xref: /openbmc/linux/drivers/spi/spi-dw-dma.c (revision be2b81b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Special handling for DW DMA core
4  *
5  * Copyright (c) 2009, 2014 Intel Corporation.
6  */
7 
8 #include <linux/completion.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/irqreturn.h>
12 #include <linux/jiffies.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/platform_data/dma-dw.h>
16 #include <linux/spi/spi.h>
17 #include <linux/types.h>
18 
19 #include "spi-dw.h"
20 
21 #define DW_SPI_RX_BUSY		0
22 #define DW_SPI_RX_BURST_LEVEL	16
23 #define DW_SPI_TX_BUSY		1
24 #define DW_SPI_TX_BURST_LEVEL	16
25 
26 static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
27 {
28 	struct dw_dma_slave *s = param;
29 
30 	if (s->dma_dev != chan->device->dev)
31 		return false;
32 
33 	chan->private = s;
34 	return true;
35 }
36 
37 static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
38 {
39 	struct dma_slave_caps caps;
40 	u32 max_burst, def_burst;
41 	int ret;
42 
43 	def_burst = dws->fifo_len / 2;
44 
45 	ret = dma_get_slave_caps(dws->rxchan, &caps);
46 	if (!ret && caps.max_burst)
47 		max_burst = caps.max_burst;
48 	else
49 		max_burst = DW_SPI_RX_BURST_LEVEL;
50 
51 	dws->rxburst = min(max_burst, def_burst);
52 	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
53 
54 	ret = dma_get_slave_caps(dws->txchan, &caps);
55 	if (!ret && caps.max_burst)
56 		max_burst = caps.max_burst;
57 	else
58 		max_burst = DW_SPI_TX_BURST_LEVEL;
59 
60 	/*
61 	 * Having a Rx DMA channel serviced with higher priority than a Tx DMA
62 	 * channel might not be enough to provide a well balanced DMA-based
63 	 * SPI transfer interface. There might still be moments when the Tx DMA
64 	 * channel is occasionally handled faster than the Rx DMA channel.
65 	 * That in its turn will eventually cause the SPI Rx FIFO overflow if
66 	 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
67 	 * cleared by the Rx DMA channel. In order to fix the problem the Tx
68 	 * DMA activity is intentionally slowed down by limiting the SPI Tx
69 	 * FIFO depth with a value twice bigger than the Tx burst length.
70 	 */
71 	dws->txburst = min(max_burst, def_burst);
72 	dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
73 }
74 
75 static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
76 {
77 	struct dma_slave_caps tx = {0}, rx = {0};
78 
79 	dma_get_slave_caps(dws->txchan, &tx);
80 	dma_get_slave_caps(dws->rxchan, &rx);
81 
82 	if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
83 		dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
84 	else if (tx.max_sg_burst > 0)
85 		dws->dma_sg_burst = tx.max_sg_burst;
86 	else if (rx.max_sg_burst > 0)
87 		dws->dma_sg_burst = rx.max_sg_burst;
88 	else
89 		dws->dma_sg_burst = 0;
90 }
91 
92 static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
93 {
94 	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
95 	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
96 	struct pci_dev *dma_dev;
97 	dma_cap_mask_t mask;
98 
99 	/*
100 	 * Get pci device for DMA controller, currently it could only
101 	 * be the DMA controller of Medfield
102 	 */
103 	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
104 	if (!dma_dev)
105 		return -ENODEV;
106 
107 	dma_cap_zero(mask);
108 	dma_cap_set(DMA_SLAVE, mask);
109 
110 	/* 1. Init rx channel */
111 	rx->dma_dev = &dma_dev->dev;
112 	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
113 	if (!dws->rxchan)
114 		goto err_exit;
115 
116 	/* 2. Init tx channel */
117 	tx->dma_dev = &dma_dev->dev;
118 	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
119 	if (!dws->txchan)
