xref: /openbmc/linux/drivers/spi/spi-ep93xx.c (revision 24778be2)
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/sched.h>
31 #include <linux/scatterlist.h>
32 #include <linux/spi/spi.h>
33 
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
36 
37 #define SSPCR0			0x0000
38 #define SSPCR0_MODE_SHIFT	6
39 #define SSPCR0_SCR_SHIFT	8
40 
41 #define SSPCR1			0x0004
42 #define SSPCR1_RIE		BIT(0)
43 #define SSPCR1_TIE		BIT(1)
44 #define SSPCR1_RORIE		BIT(2)
45 #define SSPCR1_LBM		BIT(3)
46 #define SSPCR1_SSE		BIT(4)
47 #define SSPCR1_MS		BIT(5)
48 #define SSPCR1_SOD		BIT(6)
49 
50 #define SSPDR			0x0008
51 
52 #define SSPSR			0x000c
53 #define SSPSR_TFE		BIT(0)
54 #define SSPSR_TNF		BIT(1)
55 #define SSPSR_RNE		BIT(2)
56 #define SSPSR_RFF		BIT(3)
57 #define SSPSR_BSY		BIT(4)
58 #define SSPCPSR			0x0010
59 
60 #define SSPIIR			0x0014
61 #define SSPIIR_RIS		BIT(0)
62 #define SSPIIR_TIS		BIT(1)
63 #define SSPIIR_RORIS		BIT(2)
64 #define SSPICR			SSPIIR
65 
66 /* timeout in milliseconds */
67 #define SPI_TIMEOUT		5
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE		8
70 
71 /**
72  * struct ep93xx_spi - EP93xx SPI controller structure
73  * @lock: spinlock that protects concurrent accesses to fields @running,
74  *        @current_msg and @msg_queue
75  * @pdev: pointer to platform device
76  * @clk: clock for the controller
77  * @regs_base: pointer to ioremap()'d registers
78  * @sspdr_phys: physical address of the SSPDR register
79  * @min_rate: minimum clock rate (in Hz) supported by the controller
80  * @max_rate: maximum clock rate (in Hz) supported by the controller
81  * @running: is the queue running
82  * @wq: workqueue used by the driver
83  * @msg_work: work that is queued for the driver
84  * @wait: wait here until given transfer is completed
85  * @msg_queue: queue for the messages
86  * @current_msg: message that is currently processed (or %NULL if none)
87  * @tx: current byte in transfer to transmit
88  * @rx: current byte in transfer to receive
89  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90  *              frame decreases this level and sending one frame increases it.
91  * @dma_rx: RX DMA channel
92  * @dma_tx: TX DMA channel
93  * @dma_rx_data: RX parameters passed to the DMA engine
94  * @dma_tx_data: TX parameters passed to the DMA engine
95  * @rx_sgt: sg table for RX transfers
96  * @tx_sgt: sg table for TX transfers
97  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98  *            the client
99  *
100  * This structure holds EP93xx SPI controller specific information. When
101  * @running is %true, driver accepts transfer requests from protocol drivers.
102  * @current_msg is used to hold pointer to the message that is currently
103  * processed. If @current_msg is %NULL, it means that no processing is going
104  * on.
105  *
106  * Most of the fields are only written once and they can be accessed without
107  * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108  * @running, and @msg_queue.
109  */
110 struct ep93xx_spi {
111 	spinlock_t			lock;
112 	const struct platform_device	*pdev;
113 	struct clk			*clk;
114 	void __iomem			*regs_base;
115 	unsigned long			sspdr_phys;
116 	unsigned long			min_rate;
117 	unsigned long			max_rate;
118 	bool				running;
119 	struct workqueue_struct		*wq;
120 	struct work_struct		msg_work;
121 	struct completion		wait;
122 	struct list_head		msg_queue;
123 	struct spi_message		*current_msg;
124 	size_t				tx;
125 	size_t				rx;
126 	size_t				fifo_level;
127 	struct dma_chan			*dma_rx;
128 	struct dma_chan			*dma_tx;
129 	struct ep93xx_dma_data		dma_rx_data;
130 	struct ep93xx_dma_data		dma_tx_data;
131 	struct sg_table			rx_sgt;
132 	struct sg_table			tx_sgt;
133 	void				*zeropage;
134 };
135 
136 /**
137  * struct ep93xx_spi_chip - SPI device hardware settings
138  * @spi: back pointer to the SPI device
139  * @rate: max rate in hz this chip supports
140  * @div_cpsr: cpsr (pre-scaler) divider
141  * @div_scr: scr divider
142  * @dss: bits per word (4 - 16 bits)
143  * @ops: private chip operations
144  *
145  * This structure is used to store hardware register specific settings for each
146  * SPI device. Settings are written to hardware by function
147  * ep93xx_spi_chip_setup().
