xref: /openbmc/linux/drivers/spi/spi-dw-dma.c (revision 53e8558837be58c1d44d50ad87247a8c56c95c13)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Special handling for DW DMA core
4  *
5  * Copyright (c) 2009, 2014 Intel Corporation.
6  */
7 
8 #include <linux/completion.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/irqreturn.h>
12 #include <linux/jiffies.h>
13 #include <linux/pci.h>
14 #include <linux/platform_data/dma-dw.h>
15 #include <linux/spi/spi.h>
16 #include <linux/types.h>
17 
18 #include "spi-dw.h"
19 
20 #define RX_BUSY		0
21 #define RX_BURST_LEVEL	16
22 #define TX_BUSY		1
23 #define TX_BURST_LEVEL	16
24 
25 static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
26 {
27 	struct dw_dma_slave *s = param;
28 
29 	if (s->dma_dev != chan->device->dev)
30 		return false;
31 
32 	chan->private = s;
33 	return true;
34 }
35 
36 static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
37 {
38 	struct dma_slave_caps caps;
39 	u32 max_burst, def_burst;
40 	int ret;
41 
42 	def_burst = dws->fifo_len / 2;
43 
44 	ret = dma_get_slave_caps(dws->rxchan, &caps);
45 	if (!ret && caps.max_burst)
46 		max_burst = caps.max_burst;
47 	else
48 		max_burst = RX_BURST_LEVEL;
49 
50 	dws->rxburst = min(max_burst, def_burst);
51 	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
52 
53 	ret = dma_get_slave_caps(dws->txchan, &caps);
54 	if (!ret && caps.max_burst)
55 		max_burst = caps.max_burst;
56 	else
57 		max_burst = TX_BURST_LEVEL;
58 
59 	/*
60 	 * Having a Rx DMA channel serviced with higher priority than a Tx DMA
61 	 * channel might not be enough to provide a well balanced DMA-based
62 	 * SPI transfer interface. There might still be moments when the Tx DMA
63 	 * channel is occasionally handled faster than the Rx DMA channel.
64 	 * That in its turn will eventually cause the SPI Rx FIFO overflow if
65 	 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
66 	 * cleared by the Rx DMA channel. In order to fix the problem the Tx
67 	 * DMA activity is intentionally slowed down by limiting the SPI Tx
68 	 * FIFO depth with a value twice bigger than the Tx burst length.
69 	 */
70 	dws->txburst = min(max_burst, def_burst);
71 	dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
72 }
73 
74 static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
75 {
76 	struct dma_slave_caps tx = {0}, rx = {0};
77 
78 	dma_get_slave_caps(dws->txchan, &tx);
79 	dma_get_slave_caps(dws->rxchan, &rx);
80 
81 	if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
82 		dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
83 	else if (tx.max_sg_burst > 0)
84 		dws->dma_sg_burst = tx.max_sg_burst;
85 	else if (rx.max_sg_burst > 0)
86 		dws->dma_sg_burst = rx.max_sg_burst;
87 	else
88 		dws->dma_sg_burst = 0;
89 }
90 
91 static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
92 {
93 	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
94 	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
95 	struct pci_dev *dma_dev;
96 	dma_cap_mask_t mask;
97 
98 	/*
99 	 * Get pci device for DMA controller, currently it could only
100 	 * be the DMA controller of Medfield
101 	 */
102 	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
103 	if (!dma_dev)
104 		return -ENODEV;
105 
106 	dma_cap_zero(mask);
107 	dma_cap_set(DMA_SLAVE, mask);
108 
109 	/* 1. Init rx channel */
110 	rx->dma_dev = &dma_dev->dev;
111 	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
112 	if (!dws->rxchan)
113 		goto err_exit;
114 
