xref: /openbmc/linux/drivers/spi/spi-ep93xx.c (revision 22c1b69e)
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/sched.h>
31 #include <linux/scatterlist.h>
32 #include <linux/spi/spi.h>
33 
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
36 
37 #define SSPCR0			0x0000
38 #define SSPCR0_MODE_SHIFT	6
39 #define SSPCR0_SCR_SHIFT	8
40 
41 #define SSPCR1			0x0004
42 #define SSPCR1_RIE		BIT(0)
43 #define SSPCR1_TIE		BIT(1)
44 #define SSPCR1_RORIE		BIT(2)
45 #define SSPCR1_LBM		BIT(3)
46 #define SSPCR1_SSE		BIT(4)
47 #define SSPCR1_MS		BIT(5)
48 #define SSPCR1_SOD		BIT(6)
49 
50 #define SSPDR			0x0008
51 
52 #define SSPSR			0x000c
53 #define SSPSR_TFE		BIT(0)
54 #define SSPSR_TNF		BIT(1)
55 #define SSPSR_RNE		BIT(2)
56 #define SSPSR_RFF		BIT(3)
57 #define SSPSR_BSY		BIT(4)
58 #define SSPCPSR			0x0010
59 
60 #define SSPIIR			0x0014
61 #define SSPIIR_RIS		BIT(0)
62 #define SSPIIR_TIS		BIT(1)
63 #define SSPIIR_RORIS		BIT(2)
64 #define SSPICR			SSPIIR
65 
66 /* timeout in milliseconds */
67 #define SPI_TIMEOUT		5
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE		8
70 
71 /**
72  * struct ep93xx_spi - EP93xx SPI controller structure
73  * @lock: spinlock that protects concurrent accesses to fields @running,
74  *        @current_msg and @msg_queue
75  * @pdev: pointer to platform device
76  * @clk: clock for the controller
77  * @regs_base: pointer to ioremap()'d registers
78  * @sspdr_phys: physical address of the SSPDR register
79  * @min_rate: minimum clock rate (in Hz) supported by the controller
80  * @max_rate: maximum clock rate (in Hz) supported by the controller
81  * @running: is the queue running
82  * @wq: workqueue used by the driver
83  * @msg_work: work that is queued for the driver
84  * @wait: wait here until given transfer is completed
85  * @msg_queue: queue for the messages
86  * @current_msg: message that is currently processed (or %NULL if none)
87  * @tx: current byte in transfer to transmit
88  * @rx: current byte in transfer to receive
89  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90  *              frame decreases this level and sending one frame increases it.
91  * @dma_rx: RX DMA channel
92  * @dma_tx: TX DMA channel
93  * @dma_rx_data: RX parameters passed to the DMA engine
94  * @dma_tx_data: TX parameters passed to the DMA engine
95  * @rx_sgt: sg table for RX transfers
96  * @tx_sgt: sg table for TX transfers
97  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98  *            the client
99  *
100  * This structure holds EP93xx SPI controller specific information. When
101  * @running is %true, driver accepts transfer requests from protocol drivers.
102  * @current_msg is used to hold pointer to the message that is currently
103  * processed. If @current_msg is %NULL, it means that no processing is going
104  * on.
105  *
106  * Most of the fields are only written once and they can be accessed without
107  * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108  * @running, and @msg_queue.
109  */
110 struct ep93xx_spi {
111 	spinlock_t			lock;
112 	const struct platform_device	*pdev;
113 	struct clk			*clk;
114 	void __iomem			*regs_base;
115 	unsigned long			sspdr_phys;
116 	unsigned long			min_rate;
117 	unsigned long			max_rate;
118 	bool				running;
119 	struct workqueue_struct		*wq;
120 	struct work_struct		msg_work;
121 	struct completion		wait;
122 	struct list_head		msg_queue;
123 	struct spi_message		*current_msg;
124 	size_t				tx;
125 	size_t				rx;
126 	size_t				fifo_level;
127 	struct dma_chan			*dma_rx;
128 	struct dma_chan			*dma_tx;
129 	struct ep93xx_dma_data		dma_rx_data;
130 	struct ep93xx_dma_data		dma_tx_data;
131 	struct sg_table			rx_sgt;
132 	struct sg_table			tx_sgt;
133 	void				*zeropage;
134 };
135 
136 /**
137  * struct ep93xx_spi_chip - SPI device hardware settings
138  * @spi: back pointer to the SPI device
139  * @div_cpsr: cpsr (pre-scaler) divider
140  * @div_scr: scr divider
141  * @ops: private chip operations
142  *
143  * This structure is used to store hardware register specific settings for each
144  * SPI device. Settings are written to hardware by function
145  * ep93xx_spi_chip_setup().