148  */
149 struct ep93xx_spi_chip {
150 	const struct spi_device		*spi;
151 	unsigned long			rate;
152 	u8				div_cpsr;
153 	u8				div_scr;
154 	u8				dss;
155 	struct ep93xx_spi_chip_ops	*ops;
156 };
157 
158 /* converts bits per word to CR0.DSS value */
159 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
160 
161 static inline void
162 ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
163 {
164 	__raw_writeb(value, espi->regs_base + reg);
165 }
166 
167 static inline u8
168 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
169 {
170 	return __raw_readb(spi->regs_base + reg);
171 }
172 
173 static inline void
174 ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
175 {
176 	__raw_writew(value, espi->regs_base + reg);
177 }
178 
179 static inline u16
180 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
181 {
182 	return __raw_readw(spi->regs_base + reg);
183 }
184 
185 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
186 {
187 	u8 regval;
188 	int err;
189 
190 	err = clk_enable(espi->clk);
191 	if (err)
192 		return err;
193 
194 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
195 	regval |= SSPCR1_SSE;
196 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
197 
198 	return 0;
199 }
200 
201 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
202 {
203 	u8 regval;
204 
205 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
206 	regval &= ~SSPCR1_SSE;
207 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
208 
209 	clk_disable(espi->clk);
210 }
211 
212 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
213 {
214 	u8 regval;
215 
216 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
217 	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
218 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
219 }
220 
221 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
222 {
223 	u8 regval;
224 
225 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
226 	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
227 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
228 }
229 
230 /**
231  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
232  * @espi: ep93xx SPI controller struct
233  * @chip: divisors are calculated for this chip
234  * @rate: desired SPI output clock rate
235  *
236  * Function calculates cpsr (clock pre-scaler) and scr divisors based on
237  * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
238  * for some reason, divisors cannot be calculated nothing is stored and
239  * %-EINVAL is returned.
240  */
241 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
242 				    struct ep93xx_spi_chip *chip,
243 				    unsigned long rate)
244 {
245 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
246 	int cpsr, scr;
247 
248 	/*
249 	 * Make sure that max value is between values supported by the
250 	 * controller. Note that minimum value is already checked in
251 	 * ep93xx_spi_transfer().
252 	 */
253 	rate = clamp(rate, espi->min_rate, espi->max_rate);
254 
255 	/*
256 	 * Calculate divisors so that we can get speed according the
257 	 * following formula:
258 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
259 	 *
260 	 * cpsr must be even number and starts from 2, scr can be any number
261 	 * between 0 and 255.
262 	 */
263 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
264 		for (scr = 0; scr <= 255; scr++) {
265 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
266 				chip->div_scr = (u8)scr;
267 				chip->div_cpsr = (u8)cpsr;
268 				return 0;
269 			}
270 		}
271 	}
272 
273 	return -EINVAL;
274 }
275 
276 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
277 {
278 	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
279 	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
280 
281 	if (chip->ops && chip->ops->cs_control)
282 		chip->ops->cs_control(spi, value);
283 }
284 
285 /**
286  * ep93xx_spi_setup() - setup an SPI device
287  * @spi: SPI device to setup
288  *
289  * This function sets up SPI device mode, speed etc. Can be called multiple
290  * times for a single device. Returns %0 in case of success, negative error in
291  * case of failure. When this function returns success, the device is
292  * deselected.
