enable(espi->clk);
189 	if (err)
190 		return err;
191 
192 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
193 	regval |= SSPCR1_SSE;
194 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
195 
196 	return 0;
197 }
198 
199 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
200 {
201 	u8 regval;
202 
203 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
204 	regval &= ~SSPCR1_SSE;
205 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
206 
207 	clk_disable(espi->clk);
208 }
209 
210 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
211 {
212 	u8 regval;
213 
214 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
215 	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
216 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
217 }
218 
219 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
220 {
221 	u8 regval;
222 
223 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
224 	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
225 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
226 }
227 
228 /**
229  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
230  * @espi: ep93xx SPI controller struct
231  * @chip: divisors are calculated for this chip
232  * @rate: desired SPI output clock rate
233  *
234  * Function calculates cpsr (clock pre-scaler) and scr divisors based on
235  * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
236  * for some reason, divisors cannot be calculated nothing is stored and
237  * %-EINVAL is returned.
238  */
239 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
240 				    struct ep93xx_spi_chip *chip,
241 				    unsigned long rate)
242 {
243 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
244 	int cpsr, scr;
245 
246 	/*
247 	 * Make sure that max value is between values supported by the
248 	 * controller. Note that minimum value is already checked in
249 	 * ep93xx_spi_transfer().
250 	 */
251 	rate = clamp(rate, espi->min_rate, espi->max_rate);
252 
253 	/*
254 	 * Calculate divisors so that we can get speed according the
255 	 * following formula:
256 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
257 	 *
258 	 * cpsr must be even number and starts from 2, scr can be any number
259 	 * between 0 and 255.
260 	 */
261 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
262 		for (scr = 0; scr <= 255; scr++) {
263 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
264 				chip->div_scr = (u8)scr;
265 				chip->div_cpsr = (u8)cpsr;
266 				return 0;
267 			}
268 		}
269 	}
270 
271 	return -EINVAL;
272 }
273 
274 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
275 {
276 	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
277 	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
278 
279 	if (chip->ops && chip->ops->cs_control)
280 		chip->ops->cs_control(spi, value);
281 }
282 
283 /**
284  * ep93xx_spi_setup() - setup an SPI device
285  * @spi: SPI device to setup
286  *
287  * This function sets up SPI device mode, speed etc. Can be called multiple
288  * times for a single device. Returns %0 in case of success, negative error in
289  * case of failure. When this function returns success, the device is
290  * deselected.
291  */
292 static int ep93xx_spi_setup(struct spi_device *spi)
293 {
294 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
295 	struct ep93xx_spi_chip *chip;
296 
297 	chip = spi_get_ctldata(spi);
298 	if (!chip) {
299 		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
300 			spi->modalias);
301 
302 		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
303 		if (!chip)
304 			return -ENOMEM;
305 
306 		chip->spi = spi;
307 		chip->ops = spi->controller_data;
308 
309 		if (chip->ops && chip->ops->setup) {
310 			int ret = chip->ops->setup(spi);
311 			if (ret) {
312 				kfree(chip);
313 				return ret;
314 			}
315 		}
316 
317 		spi_set_ctldata(spi, chip);
318 	}
319 
320 	if (spi->max_speed_hz != chip->rate) {
321 		int err;
322 
323 		err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
324 		if (err != 0) {
325 			spi_set_ctldata(spi, NULL);
326 			kfree(chip);
327 			return err;
328 		}
329 		chip->rate = spi->max_speed_hz;
330 	}
331 
332 	chip->dss = bits_per_word_to_dss(spi->bits_per_word);
333 
334 	ep93xx_spi_cs_control(spi, false);
335 	return 0;
336 }
337 
338 /**
339  * ep93xx_spi_transfer() - queue message to be transferred
340  * @spi: target SPI device
341  * @msg: message to be transferred
342  *
343  * This function is called by SPI device drivers when they are going to transfer
344  * a new message. It simply puts the message in the queue and schedules
345  * workqueue to perform the actual transfer later on.
346  *
347  * Returns %0 on success and negative error in case of failure.