120 		goto free_rxchan;
121 
122 	dws->master->dma_rx = dws->rxchan;
123 	dws->master->dma_tx = dws->txchan;
124 
125 	init_completion(&dws->dma_completion);
126 
127 	dw_spi_dma_maxburst_init(dws);
128 
129 	dw_spi_dma_sg_burst_init(dws);
130 
131 	pci_dev_put(dma_dev);
132 
133 	return 0;
134 
135 free_rxchan:
136 	dma_release_channel(dws->rxchan);
137 	dws->rxchan = NULL;
138 err_exit:
139 	pci_dev_put(dma_dev);
140 	return -EBUSY;
141 }
142 
143 static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
144 {
145 	int ret;
146 
147 	dws->rxchan = dma_request_chan(dev, "rx");
148 	if (IS_ERR(dws->rxchan)) {
149 		ret = PTR_ERR(dws->rxchan);
150 		dws->rxchan = NULL;
151 		goto err_exit;
152 	}
153 
154 	dws->txchan = dma_request_chan(dev, "tx");
155 	if (IS_ERR(dws->txchan)) {
156 		ret = PTR_ERR(dws->txchan);
157 		dws->txchan = NULL;
158 		goto free_rxchan;
159 	}
160 
161 	dws->master->dma_rx = dws->rxchan;
162 	dws->master->dma_tx = dws->txchan;
163 
164 	init_completion(&dws->dma_completion);
165 
166 	dw_spi_dma_maxburst_init(dws);
167 
168 	dw_spi_dma_sg_burst_init(dws);
169 
170 	return 0;
171 
172 free_rxchan:
173 	dma_release_channel(dws->rxchan);
174 	dws->rxchan = NULL;
175 err_exit:
176 	return ret;
177 }
178 
179 static void dw_spi_dma_exit(struct dw_spi *dws)
180 {
181 	if (dws->txchan) {
182 		dmaengine_terminate_sync(dws->txchan);
183 		dma_release_channel(dws->txchan);
184 	}
185 
186 	if (dws->rxchan) {
187 		dmaengine_terminate_sync(dws->rxchan);
188 		dma_release_channel(dws->rxchan);
189 	}
190 }
191 
192 static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
193 {
194 	dw_spi_check_status(dws, false);
195 
196 	complete(&dws->dma_completion);
197 
198 	return IRQ_HANDLED;
199 }
200 
201 static bool dw_spi_can_dma(struct spi_controller *master,
202 			   struct spi_device *spi, struct spi_transfer *xfer)
203 {
204 	struct dw_spi *dws = spi_controller_get_devdata(master);
205 
206 	return xfer->len > dws->fifo_len;
207 }
208 
209 static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
210 {
211 	if (n_bytes == 1)
212 		return DMA_SLAVE_BUSWIDTH_1_BYTE;
213 	else if (n_bytes == 2)
214 		return DMA_SLAVE_BUSWIDTH_2_BYTES;
215 
216 	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
217 }
218 
219 static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
220 {
221 	unsigned long long ms;
222 
223 	ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
224 	do_div(ms, speed);
225 	ms += ms + 200;
226 
227 	if (ms > UINT_MAX)
228 		ms = UINT_MAX;
229 
230 	ms = wait_for_completion_timeout(&dws->dma_completion,
231 					 msecs_to_jiffies(ms));
232 
233 	if (ms == 0) {
234 		dev_err(&dws->master->cur_msg->spi->dev,
235 			"DMA transaction timed out\n");
236 		return -ETIMEDOUT;
237 	}
238 
239 	return 0;
240 }
241 
242 static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
243 {
244 	return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT);
245 }
246 
247 static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
248 				   struct spi_transfer *xfer)
249 {
250 	int retry = DW_SPI_WAIT_RETRIES;
251 	struct spi_delay delay;
252 	u32 nents;
253 
254 	nents = dw_readl(dws, DW_SPI_TXFLR);
255 	delay.unit = SPI_DELAY_UNIT_SCK;
256 	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
257 
258 	while (dw_spi_dma_tx_busy(dws) && retry--)
259 		spi_delay_exec(&delay, xfer);
260 
261 	if (retry < 0) {
262 		dev_err(&dws->master->dev, "Tx hanged up\n");
263 		return -EIO;
264 	}
265 
266 	return 0;
267 }
268 
269 /*
270  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
271  * channel will clear a corresponding bit.