146  */
147 struct ep93xx_spi_chip {
148 	const struct spi_device		*spi;
149 	u8				div_cpsr;
150 	u8				div_scr;
151 	struct ep93xx_spi_chip_ops	*ops;
152 };
153 
154 /* converts bits per word to CR0.DSS value */
155 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
156 
157 static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
158 				u16 reg, u8 value)
159 {
160 	writeb(value, espi->regs_base + reg);
161 }
162 
163 static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
164 {
165 	return readb(spi->regs_base + reg);
166 }
167 
168 static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
169 				 u16 reg, u16 value)
170 {
171 	writew(value, espi->regs_base + reg);
172 }
173 
174 static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
175 {
176 	return readw(spi->regs_base + reg);
177 }
178 
179 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
180 {
181 	u8 regval;
182 	int err;
183 
184 	err = clk_enable(espi->clk);
185 	if (err)
186 		return err;
187 
188 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
189 	regval |= SSPCR1_SSE;
190 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
191 
192 	return 0;
193 }
194 
195 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
196 {
197 	u8 regval;
198 
199 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
200 	regval &= ~SSPCR1_SSE;
201 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
202 
203 	clk_disable(espi->clk);
204 }
205 
206 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
207 {
208 	u8 regval;
209 
210 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
211 	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
212 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
213 }
214 
215 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
216 {
217 	u8 regval;
218 
219 	regval = ep93xx_spi_read_u8(espi, SSPCR1);
220 	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
221 	ep93xx_spi_write_u8(espi, SSPCR1, regval);
222 }
223 
224 /**
225  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
226  * @espi: ep93xx SPI controller struct
227  * @chip: divisors are calculated for this chip
228  * @rate: desired SPI output clock rate
229  *
230  * Function calculates cpsr (clock pre-scaler) and scr divisors based on
231  * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
232  * for some reason, divisors cannot be calculated nothing is stored and
233  * %-EINVAL is returned.
234  */
235 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
236 				    struct ep93xx_spi_chip *chip,
237 				    unsigned long rate)
238 {
239 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
240 	int cpsr, scr;
241 
242 	/*
243 	 * Make sure that max value is between values supported by the
244 	 * controller. Note that minimum value is already checked in
245 	 * ep93xx_spi_transfer().
246 	 */
247 	rate = clamp(rate, espi->min_rate, espi->max_rate);
248 
249 	/*
250 	 * Calculate divisors so that we can get speed according the
251 	 * following formula:
252 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
253 	 *
254 	 * cpsr must be even number and starts from 2, scr can be any number
255 	 * between 0 and 255.
256 	 */
257 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
258 		for (scr = 0; scr <= 255; scr++) {
259 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
260 				chip->div_scr = (u8)scr;
261 				chip->div_cpsr = (u8)cpsr;
262 				return 0;
263 			}
264 		}
265 	}
266 
267 	return -EINVAL;
268 }
269 
270 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
271 {
272 	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
273 	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
274 
275 	if (chip->ops && chip->ops->cs_control)
276 		chip->ops->cs_control(spi, value);
277 }
278 
279 /**
280  * ep93xx_spi_setup() - setup an SPI device
281  * @spi: SPI device to setup
282  *
283  * This function sets up SPI device mode, speed etc. Can be called multiple
284  * times for a single device. Returns %0 in case of success, negative error in
285  * case of failure. When this function returns success, the device is
286  * deselected.