293  */
294 static int ep93xx_spi_setup(struct spi_device *spi)
295 {
296 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
297 	struct ep93xx_spi_chip *chip;
298 
299 	chip = spi_get_ctldata(spi);
300 	if (!chip) {
301 		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
302 			spi->modalias);
303 
304 		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
305 		if (!chip)
306 			return -ENOMEM;
307 
308 		chip->spi = spi;
309 		chip->ops = spi->controller_data;
310 
311 		if (chip->ops && chip->ops->setup) {
312 			int ret = chip->ops->setup(spi);
313 			if (ret) {
314 				kfree(chip);
315 				return ret;
316 			}
317 		}
318 
319 		spi_set_ctldata(spi, chip);
320 	}
321 
322 	if (spi->max_speed_hz != chip->rate) {
323 		int err;
324 
325 		err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
326 		if (err != 0) {
327 			spi_set_ctldata(spi, NULL);
328 			kfree(chip);
329 			return err;
330 		}
331 		chip->rate = spi->max_speed_hz;
332 	}
333 
334 	chip->dss = bits_per_word_to_dss(spi->bits_per_word);
335 
336 	ep93xx_spi_cs_control(spi, false);
337 	return 0;
338 }
339 
340 /**
341  * ep93xx_spi_transfer() - queue message to be transferred
342  * @spi: target SPI device
343  * @msg: message to be transferred
344  *
345  * This function is called by SPI device drivers when they are going to transfer
346  * a new message. It simply puts the message in the queue and schedules
347  * workqueue to perform the actual transfer later on.
348  *
349  * Returns %0 on success and negative error in case of failure.
350  */
351 static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
352 {
353 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
354 	struct spi_transfer *t;
355 	unsigned long flags;
356 
357 	if (!msg || !msg->complete)
358 		return -EINVAL;
359 
360 	/* first validate each transfer */
361 	list_for_each_entry(t, &msg->transfers, transfer_list) {
362 		if (t->speed_hz && t->speed_hz < espi->min_rate)
363 				return -EINVAL;
364 	}
365 
366 	/*
367 	 * Now that we own the message, let's initialize it so that it is
368 	 * suitable for us. We use @msg->status to signal whether there was
369 	 * error in transfer and @msg->state is used to hold pointer to the
370 	 * current transfer (or %NULL if no active current transfer).
371 	 */
372 	msg->state = NULL;
373 	msg->status = 0;
374 	msg->actual_length = 0;
375 
376 	spin_lock_irqsave(&espi->lock, flags);
377 	if (!espi->running) {
378 		spin_unlock_irqrestore(&espi->lock, flags);
379 		return -ESHUTDOWN;
380 	}
381 	list_add_tail(&msg->queue, &espi->msg_queue);
382 	queue_work(espi->wq, &espi->msg_work);
383 	spin_unlock_irqrestore(&espi->lock, flags);
384 
385 	return 0;
386 }
387 
388 /**
389  * ep93xx_spi_cleanup() - cleans up master controller specific state
390  * @spi: SPI device to cleanup
391  *
392  * This function releases master controller specific state for given @spi
393  * device.
394  */
395 static void ep93xx_spi_cleanup(struct spi_device *spi)
396 {
397 	struct ep93xx_spi_chip *chip;
398 
399 	chip = spi_get_ctldata(spi);
400 	if (chip) {
401 		if (chip->ops && chip->ops->cleanup)
402 			chip->ops->cleanup(spi);
403 		spi_set_ctldata(spi, NULL);
404 		kfree(chip);
405 	}
406 }
407 
408 /**
409  * ep93xx_spi_chip_setup() - configures hardware according to given @chip
410  * @espi: ep93xx SPI controller struct
411  * @chip: chip specific settings
412  *
413  * This function sets up the actual hardware registers with settings given in
414  * @chip. Note that no validation is done so make sure that callers validate
415  * settings before calling this.
416  */
417 static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
418 				  const struct ep93xx_spi_chip *chip)
419 {
420 	u16 cr0;
421 
422 	cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
423 	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
424 	cr0 |= chip->dss;
425 
426 	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
427 		chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
428 	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
429 
430 	ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
431 	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
432 }
433 
434 static inline int bits_per_word(const struct ep93xx_spi *espi)
435 {
436 	struct spi_message *msg = espi->current_msg;
437 	struct spi_transfer *t = msg->state;
438 
439 	return t->bits_per_word;
440 }
441 
442 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
443 {
444 	if (bits_per_word(espi) > 8) {
445 		u16 tx_val = 0;
446 
447 		if (t->tx_buf)
448 			tx_val = ((u16 *)t->tx_buf)[espi->tx];
449 		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
450 		espi->tx += sizeof(tx_val);
451 	} else {
452 		u8 tx_val = 0;
453 
454 		if (t->tx_buf)
455 			tx_val = ((u8 *)t->tx_buf)[espi->tx];
456 		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
457 		espi->tx += sizeof(tx_val);
458 	}
459 }
460 
461 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
462 {
463 	if (bits_per_word(espi) > 8) {
464 		u16 rx_val;
465 
466 		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
467 		if (t->rx_buf)
468 			((u16 *)t->rx_buf)[espi->rx] = rx_val;
469 		espi->rx += sizeof(rx_val);
470 	} else {
471 		u8 rx_val;
472 
473 		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
474 		if (t->rx_buf)
475 			((u8 *)t->rx_buf)[espi->rx] = rx_val;
476 		espi->rx += sizeof(rx_val);
477 	}
478 }
479 
480 /**
481  * ep93xx_spi_read_write() - perform next RX/TX transfer
482  * @espi: ep93xx SPI controller struct
483  *
484  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
485  * called several times, the whole transfer will be completed. Returns
486  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
487  *
488  * When this function is finished, RX FIFO should be empty and TX FIFO should be
489  * full.