115 	/* 2. Init tx channel */
116 	tx->dma_dev = &dma_dev->dev;
117 	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
118 	if (!dws->txchan)
119 		goto free_rxchan;
120 
121 	dws->master->dma_rx = dws->rxchan;
122 	dws->master->dma_tx = dws->txchan;
123 
124 	init_completion(&dws->dma_completion);
125 
126 	dw_spi_dma_maxburst_init(dws);
127 
128 	dw_spi_dma_sg_burst_init(dws);
129 
130 	return 0;
131 
132 free_rxchan:
133 	dma_release_channel(dws->rxchan);
134 	dws->rxchan = NULL;
135 err_exit:
136 	return -EBUSY;
137 }
138 
139 static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
140 {
141 	dws->rxchan = dma_request_slave_channel(dev, "rx");
142 	if (!dws->rxchan)
143 		return -ENODEV;
144 
145 	dws->txchan = dma_request_slave_channel(dev, "tx");
146 	if (!dws->txchan) {
147 		dma_release_channel(dws->rxchan);
148 		dws->rxchan = NULL;
149 		return -ENODEV;
150 	}
151 
152 	dws->master->dma_rx = dws->rxchan;
153 	dws->master->dma_tx = dws->txchan;
154 
155 	init_completion(&dws->dma_completion);
156 
157 	dw_spi_dma_maxburst_init(dws);
158 
159 	dw_spi_dma_sg_burst_init(dws);
160 
161 	return 0;
162 }
163 
164 static void dw_spi_dma_exit(struct dw_spi *dws)
165 {
166 	if (dws->txchan) {
167 		dmaengine_terminate_sync(dws->txchan);
168 		dma_release_channel(dws->txchan);
169 	}
170 
171 	if (dws->rxchan) {
172 		dmaengine_terminate_sync(dws->rxchan);
173 		dma_release_channel(dws->rxchan);
174 	}
175 }
176 
177 static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
178 {
179 	dw_spi_check_status(dws, false);
180 
181 	complete(&dws->dma_completion);
182 
183 	return IRQ_HANDLED;
184 }
185 
186 static bool dw_spi_can_dma(struct spi_controller *master,
187 			   struct spi_device *spi, struct spi_transfer *xfer)
188 {
189 	struct dw_spi *dws = spi_controller_get_devdata(master);
190 
191 	return xfer->len > dws->fifo_len;
192 }
193 
194 static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
195 {
196 	if (n_bytes == 1)
197 		return DMA_SLAVE_BUSWIDTH_1_BYTE;
198 	else if (n_bytes == 2)
199 		return DMA_SLAVE_BUSWIDTH_2_BYTES;
200 
201 	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
202 }
203 
204 static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
205 {
206 	unsigned long long ms;
207 
208 	ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
209 	do_div(ms, speed);
210 	ms += ms + 200;
211 
212 	if (ms > UINT_MAX)
213 		ms = UINT_MAX;
214 
215 	ms = wait_for_completion_timeout(&dws->dma_completion,
216 					 msecs_to_jiffies(ms));
217 
218 	if (ms == 0) {
219 		dev_err(&dws->master->cur_msg->spi->dev,
220 			"DMA transaction timed out\n");
221 		return -ETIMEDOUT;
222 	}
223 
224 	return 0;
225 }
226 
227 static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
228 {
229 	return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
230 }
231 
232 static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
233 				   struct spi_transfer *xfer)
234 {
235 	int retry = SPI_WAIT_RETRIES;
236 	struct spi_delay delay;
237 	u32 nents;
238 
239 	nents = dw_readl(dws, DW_SPI_TXFLR);
240 	delay.unit = SPI_DELAY_UNIT_SCK;
241 	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
242 
243 	while (dw_spi_dma_tx_busy(dws) && retry--)
244 		spi_delay_exec(&delay, xfer);
245 
246 	if (retry < 0) {
247 		dev_err(&dws->master->dev, "Tx hanged up\n");
248 		return -EIO;
249 	}
250 
251 	return 0;
252 }
253 
254 /*
255  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
256  * channel will clear a corresponding bit.