287  */
288 static int ep93xx_spi_setup(struct spi_device *spi)
289 {
290 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
291 	struct ep93xx_spi_chip *chip;
292 
293 	chip = spi_get_ctldata(spi);
294 	if (!chip) {
295 		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
296 			spi->modalias);
297 
298 		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
299 		if (!chip)
300 			return -ENOMEM;
301 
302 		chip->spi = spi;
303 		chip->ops = spi->controller_data;
304 
305 		if (chip->ops && chip->ops->setup) {
306 			int ret = chip->ops->setup(spi);
307 			if (ret) {
308 				kfree(chip);
309 				return ret;
310 			}
311 		}
312 
313 		spi_set_ctldata(spi, chip);
314 	}
315 
316 	ep93xx_spi_cs_control(spi, false);
317 	return 0;
318 }
319 
320 /**
321  * ep93xx_spi_transfer() - queue message to be transferred
322  * @spi: target SPI device
323  * @msg: message to be transferred
324  *
325  * This function is called by SPI device drivers when they are going to transfer
326  * a new message. It simply puts the message in the queue and schedules
327  * workqueue to perform the actual transfer later on.
328  *
329  * Returns %0 on success and negative error in case of failure.
330  */
331 static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
332 {
333 	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
334 	struct spi_transfer *t;
335 	unsigned long flags;
336 
337 	if (!msg || !msg->complete)
338 		return -EINVAL;
339 
340 	/* first validate each transfer */
341 	list_for_each_entry(t, &msg->transfers, transfer_list) {
342 		if (t->speed_hz && t->speed_hz < espi->min_rate)
343 				return -EINVAL;
344 	}
345 
346 	/*
347 	 * Now that we own the message, let's initialize it so that it is
348 	 * suitable for us. We use @msg->status to signal whether there was
349 	 * error in transfer and @msg->state is used to hold pointer to the
350 	 * current transfer (or %NULL if no active current transfer).
351 	 */
352 	msg->state = NULL;
353 	msg->status = 0;
354 	msg->actual_length = 0;
355 
356 	spin_lock_irqsave(&espi->lock, flags);
357 	if (!espi->running) {
358 		spin_unlock_irqrestore(&espi->lock, flags);
359 		return -ESHUTDOWN;
360 	}
361 	list_add_tail(&msg->queue, &espi->msg_queue);
362 	queue_work(espi->wq, &espi->msg_work);
363 	spin_unlock_irqrestore(&espi->lock, flags);
364 
365 	return 0;
366 }
367 
368 /**
369  * ep93xx_spi_cleanup() - cleans up master controller specific state
370  * @spi: SPI device to cleanup
371  *
372  * This function releases master controller specific state for given @spi
373  * device.
374  */
375 static void ep93xx_spi_cleanup(struct spi_device *spi)
376 {
377 	struct ep93xx_spi_chip *chip;
378 
379 	chip = spi_get_ctldata(spi);
380 	if (chip) {
381 		if (chip->ops && chip->ops->cleanup)
382 			chip->ops->cleanup(spi);
383 		spi_set_ctldata(spi, NULL);
384 		kfree(chip);
385 	}
386 }
387 
388 /**
389  * ep93xx_spi_chip_setup() - configures hardware according to given @chip
390  * @espi: ep93xx SPI controller struct
391  * @chip: chip specific settings
392  * @bits_per_word: transfer bits_per_word
393  *
394  * This function sets up the actual hardware registers with settings given in
395  * @chip. Note that no validation is done so make sure that callers validate
396  * settings before calling this.
397  */
398 static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
399 				  const struct ep93xx_spi_chip *chip,
400 				  u8 bits_per_word)
401 {
402 	u8 dss = bits_per_word_to_dss(bits_per_word);
403 	u16 cr0;
404 
405 	cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
406 	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
407 	cr0 |= dss;
408 
409 	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
410 		chip->spi->mode, chip->div_cpsr, chip->div_scr, dss);
411 	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
412 
413 	ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
414 	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
415 }
416 
417 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
418 {
419 	if (t->bits_per_word > 8) {
420 		u16 tx_val = 0;
421 
422 		if (t->tx_buf)
423 			tx_val = ((u16 *)t->tx_buf)[espi->tx];
424 		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
425 		espi->tx += sizeof(tx_val);
426 	} else {
427 		u8 tx_val = 0;
428 
429 		if (t->tx_buf)
430 			tx_val = ((u8 *)t->tx_buf)[espi->tx];
431 		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
432 		espi->tx += sizeof(tx_val);
433 	}
434 }
435 
436 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
437 {
438 	if (t->bits_per_word > 8) {
439 		u16 rx_val;
440 
441 		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
442 		if (t->rx_buf)
443 			((u16 *)t->rx_buf)[espi->rx] = rx_val;
444 		espi->rx += sizeof(rx_val);
445 	} else {
446 		u8 rx_val;
447 
448 		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
449 		if (t->rx_buf)
450 			((u8 *)t->rx_buf)[espi->rx] = rx_val;
451 		espi->rx += sizeof(rx_val);
452 	}
453 }
454 
455 /**
456  * ep93xx_spi_read_write() - perform next RX/TX transfer
457  * @espi: ep93xx SPI controller struct
458  *
459  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
460  * called several times, the whole transfer will be completed. Returns
461  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
462  *
463  * When this function is finished, RX FIFO should be empty and TX FIFO should be
464  * full.