490  */
491 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
492 {
493 	struct spi_message *msg = espi->current_msg;
494 	struct spi_transfer *t = msg->state;
495 
496 	/* read as long as RX FIFO has frames in it */
497 	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
498 		ep93xx_do_read(espi, t);
499 		espi->fifo_level--;
500 	}
501 
502 	/* write as long as TX FIFO has room */
503 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
504 		ep93xx_do_write(espi, t);
505 		espi->fifo_level++;
506 	}
507 
508 	if (espi->rx == t->len)
509 		return 0;
510 
511 	return -EINPROGRESS;
512 }
513 
514 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
515 {
516 	/*
517 	 * Now everything is set up for the current transfer. We prime the TX
518 	 * FIFO, enable interrupts, and wait for the transfer to complete.
519 	 */
520 	if (ep93xx_spi_read_write(espi)) {
521 		ep93xx_spi_enable_interrupts(espi);
522 		wait_for_completion(&espi->wait);
523 	}
524 }
525 
526 /**
527  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
528  * @espi: ep93xx SPI controller struct
529  * @dir: DMA transfer direction
530  *
531  * Function configures the DMA, maps the buffer and prepares the DMA
532  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
533  * in case of failure.
534  */
535 static struct dma_async_tx_descriptor *
536 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
537 {
538 	struct spi_transfer *t = espi->current_msg->state;
539 	struct dma_async_tx_descriptor *txd;
540 	enum dma_slave_buswidth buswidth;
541 	struct dma_slave_config conf;
542 	struct scatterlist *sg;
543 	struct sg_table *sgt;
544 	struct dma_chan *chan;
545 	const void *buf, *pbuf;
546 	size_t len = t->len;
547 	int i, ret, nents;
548 
549 	if (bits_per_word(espi) > 8)
550 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
551 	else
552 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
553 
554 	memset(&conf, 0, sizeof(conf));
555 	conf.direction = dir;
556 
557 	if (dir == DMA_DEV_TO_MEM) {
558 		chan = espi->dma_rx;
559 		buf = t->rx_buf;
560 		sgt = &espi->rx_sgt;
561 
562 		conf.src_addr = espi->sspdr_phys;
563 		conf.src_addr_width = buswidth;
564 	} else {
565 		chan = espi->dma_tx;
566 		buf = t->tx_buf;
567 		sgt = &espi->tx_sgt;
568 
569 		conf.dst_addr = espi->sspdr_phys;
570 		conf.dst_addr_width = buswidth;
571 	}
572 
573 	ret = dmaengine_slave_config(chan, &conf);
574 	if (ret)
575 		return ERR_PTR(ret);
576 
577 	/*
578 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
579 	 * because we are using @espi->zeropage to provide a zero RX buffer
580 	 * for the TX transfers and we have only allocated one page for that.
581 	 *
582 	 * For performance reasons we allocate a new sg_table only when
583 	 * needed. Otherwise we will re-use the current one. Eventually the
584 	 * last sg_table is released in ep93xx_spi_release_dma().
585 	 */
586 
587 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
588 	if (nents != sgt->nents) {
589 		sg_free_table(sgt);
590 
591 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
592 		if (ret)
593 			return ERR_PTR(ret);
594 	}
595 
596 	pbuf = buf;
597 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
598 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
599 
600 		if (buf) {
601 			sg_set_page(sg, virt_to_page(pbuf), bytes,
602 				    offset_in_page(pbuf));
603 		} else {
604 			sg_set_page(sg, virt_to_page(espi->zeropage),
605 				    bytes, 0);
606 		}
607 
608 		pbuf += bytes;
609 		len -= bytes;
610 	}
611 
612 	if (WARN_ON(len)) {
613 		dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
614 		return ERR_PTR(-EINVAL);
615 	}
616 
617 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
618 	if (!nents)
619 		return ERR_PTR(-ENOMEM);
620 
621 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
622 	if (!txd) {
623 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
624 		return ERR_PTR(-ENOMEM);
625 	}
626 	return txd;
627 }
628 
629 /**
630  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
631  * @espi: ep93xx SPI controller struct
632  * @dir: DMA transfer direction
633  *
634  * Function finishes with the DMA transfer. After this, the DMA buffer is
635  * unmapped.
