1 /* 2 * Driver for Cirrus Logic EP93xx SPI controller. 3 * 4 * Copyright (C) 2010-2011 Mika Westerberg 5 * 6 * Explicit FIFO handling code was inspired by amba-pl022 driver. 7 * 8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. 9 * 10 * For more information about the SPI controller see documentation on Cirrus 11 * Logic web site: 12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 */ 18 19 #include <linux/io.h> 20 #include <linux/clk.h> 21 #include <linux/err.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/dmaengine.h> 25 #include <linux/bitops.h> 26 #include <linux/interrupt.h> 27 #include <linux/module.h> 28 #include <linux/platform_device.h> 29 #include <linux/sched.h> 30 #include <linux/scatterlist.h> 31 #include <linux/gpio.h> 32 #include <linux/spi/spi.h> 33 34 #include <linux/platform_data/dma-ep93xx.h> 35 #include <linux/platform_data/spi-ep93xx.h> 36 37 #define SSPCR0 0x0000 38 #define SSPCR0_MODE_SHIFT 6 39 #define SSPCR0_SCR_SHIFT 8 40 41 #define SSPCR1 0x0004 42 #define SSPCR1_RIE BIT(0) 43 #define SSPCR1_TIE BIT(1) 44 #define SSPCR1_RORIE BIT(2) 45 #define SSPCR1_LBM BIT(3) 46 #define SSPCR1_SSE BIT(4) 47 #define SSPCR1_MS BIT(5) 48 #define SSPCR1_SOD BIT(6) 49 50 #define SSPDR 0x0008 51 52 #define SSPSR 0x000c 53 #define SSPSR_TFE BIT(0) 54 #define SSPSR_TNF BIT(1) 55 #define SSPSR_RNE BIT(2) 56 #define SSPSR_RFF BIT(3) 57 #define SSPSR_BSY BIT(4) 58 #define SSPCPSR 0x0010 59 60 #define SSPIIR 0x0014 61 #define SSPIIR_RIS BIT(0) 62 #define SSPIIR_TIS BIT(1) 63 #define SSPIIR_RORIS BIT(2) 64 #define SSPICR SSPIIR 65 66 /* timeout in milliseconds */ 67 #define SPI_TIMEOUT 5 68 /* maximum depth of RX/TX FIFO */ 69 #define SPI_FIFO_SIZE 8 70 71 /** 72 * struct ep93xx_spi - EP93xx SPI controller structure 73 * @pdev: pointer to platform device 74 * @clk: clock for the controller 75 * @regs_base: pointer to ioremap()'d registers 76 * @sspdr_phys: physical address of the SSPDR register 77 * @wait: wait here until given transfer is completed 78 * @current_msg: message that is currently processed (or %NULL if none) 79 * @tx: current byte in transfer to transmit 80 * @rx: current byte in transfer to receive 81 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one 82 * frame decreases this level and sending one frame increases it. 83 * @dma_rx: RX DMA channel 84 * @dma_tx: TX DMA channel 85 * @dma_rx_data: RX parameters passed to the DMA engine 86 * @dma_tx_data: TX parameters passed to the DMA engine 87 * @rx_sgt: sg table for RX transfers 88 * @tx_sgt: sg table for TX transfers 89 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by 90 * the client 91 */ 92 struct ep93xx_spi { 93 const struct platform_device *pdev; 94 struct clk *clk; 95 void __iomem *regs_base; 96 unsigned long sspdr_phys; 97 struct completion wait; 98 struct spi_message *current_msg; 99 size_t tx; 100 size_t rx; 101 size_t fifo_level; 102 struct dma_chan *dma_rx; 103 struct dma_chan *dma_tx; 104 struct ep93xx_dma_data dma_rx_data; 105 struct ep93xx_dma_data dma_tx_data; 106 struct sg_table rx_sgt; 107 struct sg_table tx_sgt; 108 void *zeropage; 109 }; 110 111 /* converts bits per word to CR0.DSS value */ 112 #define bits_per_word_to_dss(bpw) ((bpw) - 1) 113 114 static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi, 115 u16 reg, u8 value) 116 { 117 writeb(value, espi->regs_base + reg); 118 } 119 120 static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg) 121 { 122 return readb(spi->regs_base + reg); 123 } 124 125 static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi, 126 u16 reg, u16 value) 127 { 128 writew(value, espi->regs_base + reg); 129 } 130 131 static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg) 132 { 133 return readw(spi->regs_base + reg); 134 } 135 136 static int ep93xx_spi_enable(const struct ep93xx_spi *espi) 137 { 138 u8 regval; 139 int err; 140 141 err = clk_enable(espi->clk); 142 if (err) 143 return err; 144 145 regval = ep93xx_spi_read_u8(espi, SSPCR1); 146 regval |= SSPCR1_SSE; 147 ep93xx_spi_write_u8(espi, SSPCR1, regval); 148 149 return 0; 150 } 151 152 static void ep93xx_spi_disable(const struct ep93xx_spi *espi) 153 { 154 u8 regval; 155 156 regval = ep93xx_spi_read_u8(espi, SSPCR1); 157 regval &= ~SSPCR1_SSE; 158 ep93xx_spi_write_u8(espi, SSPCR1, regval); 159 160 clk_disable(espi->clk); 161 } 162 163 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi) 164 { 165 u8 regval; 166 167 regval = ep93xx_spi_read_u8(espi, SSPCR1); 168 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); 169 ep93xx_spi_write_u8(espi, SSPCR1, regval); 170 } 171 172 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi) 173 { 174 u8 regval; 175 176 regval = ep93xx_spi_read_u8(espi, SSPCR1); 177 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); 178 ep93xx_spi_write_u8(espi, SSPCR1, regval); 179 } 180 181 /** 182 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors 183 * @espi: ep93xx SPI controller struct 184 * @rate: desired SPI output clock rate 185 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider 186 * @div_scr: pointer to return the scr divider 187 */ 188 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi, 189 u32 rate, u8 *div_cpsr, u8 *div_scr) 190 { 191 struct spi_master *master = platform_get_drvdata(espi->pdev); 192 unsigned long spi_clk_rate = clk_get_rate(espi->clk); 193 int cpsr, scr; 194 195 /* 196 * Make sure that max value is between values supported by the 197 * controller. Note that minimum value is already checked in 198 * ep93xx_spi_transfer_one_message(). 199 */ 200 rate = clamp(rate, master->min_speed_hz, master->max_speed_hz); 201 202 /* 203 * Calculate divisors so that we can get speed according the 204 * following formula: 205 * rate = spi_clock_rate / (cpsr * (1 + scr)) 206 * 207 * cpsr must be even number and starts from 2, scr can be any number 208 * between 0 and 255. 209 */ 210 for (cpsr = 2; cpsr <= 254; cpsr += 2) { 211 for (scr = 0; scr <= 255; scr++) { 212 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { 213 *div_scr = (u8)scr; 214 *div_cpsr = (u8)cpsr; 215 return 0; 216 } 217 } 218 } 219 220 return -EINVAL; 221 } 222 223 static void ep93xx_spi_cs_control(struct spi_device *spi, bool enable) 224 { 225 if (spi->mode & SPI_CS_HIGH) 226 enable = !enable; 227 228 if (gpio_is_valid(spi->cs_gpio)) 229 gpio_set_value(spi->cs_gpio, !enable); 230 } 231 232 static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi, 233 struct spi_device *spi, 234 struct spi_transfer *xfer) 235 { 236 u8 dss = bits_per_word_to_dss(xfer->bits_per_word); 237 u8 div_cpsr = 0; 238 u8 div_scr = 0; 239 u16 cr0; 240 int err; 241 242 err = ep93xx_spi_calc_divisors(espi, xfer->speed_hz, 243 &div_cpsr, &div_scr); 244 if (err) 245 return err; 246 247 cr0 = div_scr << SSPCR0_SCR_SHIFT; 248 cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT; 249 cr0 |= dss; 250 251 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", 252 spi->mode, div_cpsr, div_scr, dss); 253 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x\n", cr0); 254 255 ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr); 256 ep93xx_spi_write_u16(espi, SSPCR0, cr0); 257 258 return 0; 259 } 260 261 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t) 262 { 263 if (t->bits_per_word > 8) { 264 u16 tx_val = 0; 265 266 if (t->tx_buf) 267 tx_val = ((u16 *)t->tx_buf)[espi->tx]; 268 ep93xx_spi_write_u16(espi, SSPDR, tx_val); 269 espi->tx += sizeof(tx_val); 270 } else { 271 u8 tx_val = 0; 272 273 if (t->tx_buf) 274 tx_val = ((u8 *)t->tx_buf)[espi->tx]; 275 ep93xx_spi_write_u8(espi, SSPDR, tx_val); 276 espi->tx += sizeof(tx_val); 277 } 278 } 279 280 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t) 281 { 282 if (t->bits_per_word > 8) { 283 u16 rx_val; 284 285 rx_val = ep93xx_spi_read_u16(espi, SSPDR); 286 if (t->rx_buf) 287 ((u16 *)t->rx_buf)[espi->rx] = rx_val; 288 espi->rx += sizeof(rx_val); 289 } else { 290 u8 rx_val; 291 292 rx_val = ep93xx_spi_read_u8(espi, SSPDR); 293 if (t->rx_buf) 294 ((u8 *)t->rx_buf)[espi->rx] = rx_val; 295 espi->rx += sizeof(rx_val); 296 } 297 } 298 299 /** 300 * ep93xx_spi_read_write() - perform next RX/TX transfer 301 * @espi: ep93xx SPI controller struct 302 * 303 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If 304 * called several times, the whole transfer will be completed. Returns 305 * %-EINPROGRESS when current transfer was not yet completed otherwise %0. 306 * 307 * When this function is finished, RX FIFO should be empty and TX FIFO should be 308 * full. 309 */ 310 static int ep93xx_spi_read_write(struct ep93xx_spi *espi) 311 { 312 struct spi_message *msg = espi->current_msg; 313 struct spi_transfer *t = msg->state; 314 315 /* read as long as RX FIFO has frames in it */ 316 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) { 317 ep93xx_do_read(espi, t); 318 espi->fifo_level--; 319 } 320 321 /* write as long as TX FIFO has room */ 322 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) { 323 ep93xx_do_write(espi, t); 324 espi->fifo_level++; 325 } 326 327 if (espi->rx == t->len) 328 return 0; 329 330 return -EINPROGRESS; 331 } 332 333 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi) 334 { 335 /* 336 * Now everything is set up for the current transfer. We prime the TX 337 * FIFO, enable interrupts, and wait for the transfer to complete. 338 */ 339 if (ep93xx_spi_read_write(espi)) { 340 ep93xx_spi_enable_interrupts(espi); 341 wait_for_completion(&espi->wait); 342 } 343 } 344 345 /** 346 * ep93xx_spi_dma_prepare() - prepares a DMA transfer 347 * @espi: ep93xx SPI controller struct 348 * @dir: DMA transfer direction 349 * 350 * Function configures the DMA, maps the buffer and prepares the DMA 351 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR 352 * in case of failure. 353 */ 354 static struct dma_async_tx_descriptor * 355 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir) 356 { 357 struct spi_transfer *t = espi->current_msg->state; 358 struct dma_async_tx_descriptor *txd; 359 enum dma_slave_buswidth buswidth; 360 struct dma_slave_config conf; 361 struct scatterlist *sg; 362 struct sg_table *sgt; 363 struct dma_chan *chan; 364 const void *buf, *pbuf; 365 size_t len = t->len; 366 int i, ret, nents; 367 368 if (t->bits_per_word > 8) 369 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 370 else 371 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 372 373 memset(&conf, 0, sizeof(conf)); 374 conf.direction = dir; 375 376 if (dir == DMA_DEV_TO_MEM) { 377 chan = espi->dma_rx; 378 buf = t->rx_buf; 379 sgt = &espi->rx_sgt; 380 381 conf.src_addr = espi->sspdr_phys; 382 conf.src_addr_width = buswidth; 383 } else { 384 chan = espi->dma_tx; 385 buf = t->tx_buf; 386 sgt = &espi->tx_sgt; 387 388 conf.dst_addr = espi->sspdr_phys; 389 conf.dst_addr_width = buswidth; 390 } 391 392 ret = dmaengine_slave_config(chan, &conf); 393 if (ret) 394 return ERR_PTR(ret); 395 396 /* 397 * We need to split the transfer into PAGE_SIZE'd chunks. This is 398 * because we are using @espi->zeropage to provide a zero RX buffer 399 * for the TX transfers and we have only allocated one page for that. 400 * 401 * For performance reasons we allocate a new sg_table only when 402 * needed. Otherwise we will re-use the current one. Eventually the 403 * last sg_table is released in ep93xx_spi_release_dma(). 