348  */
349 static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
350 {
351 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
352 	struct spi_transfer *t;
353 	unsigned long flags;
354 
355 	if (!msg || !msg->complete)
356 		return -EINVAL;
357 
358 	/* first validate each transfer */
359 	list_for_each_entry(t, &msg->transfers, transfer_list) {
360 		if (t->speed_hz && t->speed_hz < espi->min_rate)
361 				return -EINVAL;
362 	}
363 
364 	/*
365 	 * Now that we own the message, let's initialize it so that it is
366 	 * suitable for us. We use @msg->status to signal whether there was
367 	 * error in transfer and @msg->state is used to hold pointer to the
368 	 * current transfer (or %NULL if no active current transfer).
369 	 */
370 	msg->state = NULL;
371 	msg->status = 0;
372 	msg->actual_length = 0;
373 
374 	spin_lock_irqsave(&espi->lock, flags);
375 	if (!espi->running) {
376 		spin_unlock_irqrestore(&espi->lock, flags);
377 		return -ESHUTDOWN;
378 	}
379 	list_add_tail(&msg->queue, &espi->msg_queue);
380 	queue_work(espi->wq, &espi->msg_work);
381 	spin_unlock_irqrestore(&espi->lock, flags);
382 
383 	return 0;
384 }
385 
386 /**
387  * ep93xx_spi_cleanup() - cleans up master controller specific state
388  * @spi: SPI device to cleanup
389  *
390  * This function releases master controller specific state for given @spi
391  * device.
392  */
393 static void ep93xx_spi_cleanup(struct spi_device *spi)
394 {
395 	struct ep93xx_spi_chip *chip;
396 
397 	chip = spi_get_ctldata(spi);
398 	if (chip) {
399 		if (chip->ops && chip->ops->cleanup)
400 			chip->ops->cleanup(spi);
401 		spi_set_ctldata(spi, NULL);
402 		kfree(chip);
403 	}
404 }
405 
406 /**
407  * ep93xx_spi_chip_setup() - configures hardware according to given @chip
408  * @espi: ep93xx SPI controller struct
409  * @chip: chip specific settings
410  *
411  * This function sets up the actual hardware registers with settings given in
412  * @chip. Note that no validation is done so make sure that callers validate
413  * settings before calling this.
414  */
415 static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
416 				  const struct ep93xx_spi_chip *chip)
417 {
418 	u16 cr0;
419 
420 	cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
421 	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
422 	cr0 |= chip->dss;
423 
424 	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
425 		chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
426 	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
427 
428 	ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
429 	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
430 }
431 
432 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
433 {
434 	if (t->bits_per_word > 8) {
435 		u16 tx_val = 0;
436 
437 		if (t->tx_buf)
438 			tx_val = ((u16 *)t->tx_buf)[espi->tx];
439 		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
440 		espi->tx += sizeof(tx_val);
441 	} else {
442 		u8 tx_val = 0;
443 
444 		if (t->tx_buf)
445 			tx_val = ((u8 *)t->tx_buf)[espi->tx];
446 		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
447 		espi->tx += sizeof(tx_val);
448 	}
449 }
450 
451 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
452 {
453 	if (t->bits_per_word > 8) {
454 		u16 rx_val;
455 
456 		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
457 		if (t->rx_buf)
458 			((u16 *)t->rx_buf)[espi->rx] = rx_val;
459 		espi->rx += sizeof(rx_val);
460 	} else {
461 		u8 rx_val;
462 
463 		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
464 		if (t->rx_buf)
465 			((u8 *)t->rx_buf)[espi->rx] = rx_val;
466 		espi->rx += sizeof(rx_val);
467 	}
468 }
469 
470 /**
471  * ep93xx_spi_read_write() - perform next RX/TX transfer
472  * @espi: ep93xx SPI controller struct
473  *
474  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
475  * called several times, the whole transfer will be completed. Returns
476  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
477  *
478  * When this function is finished, RX FIFO should be empty and TX FIFO should be
479  * full.