636  */
637 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
638 				  enum dma_transfer_direction dir)
639 {
640 	struct dma_chan *chan;
641 	struct sg_table *sgt;
642 
643 	if (dir == DMA_DEV_TO_MEM) {
644 		chan = espi->dma_rx;
645 		sgt = &espi->rx_sgt;
646 	} else {
647 		chan = espi->dma_tx;
648 		sgt = &espi->tx_sgt;
649 	}
650 
651 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
652 }
653 
654 static void ep93xx_spi_dma_callback(void *callback_param)
655 {
656 	complete(callback_param);
657 }
658 
659 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
660 {
661 	struct spi_message *msg = espi->current_msg;
662 	struct dma_async_tx_descriptor *rxd, *txd;
663 
664 	rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
665 	if (IS_ERR(rxd)) {
666 		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
667 		msg->status = PTR_ERR(rxd);
668 		return;
669 	}
670 
671 	txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
672 	if (IS_ERR(txd)) {
673 		ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
674 		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
675 		msg->status = PTR_ERR(txd);
676 		return;
677 	}
678 
679 	/* We are ready when RX is done */
680 	rxd->callback = ep93xx_spi_dma_callback;
681 	rxd->callback_param = &espi->wait;
682 
683 	/* Now submit both descriptors and wait while they finish */
684 	dmaengine_submit(rxd);
685 	dmaengine_submit(txd);
686 
687 	dma_async_issue_pending(espi->dma_rx);
688 	dma_async_issue_pending(espi->dma_tx);
689 
690 	wait_for_completion(&espi->wait);
691 
692 	ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
693 	ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
694 }
695 
696 /**
697  * ep93xx_spi_process_transfer() - processes one SPI transfer
698  * @espi: ep93xx SPI controller struct
699  * @msg: current message
700  * @t: transfer to process
701  *
702  * This function processes one SPI transfer given in @t. Function waits until
703  * transfer is complete (may sleep) and updates @msg->status based on whether
704  * transfer was successfully processed or not.
705  */
706 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
707 					struct spi_message *msg,
708 					struct spi_transfer *t)
709 {
710 	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
711 
712 	msg->state = t;
713 
714 	/*
715 	 * Handle any transfer specific settings if needed. We use
716 	 * temporary chip settings here and restore original later when
717 	 * the transfer is finished.
718 	 */
719 	if (t->speed_hz || t->bits_per_word) {
720 		struct ep93xx_spi_chip tmp_chip = *chip;
721 
722 		if (t->speed_hz) {
723 			int err;
724 
725 			err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
726 						       t->speed_hz);
727 			if (err) {
728 				dev_err(&espi->pdev->dev,
729 					"failed to adjust speed\n");
730 				msg->status = err;
731 				return;
732 			}
733 		}
734 
735 		if (t->bits_per_word)
736 			tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
737 
738 		/*
739 		 * Set up temporary new hw settings for this transfer.
740 		 */
741 		ep93xx_spi_chip_setup(espi, &tmp_chip);
742 	}
743 
744 	espi->rx = 0;
745 	espi->tx = 0;
746 
747 	/*
748 	 * There is no point of setting up DMA for the transfers which will
749 	 * fit into the FIFO and can be transferred with a single interrupt.
750 	 * So in these cases we will be using PIO and don't bother for DMA.
751 	 */
752 	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
753 		ep93xx_spi_dma_transfer(espi);
754 	else
755 		ep93xx_spi_pio_transfer(espi);
756 
757 	/*
758 	 * In case of error during transmit, we bail out from processing
759 	 * the message.
760 	 */
761 	if (msg->status)
762 		return;
763 
764 	msg->actual_length += t->len;
765 
766 	/*
767 	 * After this transfer is finished, perform any possible
768 	 * post-transfer actions requested by the protocol driver.