272  */
273 static void dw_spi_dma_tx_done(void *arg)
274 {
275 	struct dw_spi *dws = arg;
276 
277 	clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
278 	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy))
279 		return;
280 
281 	complete(&dws->dma_completion);
282 }
283 
284 static int dw_spi_dma_config_tx(struct dw_spi *dws)
285 {
286 	struct dma_slave_config txconf;
287 
288 	memset(&txconf, 0, sizeof(txconf));
289 	txconf.direction = DMA_MEM_TO_DEV;
290 	txconf.dst_addr = dws->dma_addr;
291 	txconf.dst_maxburst = dws->txburst;
292 	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
293 	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
294 	txconf.device_fc = false;
295 
296 	return dmaengine_slave_config(dws->txchan, &txconf);
297 }
298 
299 static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
300 				unsigned int nents)
301 {
302 	struct dma_async_tx_descriptor *txdesc;
303 	dma_cookie_t cookie;
304 	int ret;
305 
306 	txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
307 					 DMA_MEM_TO_DEV,
308 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
309 	if (!txdesc)
310 		return -ENOMEM;
311 
312 	txdesc->callback = dw_spi_dma_tx_done;
313 	txdesc->callback_param = dws;
314 
315 	cookie = dmaengine_submit(txdesc);
316 	ret = dma_submit_error(cookie);
317 	if (ret) {
318 		dmaengine_terminate_sync(dws->txchan);
319 		return ret;
320 	}
321 
322 	set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
323 
324 	return 0;
325 }
326 
327 static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
328 {
329 	return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT);
330 }
331 
332 static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
333 {
334 	int retry = DW_SPI_WAIT_RETRIES;
335 	struct spi_delay delay;
336 	unsigned long ns, us;
337 	u32 nents;
338 
339 	/*
340 	 * It's unlikely that DMA engine is still doing the data fetching, but
341 	 * if it's let's give it some reasonable time. The timeout calculation
342 	 * is based on the synchronous APB/SSI reference clock rate, on a
343 	 * number of data entries left in the Rx FIFO, times a number of clock
344 	 * periods normally needed for a single APB read/write transaction
345 	 * without PREADY signal utilized (which is true for the DW APB SSI
346 	 * controller).
347 	 */
348 	nents = dw_readl(dws, DW_SPI_RXFLR);
349 	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
350 	if (ns <= NSEC_PER_USEC) {
351 		delay.unit = SPI_DELAY_UNIT_NSECS;
352 		delay.value = ns;
353 	} else {
354 		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
355 		delay.unit = SPI_DELAY_UNIT_USECS;
356 		delay.value = clamp_val(us, 0, USHRT_MAX);
357 	}
358 
359 	while (dw_spi_dma_rx_busy(dws) && retry--)
360 		spi_delay_exec(&delay, NULL);
361 
362 	if (retry < 0) {
363 		dev_err(&dws->master->dev, "Rx hanged up\n");
364 		return -EIO;
365 	}
366 
367 	return 0;
368 }
369 
370 /*
371  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
372  * channel will clear a corresponding bit.
373  */
374 static void dw_spi_dma_rx_done(void *arg)
375 {
376 	struct dw_spi *dws = arg;
377 
378 	clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
379 	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy))
380 		return;
381 
382 	complete(&dws->dma_completion);
383 }
384 
385 static int dw_spi_dma_config_rx(struct dw_spi *dws)
386 {
387 	struct dma_slave_config rxconf;
388 
389 	memset(&rxconf, 0, sizeof(rxconf));
390 	rxconf.direction = DMA_DEV_TO_MEM;
391 	rxconf.src_addr = dws->dma_addr;
392 	rxconf.src_maxburst = dws->rxburst;
393 	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
394 	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
395 	rxconf.device_fc = false;
396 
397 	return dmaengine_slave_config(dws->rxchan, &rxconf);
398 }
399 
400 static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
401 				unsigned int nents)
402 {
403 	struct dma_async_tx_descriptor *rxdesc;
404 	dma_cookie_t cookie;
405 	int ret;
406 