465  */
466 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
467 {
468 	struct spi_message *msg = espi->current_msg;
469 	struct spi_transfer *t = msg->state;
470 
471 	/* read as long as RX FIFO has frames in it */
472 	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
473 		ep93xx_do_read(espi, t);
474 		espi->fifo_level--;
475 	}
476 
477 	/* write as long as TX FIFO has room */
478 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
479 		ep93xx_do_write(espi, t);
480 		espi->fifo_level++;
481 	}
482 
483 	if (espi->rx == t->len)
484 		return 0;
485 
486 	return -EINPROGRESS;
487 }
488 
489 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
490 {
491 	/*
492 	 * Now everything is set up for the current transfer. We prime the TX
493 	 * FIFO, enable interrupts, and wait for the transfer to complete.
494 	 */
495 	if (ep93xx_spi_read_write(espi)) {
496 		ep93xx_spi_enable_interrupts(espi);
497 		wait_for_completion(&espi->wait);
498 	}
499 }
500 
501 /**
502  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
503  * @espi: ep93xx SPI controller struct
504  * @dir: DMA transfer direction
505  *
506  * Function configures the DMA, maps the buffer and prepares the DMA
507  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
508  * in case of failure.
509  */
510 static struct dma_async_tx_descriptor *
511 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
512 {
513 	struct spi_transfer *t = espi->current_msg->state;
514 	struct dma_async_tx_descriptor *txd;
515 	enum dma_slave_buswidth buswidth;
516 	struct dma_slave_config conf;
517 	struct scatterlist *sg;
518 	struct sg_table *sgt;
519 	struct dma_chan *chan;
520 	const void *buf, *pbuf;
521 	size_t len = t->len;
522 	int i, ret, nents;
523 
524 	if (t->bits_per_word > 8)
525 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
526 	else
527 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
528 
529 	memset(&conf, 0, sizeof(conf));
530 	conf.direction = dir;
531 
532 	if (dir == DMA_DEV_TO_MEM) {
533 		chan = espi->dma_rx;
534 		buf = t->rx_buf;
535 		sgt = &espi->rx_sgt;
536 
537 		conf.src_addr = espi->sspdr_phys;
538 		conf.src_addr_width = buswidth;
539 	} else {
540 		chan = espi->dma_tx;
541 		buf = t->tx_buf;
542 		sgt = &espi->tx_sgt;
543 
544 		conf.dst_addr = espi->sspdr_phys;
545 		conf.dst_addr_width = buswidth;
546 	}
547 
548 	ret = dmaengine_slave_config(chan, &conf);
549 	if (ret)
550 		return ERR_PTR(ret);
551 
552 	/*
553 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
554 	 * because we are using @espi->zeropage to provide a zero RX buffer
555 	 * for the TX transfers and we have only allocated one page for that.
556 	 *
557 	 * For performance reasons we allocate a new sg_table only when
558 	 * needed. Otherwise we will re-use the current one. Eventually the
559 	 * last sg_table is released in ep93xx_spi_release_dma().