769 	 */
770 	if (t->delay_usecs) {
771 		set_current_state(TASK_UNINTERRUPTIBLE);
772 		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
773 	}
774 	if (t->cs_change) {
775 		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
776 			/*
777 			 * In case protocol driver is asking us to drop the
778 			 * chipselect briefly, we let the scheduler to handle
779 			 * any "delay" here.
780 			 */
781 			ep93xx_spi_cs_control(msg->spi, false);
782 			cond_resched();
783 			ep93xx_spi_cs_control(msg->spi, true);
784 		}
785 	}
786 
787 	if (t->speed_hz || t->bits_per_word)
788 		ep93xx_spi_chip_setup(espi, chip);
789 }
790 
791 /*
792  * ep93xx_spi_process_message() - process one SPI message
793  * @espi: ep93xx SPI controller struct
794  * @msg: message to process
795  *
796  * This function processes a single SPI message. We go through all transfers in
797  * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
798  * asserted during the whole message (unless per transfer cs_change is set).
799  *
800  * @msg->status contains %0 in case of success or negative error code in case of
801  * failure.
802  */
803 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
804 				       struct spi_message *msg)
805 {
806 	unsigned long timeout;
807 	struct spi_transfer *t;
808 	int err;
809 
810 	/*
811 	 * Enable the SPI controller and its clock.
812 	 */
813 	err = ep93xx_spi_enable(espi);
814 	if (err) {
815 		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
816 		msg->status = err;
817 		return;
818 	}
819 
820 	/*
821 	 * Just to be sure: flush any data from RX FIFO.
822 	 */
823 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
824 	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
825 		if (time_after(jiffies, timeout)) {
826 			dev_warn(&espi->pdev->dev,
827 				 "timeout while flushing RX FIFO\n");
828 			msg->status = -ETIMEDOUT;
829 			return;
830 		}
831 		ep93xx_spi_read_u16(espi, SSPDR);
832 	}
833 
834 	/*
835 	 * We explicitly handle FIFO level. This way we don't have to check TX
836 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
837 	 */
838 	espi->fifo_level = 0;
839 
840 	/*
841 	 * Update SPI controller registers according to spi device and assert
842 	 * the chipselect.
843 	 */
844 	ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
845 	ep93xx_spi_cs_control(msg->spi, true);
846 
847 	list_for_each_entry(t, &msg->transfers, transfer_list) {
848 		ep93xx_spi_process_transfer(espi, msg, t);
849 		if (msg->status)
850 			break;
851 	}
852 
853 	/*
854 	 * Now the whole message is transferred (or failed for some reason). We
855 	 * deselect the device and disable the SPI controller.
856 	 */
857 	ep93xx_spi_cs_control(msg->spi, false);
858 	ep93xx_spi_disable(espi);
859 }
860 
861 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
862 
863 /**
864  * ep93xx_spi_work() - EP93xx SPI workqueue worker function
865  * @work: work struct
866  *
867  * Workqueue worker function. This function is called when there are new
868  * SPI messages to be processed. Message is taken out from the queue and then
869  * passed to ep93xx_spi_process_message().
870  *
871  * After message is transferred, protocol driver is notified by calling
872  * @msg->complete(). In case of error, @msg->status is set to negative error
873  * number, otherwise it contains zero (and @msg->actual_length is updated).
874  */
875 static void ep93xx_spi_work(struct work_struct *work)
876 {
877 	struct ep93xx_spi *espi = work_to_espi(work);
878 	struct spi_message *msg;
879 
880 	spin_lock_irq(&espi->lock);
881 	if (!espi->running || espi->current_msg ||
882 		list_empty(&espi->msg_queue)) {
883 		spin_unlock_irq(&espi->lock);
884 		return;
885 	}
886 	msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
887 	list_del_init(&msg->queue);
888 	espi->current_msg = msg;
889 	spin_unlock_irq(&espi->lock);
890 
891 	ep93xx_spi_process_message(espi, msg);
892 
893 	/*
894 	 * Update the current message and re-schedule ourselves if there are
895 	 * more messages in the queue.
896 	 */
897 	spin_lock_irq(&espi->lock);
898 	espi->current_msg = NULL;
899 	if (espi->running && !list_empty(&espi->msg_queue))
900 		queue_work(espi->wq, &espi->msg_work);
901 	spin_unlock_irq(&espi->lock);
902 
903 	/* notify the protocol driver that we are done with this message */
904 	msg->complete(msg->context);
905 }
906 
907 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
908 {
909 	struct ep93xx_spi *espi = dev_id;
910 	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
911 
912 	/*
913 	 * If we got ROR (receive overrun) interrupt we know that something is
914 	 * wrong. Just abort the message.