404 */ 405 406 nents = DIV_ROUND_UP(len, PAGE_SIZE); 407 if (nents != sgt->nents) { 408 sg_free_table(sgt); 409 410 ret = sg_alloc_table(sgt, nents, GFP_KERNEL); 411 if (ret) 412 return ERR_PTR(ret); 413 } 414 415 pbuf = buf; 416 for_each_sg(sgt->sgl, sg, sgt->nents, i) { 417 size_t bytes = min_t(size_t, len, PAGE_SIZE); 418 419 if (buf) { 420 sg_set_page(sg, virt_to_page(pbuf), bytes, 421 offset_in_page(pbuf)); 422 } else { 423 sg_set_page(sg, virt_to_page(espi->zeropage), 424 bytes, 0); 425 } 426 427 pbuf += bytes; 428 len -= bytes; 429 } 430 431 if (WARN_ON(len)) { 432 dev_warn(&espi->pdev->dev, "len = %zu expected 0!\n", len); 433 return ERR_PTR(-EINVAL); 434 } 435 436 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 437 if (!nents) 438 return ERR_PTR(-ENOMEM); 439 440 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK); 441 if (!txd) { 442 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 443 return ERR_PTR(-ENOMEM); 444 } 445 return txd; 446 } 447 448 /** 449 * ep93xx_spi_dma_finish() - finishes with a DMA transfer 450 * @espi: ep93xx SPI controller struct 451 * @dir: DMA transfer direction 452 * 453 * Function finishes with the DMA transfer. After this, the DMA buffer is 454 * unmapped. 455 */ 456 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi, 457 enum dma_transfer_direction dir) 458 { 459 struct dma_chan *chan; 460 struct sg_table *sgt; 461 462 if (dir == DMA_DEV_TO_MEM) { 463 chan = espi->dma_rx; 464 sgt = &espi->rx_sgt; 465 } else { 466 chan = espi->dma_tx; 467 sgt = &espi->tx_sgt; 468 } 469 470 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 471 } 472 473 static void ep93xx_spi_dma_callback(void *callback_param) 474 { 475 complete(callback_param); 476 } 477 478 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi) 479 { 480 struct spi_message *msg = espi->current_msg; 481 struct dma_async_tx_descriptor *rxd, *txd; 482 483 rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM); 484 if (IS_ERR(rxd)) { 485 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); 486 msg->status = PTR_ERR(rxd); 487 return; 488 } 489 490 txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV); 491 if (IS_ERR(txd)) { 492 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM); 493 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(txd)); 494 msg->status = PTR_ERR(txd); 495 return; 496 } 497 498 /* We are ready when RX is done */ 499 rxd->callback = ep93xx_spi_dma_callback; 500 rxd->callback_param = &espi->wait; 501 502 /* Now submit both descriptors and wait while they finish */ 503 dmaengine_submit(rxd); 504 dmaengine_submit(txd); 505 506 dma_async_issue_pending(espi->dma_rx); 507 dma_async_issue_pending(espi->dma_tx); 508 509 wait_for_completion(&espi->wait); 510 511 ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV); 512 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM); 513 } 514 515 /** 516 * ep93xx_spi_process_transfer() - processes one SPI transfer 517 * @espi: ep93xx SPI controller struct 518 * @msg: current message 519 * @t: transfer to process 520 * 521 * This function processes one SPI transfer given in @t. Function waits until 522 * transfer is complete (may