560 	 */
561 
562 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
563 	if (nents != sgt->nents) {
564 		sg_free_table(sgt);
565 
566 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
567 		if (ret)
568 			return ERR_PTR(ret);
569 	}
570 
571 	pbuf = buf;
572 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
573 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
574 
575 		if (buf) {
576 			sg_set_page(sg, virt_to_page(pbuf), bytes,
577 				    offset_in_page(pbuf));
578 		} else {
579 			sg_set_page(sg, virt_to_page(espi->zeropage),
580 				    bytes, 0);
581 		}
582 
583 		pbuf += bytes;
584 		len -= bytes;
585 	}
586 
587 	if (WARN_ON(len)) {
588 		dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
589 		return ERR_PTR(-EINVAL);
590 	}
591 
592 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
593 	if (!nents)
594 		return ERR_PTR(-ENOMEM);
595 
596 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
597 	if (!txd) {
598 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
599 		return ERR_PTR(-ENOMEM);
600 	}
601 	return txd;
602 }
603 
604 /**
605  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
606  * @espi: ep93xx SPI controller struct
607  * @dir: DMA transfer direction
608  *
609  * Function finishes with the DMA transfer. After this, the DMA buffer is
610  * unmapped.
611  */
612 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
613 				  enum dma_transfer_direction dir)
614 {
615 	struct dma_chan *chan;
616 	struct sg_table *sgt;
617 
618 	if (dir == DMA_DEV_TO_MEM) {
619 		chan = espi->dma_rx;
620 		sgt = &espi->rx_sgt;
621 	} else {
622 		chan = espi->dma_tx;
623 		sgt = &espi->tx_sgt;
624 	}
625 
626 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
627 }
628 
629 static void ep93xx_spi_dma_callback(void *callback_param)
630 {
631 	complete(callback_param);
632 }
633 
634 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
635 {
636 	struct spi_message *msg = espi->current_msg;
637 	struct dma_async_tx_descriptor *rxd, *txd;
638 
639 	rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
640 	if (IS_ERR(rxd)) {
641 		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
642 		msg->status = PTR_ERR(rxd);
643 		return;
644 	}
645 
646 	txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
647 	if (IS_ERR(txd)) {
648 		ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
649 		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
650 		msg->status = PTR_ERR(txd);
651 		return;
652 	}
653 
654 	/* We are ready when RX is done */
655 	rxd->callback = ep93xx_spi_dma_callback;
656 	rxd->callback_param = &espi->wait;
657 
658 	/* Now submit both descriptors and wait while they finish */
659 	dmaengine_submit(rxd);
660 	dmaengine_submit(txd);
661 
662 	dma_async_issue_pending(espi->dma_rx);
663 	dma_async_issue_pending(espi->dma_tx);
664 
665 	wait_for_completion(&espi->wait);
666 
667 	ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
668 	ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
669 }
670 
671 /**
672  * ep93xx_spi_process_transfer() - processes one SPI transfer
673  * @espi: ep93xx SPI controller struct
674  * @msg: current message
675  * @t: transfer to process
676  *
677  * This function processes one SPI transfer given in @t. Function waits until
678  * transfer is complete (may sleep) and updates @msg->status based on whether
679  * transfer was successfully processed or not.
680  */
681 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
682 					struct spi_message *msg,
683 					struct spi_transfer *t)
684 {
685 	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
686 	int err;
687 
688 	msg->state = t;
689 
690 	err = ep93xx_spi_calc_divisors(espi, chip, t->speed_hz);
691 	if (err) {
692 		dev_err(&espi->pdev->dev, "failed to adjust speed\n");
693 		msg->status = err;
694 		return;
695 	}
696 
697 	ep93xx_spi_chip_setup(espi, chip, t->bits_per_word);
698 
699 	espi->rx = 0;
700 	espi->tx = 0;
701 
702 	/*
703 	 * There is no point of setting up DMA for the transfers which will
704 	 * fit into the FIFO and can be transferred with a single interrupt.
705 	 * So in these cases we will be using PIO and don't bother for DMA.
706 	 */
707 	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
708 		ep93xx_spi_dma_transfer(espi);
709 	else
710 		ep93xx_spi_pio_transfer(espi);
711 
712 	/*
713 	 * In case of error during transmit, we bail out from processing
714 	 * the message.
715 	 */
716 	if (msg->status)
717 		return;
718 
719 	msg->actual_length += t->len;
720 
721 	/*
722 	 * After this transfer is finished, perform any possible
723 	 * post-transfer actions requested by the protocol driver.