915 	 */
916 	if (unlikely(irq_status & SSPIIR_RORIS)) {
917 		/* clear the overrun interrupt */
918 		ep93xx_spi_write_u8(espi, SSPICR, 0);
919 		dev_warn(&espi->pdev->dev,
920 			 "receive overrun, aborting the message\n");
921 		espi->current_msg->status = -EIO;
922 	} else {
923 		/*
924 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
925 		 * simply execute next data transfer.
926 		 */
927 		if (ep93xx_spi_read_write(espi)) {
928 			/*
929 			 * In normal case, there still is some processing left
930 			 * for current transfer. Let's wait for the next
931 			 * interrupt then.
932 			 */
933 			return IRQ_HANDLED;
934 		}
935 	}
936 
937 	/*
938 	 * Current transfer is finished, either with error or with success. In
939 	 * any case we disable interrupts and notify the worker to handle
940 	 * any post-processing of the message.
941 	 */
942 	ep93xx_spi_disable_interrupts(espi);
943 	complete(&espi->wait);
944 	return IRQ_HANDLED;
945 }
946 
947 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
948 {
949 	if (ep93xx_dma_chan_is_m2p(chan))
950 		return false;
951 
952 	chan->private = filter_param;
953 	return true;
954 }
955 
956 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
957 {
958 	dma_cap_mask_t mask;
959 	int ret;
960 
961 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
962 	if (!espi->zeropage)
963 		return -ENOMEM;
964 
965 	dma_cap_zero(mask);
966 	dma_cap_set(DMA_SLAVE, mask);
967 
968 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
969 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
970 	espi->dma_rx_data.name = "ep93xx-spi-rx";
971 
972 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
973 					   &espi->dma_rx_data);
974 	if (!espi->dma_rx) {
975 		ret = -ENODEV;
976 		goto fail_free_page;
977 	}
978 
979 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
980 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
981 	espi->dma_tx_data.name = "ep93xx-spi-tx";
982 
983 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
984 					   &espi->dma_tx_data);
985 	if (!espi->dma_tx) {
986 		ret = -ENODEV;
987 		goto fail_release_rx;
988 	}
989 
990 	return 0;
991 
992 fail_release_rx:
993 	dma_release_channel(espi->dma_rx);
994 	espi->dma_rx = NULL;
995 fail_free_page:
996 	free_page((unsigned long)espi->zeropage);
997 
998 	return ret;
999 }
1000 
1001 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1002 {
1003 	if (espi->dma_rx) {
1004 		dma_release_channel(espi->dma_rx);
1005 		sg_free_table(&espi->rx_sgt);
1006 	}
1007 	if (espi->dma_tx) {
1008 		dma_release_channel(espi->dma_tx);
1009 		sg_free_table(&espi->tx_sgt);
1010 	}
1011 
1012 	if (espi->zeropage)
1013 		free_page((unsigned long)espi->zeropage);
1014 }
1015 
1016 static int ep93xx_spi_probe(struct platform_device *pdev)
1017 {
1018 	struct spi_master *master;
1019 	struct ep93xx_spi_info *info;
1020 	struct ep93xx_spi *espi;
1021 	struct resource *res;
1022 	int irq;
1023 	int error;
1024 
1025 	info = pdev->dev.platform_data;
1026 
1027 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1028 	if (!master) {
1029 		dev_err(&pdev->dev, "failed to allocate spi master\n");
1030 		return -ENOMEM;
1031 	}
1032 
1033 	master->setup = ep93xx_spi_setup;
1034 	master->transfer = ep93xx_spi_transfer;
1035 	master->cleanup = ep93xx_spi_cleanup;
1036 	master->bus_num = pdev->id;
1037 	master->num_chipselect = info->num_chipselect;
1038 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1039 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1040 
1041 	platform_set_drvdata(pdev, master);
1042 
1043 	espi = spi_master_get_devdata(master);
1044 
1045 	espi->clk = clk_get(&pdev->dev, NULL);
1046 	if (IS_ERR(espi->clk)) {
1047 		dev_err(&pdev->dev, "unable to get spi clock\n");
1048 		error = PTR_ERR(espi->clk);
1049 		goto fail_release_master;
1050 	}
1051 
1052 	spin_lock_init(&espi->lock);
1053 	init_completion(&espi->wait);
1054 
1055 	/*
1056 	 * Calculate maximum and minimum supported clock rates
1057 	 * for the controller.