257  */
258 static void dw_spi_dma_tx_done(void *arg)
259 {
260 	struct dw_spi *dws = arg;
261 
262 	clear_bit(TX_BUSY, &dws->dma_chan_busy);
263 	if (test_bit(RX_BUSY, &dws->dma_chan_busy))
264 		return;
265 
266 	complete(&dws->dma_completion);
267 }
268 
269 static int dw_spi_dma_config_tx(struct dw_spi *dws)
270 {
271 	struct dma_slave_config txconf;
272 
273 	memset(&txconf, 0, sizeof(txconf));
274 	txconf.direction = DMA_MEM_TO_DEV;
275 	txconf.dst_addr = dws->dma_addr;
276 	txconf.dst_maxburst = dws->txburst;
277 	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
278 	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
279 	txconf.device_fc = false;
280 
281 	return dmaengine_slave_config(dws->txchan, &txconf);
282 }
283 
284 static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
285 				unsigned int nents)
286 {
287 	struct dma_async_tx_descriptor *txdesc;
288 	dma_cookie_t cookie;
289 	int ret;
290 
291 	txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
292 					 DMA_MEM_TO_DEV,
293 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
294 	if (!txdesc)
295 		return -ENOMEM;
296 
297 	txdesc->callback = dw_spi_dma_tx_done;
298 	txdesc->callback_param = dws;
299 
300 	cookie = dmaengine_submit(txdesc);
301 	ret = dma_submit_error(cookie);
302 	if (ret) {
303 		dmaengine_terminate_sync(dws->txchan);
304 		return ret;
305 	}
306 
307 	set_bit(TX_BUSY, &dws->dma_chan_busy);
308 
309 	return 0;
310 }
311 
312 static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
313 {
314 	return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
315 }
316 
317 static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
318 {
319 	int retry = SPI_WAIT_RETRIES;
320 	struct spi_delay delay;
321 	unsigned long ns, us;
322 	u32 nents;
323 
324 	/*
325 	 * It's unlikely that DMA engine is still doing the data fetching, but
326 	 * if it's let's give it some reasonable time. The timeout calculation
327 	 * is based on the synchronous APB/SSI reference clock rate, on a
328 	 * number of data entries left in the Rx FIFO, times a number of clock
329 	 * periods normally needed for a single APB read/write transaction
330 	 * without PREADY signal utilized (which is true for the DW APB SSI
331 	 * controller).
332 	 */
333 	nents = dw_readl(dws, DW_SPI_RXFLR);
334 	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
335 	if (ns <= NSEC_PER_USEC) {
336 		delay.unit = SPI_DELAY_UNIT_NSECS;
337 		delay.value = ns;
338 	} else {
339 		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
340 		delay.unit = SPI_DELAY_UNIT_USECS;
341 		delay.value = clamp_val(us, 0, USHRT_MAX);
342 	}
343 
344 	while (dw_spi_dma_rx_busy(dws) && retry--)
345 		spi_delay_exec(&delay, NULL);
346 
347 	if (retry < 0) {
348 		dev_err(&dws->master->dev, "Rx hanged up\n");
349 		return -EIO;
350 	}
351 
352 	return 0;
353 }
354 
355 /*
356  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
357  * channel will clear a corresponding bit.
358  */
359 static void dw_spi_dma_rx_done(void *arg)
360 {
361 	struct dw_spi *dws = arg;
362 
363 	clear_bit(RX_BUSY, &dws->dma_chan_busy);
364 	if (test_bit(TX_BUSY, &dws->dma_chan_busy))
365 		return;
366 
367 	complete(&dws->dma_completion);
368 }
369 
370 static int dw_spi_dma_config_rx(struct dw_spi *dws)
371 {
372 	struct dma_slave_config rxconf;
373 
374 	memset(&rxconf, 0, sizeof(rxconf));
375 	rxconf.direction = DMA_DEV_TO_MEM;
376 	rxconf.src_addr = dws->dma_addr;
377 	rxconf.src_maxburst = dws->rxburst;
378 	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
379 	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
380 	rxconf.device_fc = false;
381 
382 	return dmaengine_slave_config(dws->rxchan, &rxconf);
383 }
384 
385 static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
386 				unsigned int nents)
387 {
388 	struct dma_async_tx_descriptor *rxdesc;
389 	dma_cookie_t cookie;
390 	int ret;
391 