724 	 */
725 	if (t->delay_usecs) {
726 		set_current_state(TASK_UNINTERRUPTIBLE);
727 		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
728 	}
729 	if (t->cs_change) {
730 		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
731 			/*
732 			 * In case protocol driver is asking us to drop the
733 			 * chipselect briefly, we let the scheduler to handle
734 			 * any "delay" here.
735 			 */
736 			ep93xx_spi_cs_control(msg->spi, false);
737 			cond_resched();
738 			ep93xx_spi_cs_control(msg->spi, true);
739 		}
740 	}
741 }
742 
743 /*
744  * ep93xx_spi_process_message() - process one SPI message
745  * @espi: ep93xx SPI controller struct
746  * @msg: message to process
747  *
748  * This function processes a single SPI message. We go through all transfers in
749  * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
750  * asserted during the whole message (unless per transfer cs_change is set).
751  *
752  * @msg->status contains %0 in case of success or negative error code in case of
753  * failure.
754  */
755 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
756 				       struct spi_message *msg)
757 {
758 	unsigned long timeout;
759 	struct spi_transfer *t;
760 	int err;
761 
762 	/*
763 	 * Enable the SPI controller and its clock.
764 	 */
765 	err = ep93xx_spi_enable(espi);
766 	if (err) {
767 		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
768 		msg->status = err;
769 		return;
770 	}
771 
772 	/*
773 	 * Just to be sure: flush any data from RX FIFO.
774 	 */
775 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
776 	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
777 		if (time_after(jiffies, timeout)) {
778 			dev_warn(&espi->pdev->dev,
779 				 "timeout while flushing RX FIFO\n");
780 			msg->status = -ETIMEDOUT;
781 			return;
782 		}
783 		ep93xx_spi_read_u16(espi, SSPDR);
784 	}
785 
786 	/*
787 	 * We explicitly handle FIFO level. This way we don't have to check TX
788 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
789 	 */
790 	espi->fifo_level = 0;
791 
792 	/*
793 	 * Assert the chipselect.
794 	 */
795 	ep93xx_spi_cs_control(msg->spi, true);
796 
797 	list_for_each_entry(t, &msg->transfers, transfer_list) {
798 		ep93xx_spi_process_transfer(espi, msg, t);
799 		if (msg->status)
800 			break;
801 	}
802 
803 	/*
804 	 * Now the whole message is transferred (or failed for some reason). We
805 	 * deselect the device and disable the SPI controller.
806 	 */
807 	ep93xx_spi_cs_control(msg->spi, false);
808 	ep93xx_spi_disable(espi);
809 }
810 
811 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
812 
813 /**
814  * ep93xx_spi_work() - EP93xx SPI workqueue worker function
815  * @work: work struct
816  *
817  * Workqueue worker function. This function is called when there are new
818  * SPI messages to be processed. Message is taken out from the queue and then
819  * passed to ep93xx_spi_process_message().
820  *
821  * After message is transferred, protocol driver is notified by calling
822  * @msg->complete(). In case of error, @msg->status is set to negative error
823  * number, otherwise it contains zero (and @msg->actual_length is updated).
824  */
825 static void ep93xx_spi_work(struct work_struct *work)
826 {
827 	struct ep93xx_spi *espi = work_to_espi(work);
828 	struct spi_message *msg;
829 
830 	spin_lock_irq(&espi->lock);
831 	if (!espi->running || espi->current_msg ||
832 		list_empty(&espi->msg_queue)) {
833 		spin_unlock_irq(&espi->lock);
834 		return;
835 	}
836 	msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
837 	list_del_init(&msg->queue);
838 	espi->current_msg = msg;
839 	spin_unlock_irq(&espi->lock);
840 
841 	ep93xx_spi_process_message(espi, msg);
842 
843 	/*
844 	 * Update the current message and re-schedule ourselves if there are
845 	 * more messages in the queue.
846 	 */
847 	spin_lock_irq(&espi->lock);
848 	espi->current_msg = NULL;
849 	if (espi->running && !list_empty(&espi->msg_queue))
850 		queue_work(espi->wq, &espi->msg_work);
851 	spin_unlock_irq(&espi->lock);
852 
853 	/* notify the protocol driver that we are done with this message */
854 	msg->complete(msg->context);
855 }
856 
857 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
858 {
859 	struct ep93xx_spi *espi = dev_id;
860 	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
861 
862 	/*
863 	 * If we got ROR (receive overrun) interrupt we know that something is
864 	 * wrong. Just abort the message.