sleep) and updates @msg->status based on whether 523 * transfer was successfully processed or not. 524 */ 525 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi, 526 struct spi_message *msg, 527 struct spi_transfer *t) 528 { 529 int err; 530 531 msg->state = t; 532 533 err = ep93xx_spi_chip_setup(espi, msg->spi, t); 534 if (err) { 535 dev_err(&espi->pdev->dev, 536 "failed to setup chip for transfer\n"); 537 msg->status = err; 538 return; 539 } 540 541 espi->rx = 0; 542 espi->tx = 0; 543 544 /* 545 * There is no point of setting up DMA for the transfers which will 546 * fit into the FIFO and can be transferred with a single interrupt. 547 * So in these cases we will be using PIO and don't bother for DMA. 548 */ 549 if (espi->dma_rx && t->len > SPI_FIFO_SIZE) 550 ep93xx_spi_dma_transfer(espi); 551 else 552 ep93xx_spi_pio_transfer(espi); 553 554 /* 555 * In case of error during transmit, we bail out from processing 556 * the message. 557 */ 558 if (msg->status) 559 return; 560 561 msg->actual_length += t->len; 562 563 /* 564 * After this transfer is finished, perform any possible 565 * post-transfer actions requested by the protocol driver. 566 */ 567 if (t->delay_usecs) { 568 set_current_state(TASK_UNINTERRUPTIBLE); 569 schedule_timeout(usecs_to_jiffies(t->delay_usecs)); 570 } 571 if (t->cs_change) { 572 if (!list_is_last(&t->transfer_list, &msg->transfers)) { 573 /* 574 * In case protocol driver is asking us to drop the 575 * chipselect briefly, we let the scheduler to handle 576 * any "delay" here. 577 */ 578 ep93xx_spi_cs_control(msg->spi, false); 579 cond_resched(); 580 ep93xx_spi_cs_control(msg->spi, true); 581 } 582 } 583 } 584 585 /* 586 * ep93xx_spi_process_message() - process one SPI message 587 * @espi: ep93xx SPI controller struct 588 * @msg: message to process 589 * 590 * This function processes a single SPI message. We go through all transfers in 591 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is 592 * asserted during the whole message (unless per transfer cs_change is set). 593 * 594 * @msg->status contains %0 in case of success or negative error code in case of 595 * failure. 596 */ 597 static void ep93xx_spi_process_message(struct ep93xx_spi *espi, 598 struct spi_message *msg) 599 { 600 unsigned long timeout; 601 struct spi_transfer *t; 602 int err; 603 604 /* 605 * Enable the SPI controller and its clock. 606 */ 607 err = ep93xx_spi_enable(espi); 608 if (err) { 609 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n"); 610 msg->status = err; 611 return; 612 } 613 614 /* 615 * Just to be sure: flush any data from RX FIFO. 616 */ 617 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); 618 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) { 619 if (time_after(jiffies, timeout)) { 620 dev_warn(&espi->pdev->dev, 621 "timeout while flushing RX FIFO\n"); 622 msg->status = -ETIMEDOUT; 623 return; 624 } 625 ep93xx_spi_read_u16(espi, SSPDR); 626 } 627 628 /* 629 * We explicitly handle FIFO level. This way we don't have to check TX 630 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. 631 */ 632 espi->fifo_level = 0; 633 634 /* 635 * Assert the chipselect. 636 */ 637 ep93xx_spi_cs_control(msg->spi, true); 638 639 list_for_each_entry(t, &msg->transfers, transfer_list) { 640 ep93xx_spi_process_transfer(espi, msg, t); 641 if (msg->status) 642 break; 643 } 644 645 /* 646 * Now the whole message is transferred (or failed for some reason). We 647 * deselect the device and disable the SPI controller. 