407 	rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
408 					 DMA_DEV_TO_MEM,
409 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
410 	if (!rxdesc)
411 		return -ENOMEM;
412 
413 	rxdesc->callback = dw_spi_dma_rx_done;
414 	rxdesc->callback_param = dws;
415 
416 	cookie = dmaengine_submit(rxdesc);
417 	ret = dma_submit_error(cookie);
418 	if (ret) {
419 		dmaengine_terminate_sync(dws->rxchan);
420 		return ret;
421 	}
422 
423 	set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
424 
425 	return 0;
426 }
427 
428 static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
429 {
430 	u16 imr, dma_ctrl;
431 	int ret;
432 
433 	if (!xfer->tx_buf)
434 		return -EINVAL;
435 
436 	/* Setup DMA channels */
437 	ret = dw_spi_dma_config_tx(dws);
438 	if (ret)
439 		return ret;
440 
441 	if (xfer->rx_buf) {
442 		ret = dw_spi_dma_config_rx(dws);
443 		if (ret)
444 			return ret;
445 	}
446 
447 	/* Set the DMA handshaking interface */
448 	dma_ctrl = DW_SPI_DMACR_TDMAE;
449 	if (xfer->rx_buf)
450 		dma_ctrl |= DW_SPI_DMACR_RDMAE;
451 	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
452 
453 	/* Set the interrupt mask */
454 	imr = DW_SPI_INT_TXOI;
455 	if (xfer->rx_buf)
456 		imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI;
457 	dw_spi_umask_intr(dws, imr);
458 
459 	reinit_completion(&dws->dma_completion);
460 
461 	dws->transfer_handler = dw_spi_dma_transfer_handler;
462 
463 	return 0;
464 }
465 
466 static int dw_spi_dma_transfer_all(struct dw_spi *dws,
467 				   struct spi_transfer *xfer)
468 {
469 	int ret;
470 
471 	/* Submit the DMA Tx transfer */
472 	ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
473 	if (ret)
474 		goto err_clear_dmac;
475 
476 	/* Submit the DMA Rx transfer if required */
477 	if (xfer->rx_buf) {
478 		ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
479 					   xfer->rx_sg.nents);
480 		if (ret)
481 			goto err_clear_dmac;
482 
483 		/* rx must be started before tx due to spi instinct */
484 		dma_async_issue_pending(dws->rxchan);
485 	}
486 
487 	dma_async_issue_pending(dws->txchan);
488 
489 	ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
490 
491 err_clear_dmac:
492 	dw_writel(dws, DW_SPI_DMACR, 0);
493 
494 	return ret;
495 }
496 
497 /*
498  * In case if at least one of the requested DMA channels doesn't support the
499  * hardware accelerated SG list entries traverse, the DMA driver will most
500  * likely work that around by performing the IRQ-based SG list entries
501  * resubmission. That might and will cause a problem if the DMA Tx channel is
502  * recharged and re-executed before the Rx DMA channel. Due to
503  * non-deterministic IRQ-handler execution latency the DMA Tx channel will
504  * start pushing data to the SPI bus before the Rx DMA channel is even
505  * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
506  * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
507  * the DMA Rx channel being recharged and re-executed will eventually be
508  * overflown.
509  *
510  * In order to solve the problem we have to feed the DMA engine with SG list
511  * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
512  * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
513  * and rx_sg lists may have different number of entries of different lengths
514  * (though total length should match) let's virtually split the SG-lists to the
515  * set of DMA transfers, which length is a minimum of the ordered SG-entries
516  * lengths. An ASCII-sketch of the implemented algo is following:
517  *                  xfer->len
518  *                |___________|
519  * tx_sg list:    |___|____|__|
520  * rx_sg list:    |_|____|____|
521  * DMA transfers: |_|_|__|_|__|
522  *
523  * Note in order to have this workaround solving the denoted problem the DMA
524  * engine driver should properly initialize the max_sg_burst capability and set
525  * the DMA device max segment size parameter with maximum data block size the
526  * DMA engine supports.