865 	 */
866 	if (unlikely(irq_status & SSPIIR_RORIS)) {
867 		/* clear the overrun interrupt */
868 		ep93xx_spi_write_u8(espi, SSPICR, 0);
869 		dev_warn(&espi->pdev->dev,
870 			 "receive overrun, aborting the message\n");
871 		espi->current_msg->status = -EIO;
872 	} else {
873 		/*
874 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
875 		 * simply execute next data transfer.
876 		 */
877 		if (ep93xx_spi_read_write(espi)) {
878 			/*
879 			 * In normal case, there still is some processing left
880 			 * for current transfer. Let's wait for the next
881 			 * interrupt then.
882 			 */
883 			return IRQ_HANDLED;
884 		}
885 	}
886 
887 	/*
888 	 * Current transfer is finished, either with error or with success. In
889 	 * any case we disable interrupts and notify the worker to handle
890 	 * any post-processing of the message.
891 	 */
892 	ep93xx_spi_disable_interrupts(espi);
893 	complete(&espi->wait);
894 	return IRQ_HANDLED;
895 }
896 
897 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
898 {
899 	if (ep93xx_dma_chan_is_m2p(chan))
900 		return false;
901 
902 	chan->private = filter_param;
903 	return true;
904 }
905 
906 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
907 {
908 	dma_cap_mask_t mask;
909 	int ret;
910 
911 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
912 	if (!espi->zeropage)
913 		return -ENOMEM;
914 
915 	dma_cap_zero(mask);
916 	dma_cap_set(DMA_SLAVE, mask);
917 
918 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
919 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
920 	espi->dma_rx_data.name = "ep93xx-spi-rx";
921 
922 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
923 					   &espi->dma_rx_data);
924 	if (!espi->dma_rx) {
925 		ret = -ENODEV;
926 		goto fail_free_page;
927 	}
928 
929 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
930 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
931 	espi->dma_tx_data.name = "ep93xx-spi-tx";
932 
933 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
934 					   &espi->dma_tx_data);
935 	if (!espi->dma_tx) {
936 		ret = -ENODEV;
937 		goto fail_release_rx;
938 	}
939 
940 	return 0;
941 
942 fail_release_rx:
943 	dma_release_channel(espi->dma_rx);
944 	espi->dma_rx = NULL;
945 fail_free_page:
946 	free_page((unsigned long)espi->zeropage);
947 
948 	return ret;
949 }
950 
951 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
952 {
953 	if (espi->dma_rx) {
954 		dma_release_channel(espi->dma_rx);
955 		sg_free_table(&espi->rx_sgt);
956 	}
957 	if (espi->dma_tx) {
958 		dma_release_channel(espi->dma_tx);
959 		sg_free_table(&espi->tx_sgt);
960 	}
961 
962 	if (espi->zeropage)
963 		free_page((unsigned long)espi->zeropage);
964 }
965 
966 static int ep93xx_spi_probe(struct platform_device *pdev)
967 {
968 	struct spi_master *master;
969 	struct ep93xx_spi_info *info;
970 	struct ep93xx_spi *espi;
971 	struct resource *res;
972 	int irq;
973 	int error;
974 
975 	info = pdev->dev.platform_data;
976 
977 	irq = platform_get_irq(pdev, 0);
978 	if (irq < 0) {
979 		dev_err(&pdev->dev, "failed to get irq resources\n");
980 		return -EBUSY;
981 	}
982 
983 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
984 	if (!res) {
985 		dev_err(&pdev->dev, "unable to get iomem resource\n");
986 		return -ENODEV;
987 	}
988 
989 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
990 	if (!master)
991 		return -ENOMEM;
992 
993 	master->setup = ep93xx_spi_setup;
994 	master->transfer = ep93xx_spi_transfer;
995 	master->cleanup = ep93xx_spi_cleanup;
996 	master->bus_num = pdev->id;
997 	master->num_chipselect = info->num_chipselect;
998 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
999 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1000 
1001 	platform_set_drvdata(pdev, master);
1002 
1003 	espi = spi_master_get_devdata(master);
1004 
1005 	espi->clk = devm_clk_get(&pdev->dev, NULL);
1006 	if (IS_ERR(espi->clk)) {
1007 		dev_err(&pdev->dev, "unable to get spi clock\n");
1008 		error = PTR_ERR(espi->clk);
1009 		goto fail_release_master;
1010 	}
1011 
1012 	spin_lock_init(&espi->lock);
1013 	init_completion(&espi->wait);
1014 
1015 	/*
1016 	 * Calculate maximum and minimum supported clock rates
1017 	 * for the controller.