480  */
481 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
482 {
483 	struct spi_message *msg = espi->current_msg;
484 	struct spi_transfer *t = msg->state;
485 
486 	/* read as long as RX FIFO has frames in it */
487 	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
488 		ep93xx_do_read(espi, t);
489 		espi->fifo_level--;
490 	}
491 
492 	/* write as long as TX FIFO has room */
493 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
494 		ep93xx_do_write(espi, t);
495 		espi->fifo_level++;
496 	}
497 
498 	if (espi->rx == t->len)
499 		return 0;
500 
501 	return -EINPROGRESS;
502 }
503 
504 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
505 {
506 	/*
507 	 * Now everything is set up for the current transfer. We prime the TX
508 	 * FIFO, enable interrupts, and wait for the transfer to complete.
509 	 */
510 	if (ep93xx_spi_read_write(espi)) {
511 		ep93xx_spi_enable_interrupts(espi);
512 		wait_for_completion(&espi->wait);
513 	}
514 }
515 
516 /**
517  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
518  * @espi: ep93xx SPI controller struct
519  * @dir: DMA transfer direction
520  *
521  * Function configures the DMA, maps the buffer and prepares the DMA
522  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
523  * in case of failure.
524  */
525 static struct dma_async_tx_descriptor *
526 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
527 {
528 	struct spi_transfer *t = espi->current_msg->state;
529 	struct dma_async_tx_descriptor *txd;
530 	enum dma_slave_buswidth buswidth;
531 	struct dma_slave_config conf;
532 	struct scatterlist *sg;
533 	struct sg_table *sgt;
534 	struct dma_chan *chan;
535 	const void *buf, *pbuf;
536 	size_t len = t->len;
537 	int i, ret, nents;
538 
539 	if (t->bits_per_word > 8)
540 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
541 	else
542 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
543 
544 	memset(&conf, 0, sizeof(conf));
545 	conf.direction = dir;
546 
547 	if (dir == DMA_DEV_TO_MEM) {
548 		chan = espi->dma_rx;
549 		buf = t->rx_buf;
550 		sgt = &espi->rx_sgt;
551 
552 		conf.src_addr = espi->sspdr_phys;
553 		conf.src_addr_width = buswidth;
554 	} else {
555 		chan = espi->dma_tx;
556 		buf = t->tx_buf;
557 		sgt = &espi->tx_sgt;
558 
559 		conf.dst_addr = espi->sspdr_phys;
560 		conf.dst_addr_width = buswidth;
561 	}
562 
563 	ret = dmaengine_slave_config(chan, &conf);
564 	if (ret)
565 		return ERR_PTR(ret);
566 
567 	/*
568 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
569 	 * because we are using @espi->zeropage to provide a zero RX buffer
570 	 * for the TX transfers and we have only allocated one page for that.
571 	 *
572 	 * For performance reasons we allocate a new sg_table only when
573 	 * needed. Otherwise we will re-use the current one. Eventually the
574 	 * last sg_table is released in ep93xx_spi_release_dma().
575 	 */
576 
577 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
578 	if (nents != sgt->nents) {
579 		sg_free_table(sgt);
580 
581 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
582 		if (ret)
583 			return ERR_PTR(ret);
584 	}
585 
586 	pbuf = buf;
587 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
588 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
589 
590 		if (buf) {
591 			sg_set_page(sg, virt_to_page(pbuf), bytes,
592 				    offset_in_page(pbuf));
593 		} else {
594 			sg_set_page(sg, virt_to_page(espi->zeropage),
595 				    bytes, 0);
596 		}
597 
598 		pbuf += bytes;
599 		len -= bytes;
600 	}
601 
602 	if (WARN_ON(len)) {
603 		dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
604 		return ERR_PTR(-EINVAL);
605 	}
606 
607 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
608 	if (!nents)
609 		return ERR_PTR(-ENOMEM);
610 
611 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
612 	if (!txd) {
613 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
614 		return ERR_PTR(-ENOMEM);
615 	}
616 	return txd;
617 }
618 
619 /**
620  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
621  * @espi: ep93xx SPI controller struct
622  * @dir: DMA transfer direction
623  *
624  * Function finishes with the DMA transfer. After this, the DMA buffer is
625  * unmapped.