527  */
528 
529 static int dw_spi_dma_transfer_one(struct dw_spi *dws,
530 				   struct spi_transfer *xfer)
531 {
532 	struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
533 	unsigned int tx_len = 0, rx_len = 0;
534 	unsigned int base, len;
535 	int ret;
536 
537 	sg_init_table(&tx_tmp, 1);
538 	sg_init_table(&rx_tmp, 1);
539 
540 	for (base = 0, len = 0; base < xfer->len; base += len) {
541 		/* Fetch next Tx DMA data chunk */
542 		if (!tx_len) {
543 			tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
544 			sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
545 			tx_len = sg_dma_len(tx_sg);
546 		}
547 
548 		/* Fetch next Rx DMA data chunk */
549 		if (!rx_len) {
550 			rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
551 			sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
552 			rx_len = sg_dma_len(rx_sg);
553 		}
554 
555 		len = min(tx_len, rx_len);
556 
557 		sg_dma_len(&tx_tmp) = len;
558 		sg_dma_len(&rx_tmp) = len;
559 
560 		/* Submit DMA Tx transfer */
561 		ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
562 		if (ret)
563 			break;
564 
565 		/* Submit DMA Rx transfer */
566 		ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
567 		if (ret)
568 			break;
569 
570 		/* Rx must be started before Tx due to SPI instinct */
571 		dma_async_issue_pending(dws->rxchan);
572 
573 		dma_async_issue_pending(dws->txchan);
574 
575 		/*
576 		 * Here we only need to wait for the DMA transfer to be
577 		 * finished since SPI controller is kept enabled during the
578 		 * procedure this loop implements and there is no risk to lose
579 		 * data left in the Tx/Rx FIFOs.
580 		 */
581 		ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
582 		if (ret)
583 			break;
584 
585 		reinit_completion(&dws->dma_completion);
586 
587 		sg_dma_address(&tx_tmp) += len;
588 		sg_dma_address(&rx_tmp) += len;
589 		tx_len -= len;
590 		rx_len -= len;
591 	}
592 
593 	dw_writel(dws, DW_SPI_DMACR, 0);
594 
595 	return ret;
596 }
597 
598 static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
599 {
600 	unsigned int nents;
601 	int ret;
602 
603 	nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
604 
605 	/*
606 	 * Execute normal DMA-based transfer (which submits the Rx and Tx SG
607 	 * lists directly to the DMA engine at once) if either full hardware
608 	 * accelerated SG list traverse is supported by both channels, or the
609 	 * Tx-only SPI transfer is requested, or the DMA engine is capable to
610 	 * handle both SG lists on hardware accelerated basis.
611 	 */
612 	if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
613 		ret = dw_spi_dma_transfer_all(dws, xfer);
614 	else
615 		ret = dw_spi_dma_transfer_one(dws, xfer);
616 	if (ret)
617 		return ret;
618 
619 	if (dws->master->cur_msg->status == -EINPROGRESS) {
620 		ret = dw_spi_dma_wait_tx_done(dws, xfer);
621 		if (ret)
622 			return ret;
623 	}
624 
625 	if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
626 		ret = dw_spi_dma_wait_rx_done(dws);
627 
628 	return ret;
629 }
630 
631 static void dw_spi_dma_stop(struct dw_spi *dws)
632 {
633 	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) {
634 		dmaengine_terminate_sync(dws->txchan);
635 		clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
636 	}
637 	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) {
638 		dmaengine_terminate_sync(dws->rxchan);
639 		clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
640 	}
641 }
642 
643 static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
644 	.dma_init	= dw_spi_dma_init_mfld,
645 	.dma_exit	= dw_spi_dma_exit,
646 	.dma_setup	= dw_spi_dma_setup,
647 	.can_dma	= dw_spi_can_dma,
648 	.dma_transfer	= dw_spi_dma_transfer,
649 	.dma_stop	= dw_spi_dma_stop,
650 };
651 
652 void dw_spi_dma_setup_mfld(struct dw_spi *dws)
653 {
654 	dws->dma_ops = &dw_spi_dma_mfld_ops;
655 }
656 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE);
657 
658 static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
659 	.dma_init	= dw_spi_dma_init_generic,
660 	.dma_exit	= dw_spi_dma_exit,
661 	.dma_setup	= dw_spi_dma_setup,
662 	.can_dma	= dw_spi_can_dma,
663 	.dma_transfer	= dw_spi_dma_transfer,
664 	.dma_stop	= dw_spi_dma_stop,
665 };
666 
667 void dw_spi_dma_setup_generic(struct dw_spi *dws)
668 {
669 	dws->dma_ops = &dw_spi_dma_generic_ops;
670 }
671 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE);
672