1058 	 */
1059 	espi->max_rate = clk_get_rate(espi->clk) / 2;
1060 	espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1061 	espi->pdev = pdev;
1062 
1063 	irq = platform_get_irq(pdev, 0);
1064 	if (irq < 0) {
1065 		error = -EBUSY;
1066 		dev_err(&pdev->dev, "failed to get irq resources\n");
1067 		goto fail_put_clock;
1068 	}
1069 
1070 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1071 	if (!res) {
1072 		dev_err(&pdev->dev, "unable to get iomem resource\n");
1073 		error = -ENODEV;
1074 		goto fail_put_clock;
1075 	}
1076 
1077 	espi->sspdr_phys = res->start + SSPDR;
1078 
1079 	espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
1080 	if (IS_ERR(espi->regs_base)) {
1081 		error = PTR_ERR(espi->regs_base);
1082 		goto fail_put_clock;
1083 	}
1084 
1085 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1086 				0, "ep93xx-spi", espi);
1087 	if (error) {
1088 		dev_err(&pdev->dev, "failed to request irq\n");
1089 		goto fail_put_clock;
1090 	}
1091 
1092 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
1093 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1094 
1095 	espi->wq = create_singlethread_workqueue("ep93xx_spid");
1096 	if (!espi->wq) {
1097 		dev_err(&pdev->dev, "unable to create workqueue\n");
1098 		goto fail_free_dma;
1099 	}
1100 	INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1101 	INIT_LIST_HEAD(&espi->msg_queue);
1102 	espi->running = true;
1103 
1104 	/* make sure that the hardware is disabled */
1105 	ep93xx_spi_write_u8(espi, SSPCR1, 0);
1106 
1107 	error = spi_register_master(master);
1108 	if (error) {
1109 		dev_err(&pdev->dev, "failed to register SPI master\n");
1110 		goto fail_free_queue;
1111 	}
1112 
1113 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1114 		 (unsigned long)res->start, irq);
1115 
1116 	return 0;
1117 
1118 fail_free_queue:
1119 	destroy_workqueue(espi->wq);
1120 fail_free_dma:
1121 	ep93xx_spi_release_dma(espi);
1122 fail_put_clock:
1123 	clk_put(espi->clk);
1124 fail_release_master:
1125 	spi_master_put(master);
1126 	platform_set_drvdata(pdev, NULL);
1127 
1128 	return error;
1129 }
1130 
1131 static int ep93xx_spi_remove(struct platform_device *pdev)
1132 {
1133 	struct spi_master *master = platform_get_drvdata(pdev);
1134 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
1135 
1136 	spin_lock_irq(&espi->lock);
1137 	espi->running = false;
1138 	spin_unlock_irq(&espi->lock);
1139 
1140 	destroy_workqueue(espi->wq);
1141 
1142 	/*
1143 	 * Complete remaining messages with %-ESHUTDOWN status.
1144 	 */
1145 	spin_lock_irq(&espi->lock);
1146 	while (!list_empty(&espi->msg_queue)) {
1147 		struct spi_message *msg;
1148 
1149 		msg = list_first_entry(&espi->msg_queue,
1150 				       struct spi_message, queue);
1151 		list_del_init(&msg->queue);
1152 		msg->status = -ESHUTDOWN;
1153 		spin_unlock_irq(&espi->lock);
1154 		msg->complete(msg->context);
1155 		spin_lock_irq(&espi->lock);
1156 	}
1157 	spin_unlock_irq(&espi->lock);
1158 
1159 	ep93xx_spi_release_dma(espi);
1160 	clk_put(espi->clk);
1161 	platform_set_drvdata(pdev, NULL);
1162 
1163 	spi_unregister_master(master);
1164 	return 0;
1165 }
1166 
1167 static struct platform_driver ep93xx_spi_driver = {
1168 	.driver		= {
1169 		.name	= "ep93xx-spi",
1170 		.owner	= THIS_MODULE,
1171 	},
1172 	.probe		= ep93xx_spi_probe,
1173 	.remove		= ep93xx_spi_remove,
1174 };
1175 module_platform_driver(ep93xx_spi_driver);
1176 
1177 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1178 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1179 MODULE_LICENSE("GPL");
1180 MODULE_ALIAS("platform:ep93xx-spi");
1181