626  */
627 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
628 				  enum dma_transfer_direction dir)
629 {
630 	struct dma_chan *chan;
631 	struct sg_table *sgt;
632 
633 	if (dir == DMA_DEV_TO_MEM) {
634 		chan = espi->dma_rx;
635 		sgt = &espi->rx_sgt;
636 	} else {
637 		chan = espi->dma_tx;
638 		sgt = &espi->tx_sgt;
639 	}
640 
641 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
642 }
643 
644 static void ep93xx_spi_dma_callback(void *callback_param)
645 {
646 	complete(callback_param);
647 }
648 
649 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
650 {
651 	struct spi_message *msg = espi->current_msg;
652 	struct dma_async_tx_descriptor *rxd, *txd;
653 
654 	rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
655 	if (IS_ERR(rxd)) {
656 		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
657 		msg->status = PTR_ERR(rxd);
658 		return;
659 	}
660 
661 	txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
662 	if (IS_ERR(txd)) {
663 		ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
664 		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
665 		msg->status = PTR_ERR(txd);
666 		return;
667 	}
668 
669 	/* We are ready when RX is done */
670 	rxd->callback = ep93xx_spi_dma_callback;
671 	rxd->callback_param = &espi->wait;
672 
673 	/* Now submit both descriptors and wait while they finish */
674 	dmaengine_submit(rxd);
675 	dmaengine_submit(txd);
676 
677 	dma_async_issue_pending(espi->dma_rx);
678 	dma_async_issue_pending(espi->dma_tx);
679 
680 	wait_for_completion(&espi->wait);
681 
682 	ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
683 	ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
684 }
685 
686 /**
687  * ep93xx_spi_process_transfer() - processes one SPI transfer
688  * @espi: ep93xx SPI controller struct
689  * @msg: current message
690  * @t: transfer to process
691  *
692  * This function processes one SPI transfer given in @t. Function waits until
693  * transfer is complete (may sleep) and updates @msg->status based on whether
694  * transfer was successfully processed or not.
695  */
696 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
697 					struct spi_message *msg,
698 					struct spi_transfer *t)
699 {
700 	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
701 	int err;
702 
703 	msg->state = t;
704 
705 	err = ep93xx_spi_calc_divisors(espi, chip, t->speed_hz);
706 	if (err) {
707 		dev_err(&espi->pdev->dev, "failed to adjust speed\n");
708 		msg->status = err;
709 		return;
710 	}
711 
712 	chip->dss = bits_per_word_to_dss(t->bits_per_word);
713 
714 	ep93xx_spi_chip_setup(espi, chip);
715 
716 	espi->rx = 0;
717 	espi->tx = 0;
718 
719 	/*
720 	 * There is no point of setting up DMA for the transfers which will
721 	 * fit into the FIFO and can be transferred with a single interrupt.
722 	 * So in these cases we will be using PIO and don't bother for DMA.
723 	 */
724 	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
725 		ep93xx_spi_dma_transfer(espi);
726 	else
727 		ep93xx_spi_pio_transfer(espi);
728 
729 	/*
730 	 * In case of error during transmit, we bail out from processing
731 	 * the message.
732 	 */
733 	if (msg->status)
734 		return;
735 
736 	msg->actual_length += t->len;
737 
738 	/*
739 	 * After this transfer is finished, perform any possible
740 	 * post-transfer actions requested by the protocol driver.
741 	 */
742 	if (t->delay_usecs) {
743 		set_current_state(TASK_UNINTERRUPTIBLE);
744 		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
745 	}
746 	if (t->cs_change) {
747 		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
748 			/*
749 			 * In case protocol driver is asking us to drop the
750 			 * chipselect briefly, we let the scheduler to handle
751 			 * any "delay" here.
752 			 */
753 			ep93xx_spi_cs_control(msg->spi, false);
754 			cond_resched();
755 			ep93xx_spi_cs_control(msg->spi, true);
756 		}
757 	}
758 }
759 
760 /*
761  * ep93xx_spi_process_message() - process one SPI message
762  * @espi: ep93xx SPI controller struct
763  * @msg: message to process
764  *
765  * This function processes a single SPI message. We go through all transfers in
766  * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
767  * asserted during the whole message (unless per transfer cs_change is set).