648 */ 649 ep93xx_spi_cs_control(msg->spi, false); 650 ep93xx_spi_disable(espi); 651 } 652 653 static int ep93xx_spi_transfer_one_message(struct spi_master *master, 654 struct spi_message *msg) 655 { 656 struct ep93xx_spi *espi = spi_master_get_devdata(master); 657 658 msg->state = NULL; 659 msg->status = 0; 660 msg->actual_length = 0; 661 662 espi->current_msg = msg; 663 ep93xx_spi_process_message(espi, msg); 664 espi->current_msg = NULL; 665 666 spi_finalize_current_message(master); 667 668 return 0; 669 } 670 671 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) 672 { 673 struct ep93xx_spi *espi = dev_id; 674 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR); 675 676 /* 677 * If we got ROR (receive overrun) interrupt we know that something is 678 * wrong. Just abort the message. 679 */ 680 if (unlikely(irq_status & SSPIIR_RORIS)) { 681 /* clear the overrun interrupt */ 682 ep93xx_spi_write_u8(espi, SSPICR, 0); 683 dev_warn(&espi->pdev->dev, 684 "receive overrun, aborting the message\n"); 685 espi->current_msg->status = -EIO; 686 } else { 687 /* 688 * Interrupt is either RX (RIS) or TX (TIS). For both cases we 689 * simply execute next data transfer. 690 */ 691 if (ep93xx_spi_read_write(espi)) { 692 /* 693 * In normal case, there still is some processing left 694 * for current transfer. Let's wait for the next 695 * interrupt then. 696 */ 697 return IRQ_HANDLED; 698 } 699 } 700 701 /* 702 * Current transfer is finished, either with error or with success. In 703 * any case we disable interrupts and notify the worker to handle 704 * any post-processing of the message. 705 */ 706 ep93xx_spi_disable_interrupts(espi); 707 complete(&espi->wait); 708 return IRQ_HANDLED; 709 } 710 711 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param) 712 { 713 if (ep93xx_dma_chan_is_m2p(chan)) 714 return false; 715 716 chan->private = filter_param; 717 return true; 718 } 719 720 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi) 721 { 722 dma_cap_mask_t mask; 723 int ret; 724 725 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); 726 if (!espi->zeropage) 727 return -ENOMEM; 728 729 dma_cap_zero(mask); 730 dma_cap_set(DMA_SLAVE, mask); 731 732 espi->dma_rx_data.port = EP93XX_DMA_SSP; 733 espi->dma_rx_data.direction = DMA_DEV_TO_MEM; 734 espi->dma_rx_data.name = "ep93xx-spi-rx"; 735 736 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter, 737 &espi->dma_rx_data); 738 if (!espi->dma_rx) { 739 ret = -ENODEV; 740 goto fail_free_page; 741 } 742 743 espi->dma_tx_data.port = EP93XX_DMA_SSP; 744 espi->dma_tx_data.direction = DMA_MEM_TO_DEV; 745 espi->dma_tx_data.name = "ep93xx-spi-tx"; 746 747 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter, 748 &espi->dma_tx_data); 749 if (!espi->dma_tx) { 750 ret = -ENODEV; 751 goto fail_release_rx; 752 } 753 754 return 0; 755 756 fail_release_rx: 757 dma_release_channel(espi->dma_rx); 758 espi->dma_rx = NULL; 759 fail_free_page: 760 free_page((unsigned long)espi->zeropage); 761 762 return ret; 763 } 764 765 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi) 766 { 767 if (espi->dma_rx) { 768 dma_release_channel(espi->dma_rx); 769 sg_free_table(&espi->rx_sgt); 770 } 771 if (espi->dma_tx) { 772 dma_release_channel(espi->dma_tx); 773 sg_free_table(&espi->tx_sgt); 774 } 775 776 if (espi->zeropage) 777 free_page((unsigned long)espi->zeropage); 778 } 779 780 static int ep93xx_spi_probe(struct platform_device *pdev) 781 { 782 struct spi_master *master; 783 struct ep93xx_spi_info *info; 784 struct ep93xx_spi *espi; 785 struct resource *res; 786 int irq; 787 int error; 788 int i; 789 790 info = dev_get_platdata(&pdev->dev); 791 if (!info) { 792 dev_err(&pdev->dev, "missing platform data\n"); 793 return -EINVAL; 794 } 795 