392 	rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
393 					 DMA_DEV_TO_MEM,
394 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
395 	if (!rxdesc)
396 		return -ENOMEM;
397 
398 	rxdesc->callback = dw_spi_dma_rx_done;
399 	rxdesc->callback_param = dws;
400 
401 	cookie = dmaengine_submit(rxdesc);
402 	ret = dma_submit_error(cookie);
403 	if (ret) {
404 		dmaengine_terminate_sync(dws->rxchan);
405 		return ret;
406 	}
407 
408 	set_bit(RX_BUSY, &dws->dma_chan_busy);
409 
410 	return 0;
411 }
412 
413 static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
414 {
415 	u16 imr, dma_ctrl;
416 	int ret;
417 
418 	if (!xfer->tx_buf)
419 		return -EINVAL;
420 
421 	/* Setup DMA channels */
422 	ret = dw_spi_dma_config_tx(dws);
423 	if (ret)
424 		return ret;
425 
426 	if (xfer->rx_buf) {
427 		ret = dw_spi_dma_config_rx(dws);
428 		if (ret)
429 			return ret;
430 	}
431 
432 	/* Set the DMA handshaking interface */
433 	dma_ctrl = SPI_DMA_TDMAE;
434 	if (xfer->rx_buf)
435 		dma_ctrl |= SPI_DMA_RDMAE;
436 	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
437 
438 	/* Set the interrupt mask */
439 	imr = SPI_INT_TXOI;
440 	if (xfer->rx_buf)
441 		imr |= SPI_INT_RXUI | SPI_INT_RXOI;
442 	spi_umask_intr(dws, imr);
443 
444 	reinit_completion(&dws->dma_completion);
445 
446 	dws->transfer_handler = dw_spi_dma_transfer_handler;
447 
448 	return 0;
449 }
450 
451 static int dw_spi_dma_transfer_all(struct dw_spi *dws,
452 				   struct spi_transfer *xfer)
453 {
454 	int ret;
455 
456 	/* Submit the DMA Tx transfer */
457 	ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
458 	if (ret)
459 		goto err_clear_dmac;
460 
461 	/* Submit the DMA Rx transfer if required */
462 	if (xfer->rx_buf) {
463 		ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
464 					   xfer->rx_sg.nents);
465 		if (ret)
466 			goto err_clear_dmac;
467 
468 		/* rx must be started before tx due to spi instinct */
469 		dma_async_issue_pending(dws->rxchan);
470 	}
471 
472 	dma_async_issue_pending(dws->txchan);
473 
474 	ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
475 
476 err_clear_dmac:
477 	dw_writel(dws, DW_SPI_DMACR, 0);
478 
479 	return ret;
480 }
481 
482 /*
483  * In case if at least one of the requested DMA channels doesn't support the
484  * hardware accelerated SG list entries traverse, the DMA driver will most
485  * likely work that around by performing the IRQ-based SG list entries
486  * resubmission. That might and will cause a problem if the DMA Tx channel is
487  * recharged and re-executed before the Rx DMA channel. Due to
488  * non-deterministic IRQ-handler execution latency the DMA Tx channel will
489  * start pushing data to the SPI bus before the Rx DMA channel is even
490  * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
491  * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
492  * the DMA Rx channel being recharged and re-executed will eventually be
493  * overflown.
494  *
495  * In order to solve the problem we have to feed the DMA engine with SG list
496  * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
497  * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
498  * and rx_sg lists may have different number of entries of different lengths
499  * (though total length should match) let's virtually split the SG-lists to the
500  * set of DMA transfers, which length is a minimum of the ordered SG-entries
501  * lengths. An ASCII-sketch of the implemented algo is following:
502  *                  xfer->len
503  *                |___________|
504  * tx_sg list:    |___|____|__|
505  * rx_sg list:    |_|____|____|
506  * DMA transfers: |_|_|__|_|__|
507  *
508  * Note in order to have this workaround solving the denoted problem the DMA
509  * engine driver should properly initialize the max_sg_burst capability and set
510  * the DMA device max segment size parameter with maximum data block size the
511  * DMA engine supports.