768  *
769  * @msg->status contains %0 in case of success or negative error code in case of
770  * failure.
771  */
772 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
773 				       struct spi_message *msg)
774 {
775 	unsigned long timeout;
776 	struct spi_transfer *t;
777 	int err;
778 
779 	/*
780 	 * Enable the SPI controller and its clock.
781 	 */
782 	err = ep93xx_spi_enable(espi);
783 	if (err) {
784 		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
785 		msg->status = err;
786 		return;
787 	}
788 
789 	/*
790 	 * Just to be sure: flush any data from RX FIFO.
791 	 */
792 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
793 	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
794 		if (time_after(jiffies, timeout)) {
795 			dev_warn(&espi->pdev->dev,
796 				 "timeout while flushing RX FIFO\n");
797 			msg->status = -ETIMEDOUT;
798 			return;
799 		}
800 		ep93xx_spi_read_u16(espi, SSPDR);
801 	}
802 
803 	/*
804 	 * We explicitly handle FIFO level. This way we don't have to check TX
805 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
806 	 */
807 	espi->fifo_level = 0;
808 
809 	/*
810 	 * Assert the chipselect.
811 	 */
812 	ep93xx_spi_cs_control(msg->spi, true);
813 
814 	list_for_each_entry(t, &msg->transfers, transfer_list) {
815 		ep93xx_spi_process_transfer(espi, msg, t);
816 		if (msg->status)
817 			break;
818 	}
819 
820 	/*
821 	 * Now the whole message is transferred (or failed for some reason). We
822 	 * deselect the device and disable the SPI controller.
823 	 */
824 	ep93xx_spi_cs_control(msg->spi, false);
825 	ep93xx_spi_disable(espi);
826 }
827 
828 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
829 
830 /**
831  * ep93xx_spi_work() - EP93xx SPI workqueue worker function
832  * @work: work struct
833  *
834  * Workqueue worker function. This function is called when there are new
835  * SPI messages to be processed. Message is taken out from the queue and then
836  * passed to ep93xx_spi_process_message().
837  *
838  * After message is transferred, protocol driver is notified by calling
839  * @msg->complete(). In case of error, @msg->status is set to negative error
840  * number, otherwise it contains zero (and @msg->actual_length is updated).
841  */
842 static void ep93xx_spi_work(struct work_struct *work)
843 {
844 	struct ep93xx_spi *espi = work_to_espi(work);
845 	struct spi_message *msg;
846 
847 	spin_lock_irq(&espi->lock);
848 	if (!espi->running || espi->current_msg ||
849 		list_empty(&espi->msg_queue)) {
850 		spin_unlock_irq(&espi->lock);
851 		return;
852 	}
853 	msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
854 	list_del_init(&msg->queue);
855 	espi->current_msg = msg;
856 	spin_unlock_irq(&espi->lock);
857 
858 	ep93xx_spi_process_message(espi, msg);
859 
860 	/*
861 	 * Update the current message and re-schedule ourselves if there are
862 	 * more messages in the queue.
863 	 */
864 	spin_lock_irq(&espi->lock);
865 	espi->current_msg = NULL;
866 	if (espi->running && !list_empty(&espi->msg_queue))
867 		queue_work(espi->wq, &espi->msg_work);
868 	spin_unlock_irq(&espi->lock);
869 
870 	/* notify the protocol driver that we are done with this message */
871 	msg->complete(msg->context);
872 }
873 
874 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
875 {
876 	struct ep93xx_spi *espi = dev_id;
877 	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
878 
879 	/*
880 	 * If we got ROR (receive overrun) interrupt we know that something is
881 	 * wrong. Just abort the message.
882 	 */
883 	if (unlikely(irq_status & SSPIIR_RORIS)) {
884 		/* clear the overrun interrupt */
885 		ep93xx_spi_write_u8(espi, SSPICR, 0);
886 		dev_warn(&espi->pdev->dev,
887 			 "receive overrun, aborting the message\n");
888 		espi->current_msg->status = -EIO;
889 	} else {
890 		/*
891 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
892 		 * simply execute next data transfer.