796 irq = platform_get_irq(pdev, 0); 797 if (irq < 0) { 798 dev_err(&pdev->dev, "failed to get irq resources\n"); 799 return -EBUSY; 800 } 801 802 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 803 if (!res) { 804 dev_err(&pdev->dev, "unable to get iomem resource\n"); 805 return -ENODEV; 806 } 807 808 master = spi_alloc_master(&pdev->dev, sizeof(*espi)); 809 if (!master) 810 return -ENOMEM; 811 812 master->transfer_one_message = ep93xx_spi_transfer_one_message; 813 master->bus_num = pdev->id; 814 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 815 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 816 817 master->num_chipselect = info->num_chipselect; 818 master->cs_gpios = devm_kzalloc(&master->dev, 819 sizeof(int) * master->num_chipselect, 820 GFP_KERNEL); 821 if (!master->cs_gpios) { 822 error = -ENOMEM; 823 goto fail_release_master; 824 } 825 826 for (i = 0; i < master->num_chipselect; i++) { 827 master->cs_gpios[i] = info->chipselect[i]; 828 829 if (!gpio_is_valid(master->cs_gpios[i])) 830 continue; 831 832 error = devm_gpio_request_one(&pdev->dev, master->cs_gpios[i], 833 GPIOF_OUT_INIT_HIGH, 834 "ep93xx-spi"); 835 if (error) { 836 dev_err(&pdev->dev, "could not request cs gpio %d\n", 837 master->cs_gpios[i]); 838 goto fail_release_master; 839 } 840 } 841 842 platform_set_drvdata(pdev, master); 843 844 espi = spi_master_get_devdata(master); 845 846 espi->clk = devm_clk_get(&pdev->dev, NULL); 847 if (IS_ERR(espi->clk)) { 848 dev_err(&pdev->dev, "unable to get spi clock\n"); 849 error = PTR_ERR(espi->clk); 850 goto fail_release_master; 851 } 852 853 init_completion(&espi->wait); 854 855 /* 856 * Calculate maximum and minimum supported clock rates 857 * for the controller. 858 */ 859 master->max_speed_hz = clk_get_rate(espi->clk) / 2; 860 master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256); 861 espi->pdev = pdev; 862 863 espi->sspdr_phys = res->start + SSPDR; 864 865 espi->regs_base = devm_ioremap_resource(&pdev->dev, res); 866 if (IS_ERR(espi->regs_base)) { 867 error = PTR_ERR(espi->regs_base); 868 goto fail_release_master; 869 } 870 871 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt, 872 0, "ep93xx-spi", espi); 873 if (error) { 874 dev_err(&pdev->dev, "failed to request irq\n"); 875 goto fail_release_master; 876 } 877 878 if (info->use_dma && ep93xx_spi_setup_dma(espi)) 879 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); 880 881 /* make sure that the hardware is disabled */ 882 ep93xx_spi_write_u8(espi, SSPCR1, 0); 883 884 error = devm_spi_register_master(&pdev->dev, master); 885 if (error) { 886 dev_err(&pdev->dev, "failed to register SPI master\n"); 887 goto fail_free_dma; 888 } 889 890 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", 891 (unsigned long)res->start, irq); 892 893 return 0; 894 895 fail_free_dma: 896 ep93xx_spi_release_dma(espi); 897 fail_release_master: 898 spi_master_put(master); 899 900 return error; 901 } 902 903 static int ep93xx_spi_remove(struct platform_device *pdev) 904 { 905 struct spi_master *master = platform_get_drvdata(pdev); 906 struct ep93xx_spi *espi = spi_master_get_devdata(master); 907 908 ep93xx_spi_release_dma(espi); 909 910 return 0; 911 } 912 913 static struct platform_driver ep93xx_spi_driver = { 914 .driver = { 915 .name = "ep93xx-spi", 916 }, 917 .probe = ep93xx_spi_probe, 918 .remove = ep93xx_spi_remove, 919 }; 920 module_platform_driver(ep93xx_spi_driver); 921 922 MODULE_DESCRIPTION("EP93xx SPI Controller driver"); 923 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); 924 MODULE_LICENSE("GPL"); 925 MODULE_ALIAS("platform:ep93xx-spi"); 926