512  */
513 
514 static int dw_spi_dma_transfer_one(struct dw_spi *dws,
515 				   struct spi_transfer *xfer)
516 {
517 	struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
518 	unsigned int tx_len = 0, rx_len = 0;
519 	unsigned int base, len;
520 	int ret;
521 
522 	sg_init_table(&tx_tmp, 1);
523 	sg_init_table(&rx_tmp, 1);
524 
525 	for (base = 0, len = 0; base < xfer->len; base += len) {
526 		/* Fetch next Tx DMA data chunk */
527 		if (!tx_len) {
528 			tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
529 			sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
530 			tx_len = sg_dma_len(tx_sg);
531 		}
532 
533 		/* Fetch next Rx DMA data chunk */
534 		if (!rx_len) {
535 			rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
536 			sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
537 			rx_len = sg_dma_len(rx_sg);
538 		}
539 
540 		len = min(tx_len, rx_len);
541 
542 		sg_dma_len(&tx_tmp) = len;
543 		sg_dma_len(&rx_tmp) = len;
544 
545 		/* Submit DMA Tx transfer */
546 		ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
547 		if (ret)
548 			break;
549 
550 		/* Submit DMA Rx transfer */
551 		ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
552 		if (ret)
553 			break;
554 
555 		/* Rx must be started before Tx due to SPI instinct */
556 		dma_async_issue_pending(dws->rxchan);
557 
558 		dma_async_issue_pending(dws->txchan);
559 
560 		/*
561 		 * Here we only need to wait for the DMA transfer to be
562 		 * finished since SPI controller is kept enabled during the
563 		 * procedure this loop implements and there is no risk to lose
564 		 * data left in the Tx/Rx FIFOs.
565 		 */
566 		ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
567 		if (ret)
568 			break;
569 
570 		reinit_completion(&dws->dma_completion);
571 
572 		sg_dma_address(&tx_tmp) += len;
573 		sg_dma_address(&rx_tmp) += len;
574 		tx_len -= len;
575 		rx_len -= len;
576 	}
577 
578 	dw_writel(dws, DW_SPI_DMACR, 0);
579 
580 	return ret;
581 }
582 
583 static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
584 {
585 	unsigned int nents;
586 	int ret;
587 
588 	nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
589 
590 	/*
591 	 * Execute normal DMA-based transfer (which submits the Rx and Tx SG
592 	 * lists directly to the DMA engine at once) if either full hardware
593 	 * accelerated SG list traverse is supported by both channels, or the
594 	 * Tx-only SPI transfer is requested, or the DMA engine is capable to
595 	 * handle both SG lists on hardware accelerated basis.
596 	 */
597 	if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
598 		ret = dw_spi_dma_transfer_all(dws, xfer);
599 	else
600 		ret = dw_spi_dma_transfer_one(dws, xfer);
601 	if (ret)
602 		return ret;
603 
604 	if (dws->master->cur_msg->status == -EINPROGRESS) {
605 		ret = dw_spi_dma_wait_tx_done(dws, xfer);
606 		if (ret)
607 			return ret;
608 	}
609 
610 	if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
611 		ret = dw_spi_dma_wait_rx_done(dws);
612 
613 	return ret;
614 }
615 
616 static void dw_spi_dma_stop(struct dw_spi *dws)
617 {
618 	if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
619 		dmaengine_terminate_sync(dws->txchan);
620 		clear_bit(TX_BUSY, &dws->dma_chan_busy);
621 	}
622 	if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
623 		dmaengine_terminate_sync(dws->rxchan);
624 		clear_bit(RX_BUSY, &dws->dma_chan_busy);
625 	}
626 }
627 
628 static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
629 	.dma_init	= dw_spi_dma_init_mfld,
630 	.dma_exit	= dw_spi_dma_exit,
631 	.dma_setup	= dw_spi_dma_setup,
632 	.can_dma	= dw_spi_can_dma,
633 	.dma_transfer	= dw_spi_dma_transfer,
634 	.dma_stop	= dw_spi_dma_stop,
635 };
636 
637 void dw_spi_dma_setup_mfld(struct dw_spi *dws)
638 {
639 	dws->dma_ops = &dw_spi_dma_mfld_ops;
640 }
641 EXPORT_SYMBOL_GPL(dw_spi_dma_setup_mfld);
642 
643 static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
644 	.dma_init	= dw_spi_dma_init_generic,
645 	.dma_exit	= dw_spi_dma_exit,
646 	.dma_setup	= dw_spi_dma_setup,
647 	.can_dma	= dw_spi_can_dma,
648 	.dma_transfer	= dw_spi_dma_transfer,
649 	.dma_stop	= dw_spi_dma_stop,
650 };
651 
652 void dw_spi_dma_setup_generic(struct dw_spi *dws)
653 {
654 	dws->dma_ops = &dw_spi_dma_generic_ops;
655 }
656 EXPORT_SYMBOL_GPL(dw_spi_dma_setup_generic);
657