893 		 */
894 		if (ep93xx_spi_read_write(espi)) {
895 			/*
896 			 * In normal case, there still is some processing left
897 			 * for current transfer. Let's wait for the next
898 			 * interrupt then.
899 			 */
900 			return IRQ_HANDLED;
901 		}
902 	}
903 
904 	/*
905 	 * Current transfer is finished, either with error or with success. In
906 	 * any case we disable interrupts and notify the worker to handle
907 	 * any post-processing of the message.
908 	 */
909 	ep93xx_spi_disable_interrupts(espi);
910 	complete(&espi->wait);
911 	return IRQ_HANDLED;
912 }
913 
914 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
915 {
916 	if (ep93xx_dma_chan_is_m2p(chan))
917 		return false;
918 
919 	chan->private = filter_param;
920 	return true;
921 }
922 
923 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
924 {
925 	dma_cap_mask_t mask;
926 	int ret;
927 
928 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
929 	if (!espi->zeropage)
930 		return -ENOMEM;
931 
932 	dma_cap_zero(mask);
933 	dma_cap_set(DMA_SLAVE, mask);
934 
935 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
936 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
937 	espi->dma_rx_data.name = "ep93xx-spi-rx";
938 
939 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
940 					   &espi->dma_rx_data);
941 	if (!espi->dma_rx) {
942 		ret = -ENODEV;
943 		goto fail_free_page;
944 	}
945 
946 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
947 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
948 	espi->dma_tx_data.name = "ep93xx-spi-tx";
949 
950 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
951 					   &espi->dma_tx_data);
952 	if (!espi->dma_tx) {
953 		ret = -ENODEV;
954 		goto fail_release_rx;
955 	}
956 
957 	return 0;
958 
959 fail_release_rx:
960 	dma_release_channel(espi->dma_rx);
961 	espi->dma_rx = NULL;
962 fail_free_page:
963 	free_page((unsigned long)espi->zeropage);
964 
965 	return ret;
966 }
967 
968 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
969 {
970 	if (espi->dma_rx) {
971 		dma_release_channel(espi->dma_rx);
972 		sg_free_table(&espi->rx_sgt);
973 	}
974 	if (espi->dma_tx) {
975 		dma_release_channel(espi->dma_tx);
976 		sg_free_table(&espi->tx_sgt);
977 	}
978 
979 	if (espi->zeropage)
980 		free_page((unsigned long)espi->zeropage);
981 }
982 
983 static int ep93xx_spi_probe(struct platform_device *pdev)
984 {
985 	struct spi_master *master;
986 	struct ep93xx_spi_info *info;
987 	struct ep93xx_spi *espi;
988 	struct resource *res;
989 	int irq;
990 	int error;
991 
992 	info = pdev->dev.platform_data;
993 
994 	irq = platform_get_irq(pdev, 0);
995 	if (irq < 0) {
996 		dev_err(&pdev->dev, "failed to get irq resources\n");
997 		return -EBUSY;
998 	}
999 
1000 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1001 	if (!res) {
1002 		dev_err(&pdev->dev, "unable to get iomem resource\n");
1003 		return -ENODEV;
1004 	}
1005 
1006 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1007 	if (!master) {
1008 		dev_err(&pdev->dev, "failed to allocate spi master\n");
1009 		return -ENOMEM;
1010 	}
1011 
1012 	master->setup = ep93xx_spi_setup;
1013 	master->transfer = ep93xx_spi_transfer;
1014 	master->cleanup = ep93xx_spi_cleanup;
1015 	master->bus_num = pdev->id;
1016 	master->num_chipselect = info->num_chipselect;
1017 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1018 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1019 
1020 	platform_set_drvdata(pdev, master);
1021 
1022 	espi = spi_master_get_devdata(master);
1023 
1024 	espi->clk = clk_get(&pdev->dev, NULL);
1025 	if (IS_ERR(espi->clk)) {
1026 		dev_err(&pdev->dev, "unable to get spi clock\n");
1027 		error = PTR_ERR(espi->clk);
1028 		goto fail_release_master;
1029 	}
1030 
1031 	spin_lock_init(&espi->lock);
1032 	init_completion(&espi->wait);
1033 
1034 	/*
1035 	 * Calculate maximum and minimum supported clock rates
1036 	 * for the controller.