1018 	 */
1019 	espi->max_rate = clk_get_rate(espi->clk) / 2;
1020 	espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1021 	espi->pdev = pdev;
1022 
1023 	espi->sspdr_phys = res->start + SSPDR;
1024 
1025 	espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
1026 	if (IS_ERR(espi->regs_base)) {
1027 		error = PTR_ERR(espi->regs_base);
1028 		goto fail_release_master;
1029 	}
1030 
1031 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1032 				0, "ep93xx-spi", espi);
1033 	if (error) {
1034 		dev_err(&pdev->dev, "failed to request irq\n");
1035 		goto fail_release_master;
1036 	}
1037 
1038 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
1039 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1040 
1041 	espi->wq = create_singlethread_workqueue("ep93xx_spid");
1042 	if (!espi->wq) {
1043 		dev_err(&pdev->dev, "unable to create workqueue\n");
1044 		error = -ENOMEM;
1045 		goto fail_free_dma;
1046 	}
1047 	INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1048 	INIT_LIST_HEAD(&espi->msg_queue);
1049 	espi->running = true;
1050 
1051 	/* make sure that the hardware is disabled */
1052 	ep93xx_spi_write_u8(espi, SSPCR1, 0);
1053 
1054 	error = spi_register_master(master);
1055 	if (error) {
1056 		dev_err(&pdev->dev, "failed to register SPI master\n");
1057 		goto fail_free_queue;
1058 	}
1059 
1060 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1061 		 (unsigned long)res->start, irq);
1062 
1063 	return 0;
1064 
1065 fail_free_queue:
1066 	destroy_workqueue(espi->wq);
1067 fail_free_dma:
1068 	ep93xx_spi_release_dma(espi);
1069 fail_release_master:
1070 	spi_master_put(master);
1071 
1072 	return error;
1073 }
1074 
1075 static int ep93xx_spi_remove(struct platform_device *pdev)
1076 {
1077 	struct spi_master *master = platform_get_drvdata(pdev);
1078 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
1079 
1080 	spin_lock_irq(&espi->lock);
1081 	espi->running = false;
1082 	spin_unlock_irq(&espi->lock);
1083 
1084 	destroy_workqueue(espi->wq);
1085 
1086 	/*
1087 	 * Complete remaining messages with %-ESHUTDOWN status.
1088 	 */
1089 	spin_lock_irq(&espi->lock);
1090 	while (!list_empty(&espi->msg_queue)) {
1091 		struct spi_message *msg;
1092 
1093 		msg = list_first_entry(&espi->msg_queue,
1094 				       struct spi_message, queue);
1095 		list_del_init(&msg->queue);
1096 		msg->status = -ESHUTDOWN;
1097 		spin_unlock_irq(&espi->lock);
1098 		msg->complete(msg->context);
1099 		spin_lock_irq(&espi->lock);
1100 	}
1101 	spin_unlock_irq(&espi->lock);
1102 
1103 	ep93xx_spi_release_dma(espi);
1104 
1105 	spi_unregister_master(master);
1106 	return 0;
1107 }
1108 
1109 static struct platform_driver ep93xx_spi_driver = {
1110 	.driver		= {
1111 		.name	= "ep93xx-spi",
1112 		.owner	= THIS_MODULE,
1113 	},
1114 	.probe		= ep93xx_spi_probe,
1115 	.remove		= ep93xx_spi_remove,
1116 };
1117 module_platform_driver(ep93xx_spi_driver);
1118 
1119 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1120 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1121 MODULE_LICENSE("GPL");
1122 MODULE_ALIAS("platform:ep93xx-spi");
1123