1037 	 */
1038 	espi->max_rate = clk_get_rate(espi->clk) / 2;
1039 	espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1040 	espi->pdev = pdev;
1041 
1042 	espi->sspdr_phys = res->start + SSPDR;
1043 
1044 	espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
1045 	if (IS_ERR(espi->regs_base)) {
1046 		error = PTR_ERR(espi->regs_base);
1047 		goto fail_put_clock;
1048 	}
1049 
1050 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1051 				0, "ep93xx-spi", espi);
1052 	if (error) {
1053 		dev_err(&pdev->dev, "failed to request irq\n");
1054 		goto fail_put_clock;
1055 	}
1056 
1057 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
1058 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1059 
1060 	espi->wq = create_singlethread_workqueue("ep93xx_spid");
1061 	if (!espi->wq) {
1062 		dev_err(&pdev->dev, "unable to create workqueue\n");
1063 		error = -ENOMEM;
1064 		goto fail_free_dma;
1065 	}
1066 	INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1067 	INIT_LIST_HEAD(&espi->msg_queue);
1068 	espi->running = true;
1069 
1070 	/* make sure that the hardware is disabled */
1071 	ep93xx_spi_write_u8(espi, SSPCR1, 0);
1072 
1073 	error = spi_register_master(master);
1074 	if (error) {
1075 		dev_err(&pdev->dev, "failed to register SPI master\n");
1076 		goto fail_free_queue;
1077 	}
1078 
1079 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1080 		 (unsigned long)res->start, irq);
1081 
1082 	return 0;
1083 
1084 fail_free_queue:
1085 	destroy_workqueue(espi->wq);
1086 fail_free_dma:
1087 	ep93xx_spi_release_dma(espi);
1088 fail_put_clock:
1089 	clk_put(espi->clk);
1090 fail_release_master:
1091 	spi_master_put(master);
1092 
1093 	return error;
1094 }
1095 
1096 static int ep93xx_spi_remove(struct platform_device *pdev)
1097 {
1098 	struct spi_master *master = platform_get_drvdata(pdev);
1099 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
1100 
1101 	spin_lock_irq(&espi->lock);
1102 	espi->running = false;
1103 	spin_unlock_irq(&espi->lock);
1104 
1105 	destroy_workqueue(espi->wq);
1106 
1107 	/*
1108 	 * Complete remaining messages with %-ESHUTDOWN status.
1109 	 */
1110 	spin_lock_irq(&espi->lock);
1111 	while (!list_empty(&espi->msg_queue)) {
1112 		struct spi_message *msg;
1113 
1114 		msg = list_first_entry(&espi->msg_queue,
1115 				       struct spi_message, queue);
1116 		list_del_init(&msg->queue);
1117 		msg->status = -ESHUTDOWN;
1118 		spin_unlock_irq(&espi->lock);
1119 		msg->complete(msg->context);
1120 		spin_lock_irq(&espi->lock);
1121 	}
1122 	spin_unlock_irq(&espi->lock);
1123 
1124 	ep93xx_spi_release_dma(espi);
1125 	clk_put(espi->clk);
1126 
1127 	spi_unregister_master(master);
1128 	return 0;
1129 }
1130 
1131 static struct platform_driver ep93xx_spi_driver = {
1132 	.driver		= {
1133 		.name	= "ep93xx-spi",
1134 		.owner	= THIS_MODULE,
1135 	},
1136 	.probe		= ep93xx_spi_probe,
1137 	.remove		= ep93xx_spi_remove,
1138 };
1139 module_platform_driver(ep93xx_spi_driver);
1140 
1141 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1142 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1143 MODULE_LICENSE("GPL");
1144 MODULE_ALIAS("platform:ep93xx-spi");
1145